2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-08 05:34:29 +08:00
Commit Graph

10 Commits

Author SHA1 Message Date
Vaibhav Jain
97c02c723b seq_buf: Export seq_buf_printf
'seq_buf' provides a very useful abstraction for writing to a string
buffer without needing to worry about it over-flowing. However even
though the API has been stable for couple of years now its still not
exported to kernel loadable modules limiting its usage.

Hence this patch proposes update to 'seq_buf.c' to mark
seq_buf_printf() which is part of the seq_buf API to be exported to
kernel loadable GPL modules. This symbol will be used in later parts
of this patch-set to simplify content creation for a sysfs attribute.

Signed-off-by: Vaibhav Jain <vaibhav@linux.ibm.com>
Acked-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Piotr Maziarz <piotrx.maziarz@linux.intel.com>
Cc: Cezary Rojewski <cezary.rojewski@intel.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Borislav Petkov <bp@alien8.de>
Link: https://lore.kernel.org/r/20200615124407.32596-3-vaibhav@linux.ibm.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2020-06-15 18:22:43 -07:00
Piotr Maziarz
353cade314 seq_buf: Add printing formatted hex dumps
Provided function is an analogue of print_hex_dump().

Implementing this function in seq_buf allows using for multiple
purposes (e.g. for tracing) and therefore prevents from code duplication
in every layer that uses seq_buf.

print_hex_dump() is an essential part of logging data to dmesg. Adding
similar capability for other purposes is beneficial to all users.

Example usage:
seq_buf_hex_dump(seq, "", DUMP_PREFIX_OFFSET, 16, 4, buf,
		 ARRAY_SIZE(buf), true);
Example output:
00000000: 00000000 ffffff10 ffffff32 ffff3210  ........2....2..
00000010: ffff3210 83d00437 c0700000 00000000  .2..7.....p.....
00000020: 02010004 0000000f 0000000f 00004002  .............@..
00000030: 00000fff 00000000                    ........

Link: http://lkml.kernel.org/r/1573130738-29390-1-git-send-email-piotrx.maziarz@linux.intel.com

Signed-off-by: Piotr Maziarz <piotrx.maziarz@linux.intel.com>
Signed-off-by: Cezary Rojewski <cezary.rojewski@intel.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2019-11-14 13:15:12 -05:00
Michael Ellerman
29924e5030 seq_buf: Use size_t for len in seq_buf_puts()
Jann Horn points out that we're using unsigned int for len in
seq_buf_puts(), which could potentially overflow if we're passed a
UINT_MAX sized string.

The rest of the code already uses size_t, so we should also use that
in seq_buf_puts() to avoid any issues.

Link: http://lkml.kernel.org/r/20181019042109.8064-2-mpe@ellerman.id.au

Suggested-by: Jann Horn <jannh@google.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2018-12-22 08:21:03 -05:00
Michael Ellerman
0464ed2438 seq_buf: Make seq_buf_puts() null-terminate the buffer
Currently seq_buf_puts() will happily create a non null-terminated
string for you in the buffer. This is particularly dangerous if the
buffer is on the stack.

For example:

  char buf[8];
  char secret = "secret";
  struct seq_buf s;

  seq_buf_init(&s, buf, sizeof(buf));
  seq_buf_puts(&s, "foo");
  printk("Message is %s\n", buf);

Can result in:

  Message is fooªªªªªsecret

We could require all users to memset() their buffer to zero before
use. But that seems likely to be forgotten and lead to bugs.

Instead we can change seq_buf_puts() to always leave the buffer in a
null-terminated state.

The only downside is that this makes the buffer 1 character smaller
for seq_buf_puts(), but that seems like a good trade off.

Link: http://lkml.kernel.org/r/20181019042109.8064-1-mpe@ellerman.id.au

Acked-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2018-12-22 08:21:03 -05:00
Greg Kroah-Hartman
b24413180f License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.

By default all files without license information are under the default
license of the kernel, which is GPL version 2.

Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier.  The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.

This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.

How this work was done:

Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
 - file had no licensing information it it.
 - file was a */uapi/* one with no licensing information in it,
 - file was a */uapi/* one with existing licensing information,

Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.

The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne.  Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.

The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed.  Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.

Criteria used to select files for SPDX license identifier tagging was:
 - Files considered eligible had to be source code files.
 - Make and config files were included as candidates if they contained >5
   lines of source
 - File already had some variant of a license header in it (even if <5
   lines).

All documentation files were explicitly excluded.

The following heuristics were used to determine which SPDX license
identifiers to apply.

 - when both scanners couldn't find any license traces, file was
   considered to have no license information in it, and the top level
   COPYING file license applied.

   For non */uapi/* files that summary was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0                                              11139

   and resulted in the first patch in this series.

   If that file was a */uapi/* path one, it was "GPL-2.0 WITH
   Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0 WITH Linux-syscall-note                        930

   and resulted in the second patch in this series.

 - if a file had some form of licensing information in it, and was one
   of the */uapi/* ones, it was denoted with the Linux-syscall-note if
   any GPL family license was found in the file or had no licensing in
   it (per prior point).  Results summary:

   SPDX license identifier                            # files
   ---------------------------------------------------|------
   GPL-2.0 WITH Linux-syscall-note                       270
   GPL-2.0+ WITH Linux-syscall-note                      169
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
   LGPL-2.1+ WITH Linux-syscall-note                      15
   GPL-1.0+ WITH Linux-syscall-note                       14
   ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
   LGPL-2.0+ WITH Linux-syscall-note                       4
   LGPL-2.1 WITH Linux-syscall-note                        3
   ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
   ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1

   and that resulted in the third patch in this series.

 - when the two scanners agreed on the detected license(s), that became
   the concluded license(s).

 - when there was disagreement between the two scanners (one detected a
   license but the other didn't, or they both detected different
   licenses) a manual inspection of the file occurred.

 - In most cases a manual inspection of the information in the file
   resulted in a clear resolution of the license that should apply (and
   which scanner probably needed to revisit its heuristics).

 - When it was not immediately clear, the license identifier was
   confirmed with lawyers working with the Linux Foundation.

 - If there was any question as to the appropriate license identifier,
   the file was flagged for further research and to be revisited later
   in time.

In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.

Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights.  The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.

Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.

In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.

Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
 - a full scancode scan run, collecting the matched texts, detected
   license ids and scores
 - reviewing anything where there was a license detected (about 500+
   files) to ensure that the applied SPDX license was correct
 - reviewing anything where there was no detection but the patch license
   was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
   SPDX license was correct

This produced a worksheet with 20 files needing minor correction.  This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.

These .csv files were then reviewed by Greg.  Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected.  This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.)  Finally Greg ran the script using the .csv files to
generate the patches.

Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-02 11:10:55 +01:00
Jerry Snitselaar
ff078d8fc6 tracing: Use seq_buf_used() in seq_buf_to_user() instead of len
commit 5ac4837841 ("tracing: Use trace_seq_used() and seq_buf_used()
instead of len") changed the tracing code to use trace_seq_used() and
seq_buf_used() instead of using the seq_buf len directly to avoid
overflow issues, but missed a spot in seq_buf_to_user() that makes use
of s->len.

Cleaned up the code a bit as well per suggestion of Steve Rostedt.

Link: http://lkml.kernel.org/r/1447703848-2951-1-git-send-email-jsnitsel@redhat.com

Signed-off-by: Jerry Snitselaar <jsnitsel@redhat.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2015-12-23 14:27:20 -05:00
Steven Rostedt (Red Hat)
4d4eb4d4fb seq_buf: Fix seq_buf_bprintf() truncation
In seq_buf_bprintf(), bstr_printf() is used to copy the format into the
buffer remaining in the seq_buf structure. The return of bstr_printf()
is the amount of characters written to the buffer excluding the '\0',
unless the line was truncated!

If the line copied does not fit, it is truncated, and a '\0' is added
to the end of the buffer. But in this case, '\0' is included in the length
of the line written. To know if the buffer had overflowed, the return
length will be the same or greater than the length of the buffer passed in.

The check in seq_buf_bprintf() only checked if the length returned from
bstr_printf() would fit in the buffer, as the seq_buf_bprintf() is only
to be an all or nothing command. It either writes all the string into
the seq_buf, or none of it. If the string is truncated, the pointers
inside the seq_buf must be reset to what they were when the function was
called. This is not the case. On overflow, it copies only part of the string.

The fix is to change the overflow check to see if the length returned from
bstr_printf() is less than the length remaining in the seq_buf buffer, and not
if it is less than or equal to as it currently does. Then seq_buf_bprintf()
will know if the write from bstr_printf() was truncated or not.

Link: http://lkml.kernel.org/r/1425500481.2712.27.camel@perches.com

Cc: stable@vger.kernel.org
Reported-by: Joe Perches <joe@perches.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2015-03-04 23:40:19 -05:00
Steven Rostedt (Red Hat)
4a8fe4e181 seq_buf: Fix seq_buf_vprintf() truncation
In seq_buf_vprintf(), vsnprintf() is used to copy the format into the
buffer remaining in the seq_buf structure. The return of vsnprintf()
is the amount of characters written to the buffer excluding the '\0',
unless the line was truncated!

If the line copied does not fit, it is truncated, and a '\0' is added
to the end of the buffer. But in this case, '\0' is included in the length
of the line written. To know if the buffer had overflowed, the return
length will be the same as the length of the buffer passed in.

The check in seq_buf_vprintf() only checked if the length returned from
vsnprintf() would fit in the buffer, as the seq_buf_vprintf() is only
to be an all or nothing command. It either writes all the string into
the seq_buf, or none of it. If the string is truncated, the pointers
inside the seq_buf must be reset to what they were when the function was
called. This is not the case. On overflow, it copies only part of the string.

The fix is to change the overflow check to see if the length returned from
vsnprintf() is less than the length remaining in the seq_buf buffer, and not
if it is less than or equal to as it currently does. Then seq_buf_vprintf()
will know if the write from vsnpritnf() was truncated or not.

Cc: stable@vger.kernel.org
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2015-03-04 09:56:02 -05:00
Tejun Heo
46385326cc bitmap, cpumask, nodemask: remove dedicated formatting functions
Now that all bitmap formatting usages have been converted to
'%*pb[l]', the separate formatting functions are unnecessary.  The
following functions are removed.

* bitmap_scn[list]printf()
* cpumask_scnprintf(), cpulist_scnprintf()
* [__]nodemask_scnprintf(), [__]nodelist_scnprintf()
* seq_bitmap[_list](), seq_cpumask[_list](), seq_nodemask[_list]()
* seq_buf_bitmask()

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-13 21:21:39 -08:00
Steven Rostedt (Red Hat)
8d58e99af5 seq_buf: Move the seq_buf code to lib/
The seq_buf functions are rather useful outside of tracing. Instead
of having it be dependent on CONFIG_TRACING, move the code into lib/
and allow other users to have access to it even when tracing is not
configured.

The seq_buf utility is similar to the seq_file utility, but instead of
writing sending data back up to userland, it writes it into a buffer
defined at seq_buf_init(). This allows us to send a descriptor around
that writes printf() formatted strings into it that can be retrieved
later.

It is currently used by the tracing facility for such things like trace
events to convert its binary saved data in the ring buffer into an
ASCII human readable context to be displayed in /sys/kernel/debug/trace.

It can also be used for doing NMI prints safely from NMI context into
the seq_buf and retrieved later and dumped to printk() safely. Doing
printk() from an NMI context is dangerous because an NMI can preempt
a current printk() and deadlock on it.

Link: http://lkml.kernel.org/p/20140619213952.058255809@goodmis.org

Tested-by: Jiri Kosina <jkosina@suse.cz>
Acked-by: Jiri Kosina <jkosina@suse.cz>
Reviewed-by: Petr Mladek <pmladek@suse.cz>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2014-11-19 22:01:20 -05:00