2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-26 06:04:14 +08:00
Commit Graph

6 Commits

Author SHA1 Message Date
Anton Blanchard
df99e6eb3f powerpc: Change vsrX register defines to vsX to match gcc and glibc
As our various loops (copy, string, crypto etc) get more complicated,
we want to share implementations between userspace (eg glibc) and
the kernel. We also want to write userspace test harnesses to put
in tools/testing/selftest.

One gratuitous difference between userspace and the kernel is the
VSX register definitions - the kernel uses vsrX whereas gcc uses
vsX.

Change the kernel to match userspace.

Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2015-03-16 18:32:11 +11:00
Anton Blanchard
c2ce6f9f3d powerpc: Change vrX register defines to vX to match gcc and glibc
As our various loops (copy, string, crypto etc) get more complicated,
we want to share implementations between userspace (eg glibc) and
the kernel. We also want to write userspace test harnesses to put
in tools/testing/selftest.

One gratuitous difference between userspace and the kernel is the
VMX register definitions - the kernel uses vrX whereas both gcc and
glibc use vX.

Change the kernel to match userspace.

Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2015-03-16 18:32:11 +11:00
Michael Neuling
e55174e911 powerpc: Fixes for instructions not using correct register naming
These macros are using integers where they could be using logical
names since they take registers.

We are going to enforce this soon, so fix these up now.

Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2012-07-10 19:18:16 +10:00
Michael Neuling
c75df6f96c powerpc: Fix usage of register macros getting ready for %r0 change
Anything that uses a constructed instruction (ie. from ppc-opcode.h),
need to use the new R0 macro, as %r0 is not going to work.

Also convert usages of macros where we are just determining an offset
(usually for a load/store), like:
	std	r14,STK_REG(r14)(r1)
Can't use STK_REG(r14) as %r14 doesn't work in the STK_REG macro since
it's just calculating an offset.

Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2012-07-10 19:17:55 +10:00
Sean MacLennan
cd64d1697c powerpc: mtmsrd not defined
Replace the BOOK3S_64 specific mtmsrd with the generic MTMSRD macro.
Only enable ldstfp when CONFIG_PPC_FPU is set.

Signed-off-by: Sean MacLennan <smaclennan@pikatech.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2010-09-02 14:07:34 +10:00
Paul Mackerras
0016a4cf55 powerpc: Emulate most Book I instructions in emulate_step()
This extends the emulate_step() function to handle a large proportion
of the Book I instructions implemented on current 64-bit server
processors.  The aim is to handle all the load and store instructions
used in the kernel, plus all of the instructions that appear between
l[wd]arx and st[wd]cx., so this handles the Altivec/VMX lvx and stvx
and the VSX lxv2dx and stxv2dx instructions (implemented in POWER7).

The new code can emulate user mode instructions, and checks the
effective address for a load or store if the saved state is for
user mode.  It doesn't handle little-endian mode at present.

For floating-point, Altivec/VMX and VSX instructions, it checks
that the saved MSR has the enable bit for the relevant facility
set, and if so, assumes that the FP/VMX/VSX registers contain
valid state, and does loads or stores directly to/from the
FP/VMX/VSX registers, using assembly helpers in ldstfp.S.

Instructions supported now include:
* Loads and stores, including some but not all VMX and VSX instructions,
  and lmw/stmw
* Atomic loads and stores (l[dw]arx, st[dw]cx.)
* Arithmetic instructions (add, subtract, multiply, divide, etc.)
* Compare instructions
* Rotate and mask instructions
* Shift instructions
* Logical instructions (and, or, xor, etc.)
* Condition register logical instructions
* mtcrf, cntlz[wd], exts[bhw]
* isync, sync, lwsync, ptesync, eieio
* Cache operations (dcbf, dcbst, dcbt, dcbtst)

The overflow-checking arithmetic instructions are not included, but
they appear not to be ever used in C code.

This uses decimal values for the minor opcodes in the switch statements
because that is what appears in the Power ISA specification, thus it is
easier to check that they are correct if they are in decimal.

If this is used to single-step an instruction where a data breakpoint
interrupt occurred, then there is the possibility that the instruction
is a lwarx or ldarx.  In that case we have to be careful not to lose the
reservation until we get to the matching st[wd]cx., or we'll never make
forward progress.  One alternative is to try to arrange that we can
return from interrupts and handle data breakpoint interrupts without
losing the reservation, which means not using any spinlocks, mutexes,
or atomic ops (including bitops).  That seems rather fragile.  The
other alternative is to emulate the larx/stcx and all the instructions
in between.  This is why this commit adds support for a wide range
of integer instructions.

Signed-off-by: Paul Mackerras <paulus@samba.org>
2010-06-22 19:40:29 +10:00