The bad_host_intr check will never be true with PR KVM, move
it to HV code.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210528090752.3542186-7-npiggin@gmail.com
This allows more code to be moved out of unrelocated regions. The
system call KVMTEST is changed to be open-coded and remain in the
tramp area to avoid having to move it to entry_64.S. The custom nature
of the system call entry code means the hcall case can be made more
streamlined than regular interrupt handlers.
mpe: Incorporate fix from Nick:
Moving KVM test to the common entry code missed the case of HMI and
MCE, which do not do __GEN_COMMON_ENTRY (because they don't want to
switch to virt mode).
This means a MCE or HMI exception that is taken while KVM is running a
guest context will not be switched out of that context, and KVM won't
be notified. Found by running sigfuz in guest with patched host on
POWER9 DD2.3, which causes some TM related HMI interrupts (which are
expected and supposed to be handled by KVM).
This fix adds a __GEN_REALMODE_COMMON_ENTRY for those handlers to add
the KVM test. This makes them look a little more like other handlers
that all use __GEN_COMMON_ENTRY.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200225173541.1549955-13-npiggin@gmail.com
Based on 1 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license version 2 as
published by the free software foundation this program is
distributed in the hope that it will be useful but without any
warranty without even the implied warranty of merchantability or
fitness for a particular purpose see the gnu general public license
for more details you should have received a copy of the gnu general
public license along with this program if not write to the free
software foundation 51 franklin street fifth floor boston ma 02110
1301 usa
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-only
has been chosen to replace the boilerplate/reference in 67 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Richard Fontana <rfontana@redhat.com>
Reviewed-by: Alexios Zavras <alexios.zavras@intel.com>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190529141333.953658117@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
files not using feature fixup don't need asm/feature-fixups.h
files using feature fixup need asm/feature-fixups.h
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This patch moves ASM_CONST() and stringify_in_c() into
dedicated asm-const.h, then cleans all related inclusions.
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
[mpe: asm-compat.h should include asm-const.h]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
PR KVM host usually runs with TM enabled in its host MSR value, and
with non-transactional TS value.
When a guest with TM active traps into PR KVM host, the rfid at the
tail of kvmppc_interrupt_pr() will try to switch TS bits from
S0 (Suspended & TM disabled) to N1 (Non-transactional & TM enabled).
That will leads to TM Bad Thing interrupt.
This patch manually sets target TS bits unchanged to avoid this
exception.
Signed-off-by: Simon Guo <wei.guo.simon@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This commit does simple conversions of rfi/rfid to the new macros that
include the expected destination context. By simple we mean cases
where there is a single well known destination context, and it's
simply a matter of substituting the instruction for the appropriate
macro.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
64-bit Book3S exception handlers must find the dynamic kernel base
to add to the target address when branching beyond __end_interrupts,
in order to support kernel running at non-0 physical address.
Support this in KVM by branching with CTR, similarly to regular
interrupt handlers. The guest CTR saved in HSTATE_SCRATCH1 and
restored after the branch.
Without this, the host kernel hangs and crashes randomly when it is
running at a non-0 address and a KVM guest is started.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Acked-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Change the calling convention to put the trap number together with
CR in two halves of r12, which frees up HSTATE_SCRATCH2 in the HV
handler.
The 64-bit PR handler entry translates the calling convention back
to match the previous call convention (i.e., shared with 32-bit), for
simplicity.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Acked-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
In 64 bit kernels, the Fixed Point Exception Register (XER) is a 64
bit field (e.g. in kvm_regs and kvm_vcpu_arch) and in most places it is
accessed as such.
This patch corrects places where it is accessed as a 32 bit field by a
64 bit kernel. In some cases this is via a 32 bit load or store
instruction which, depending on endianness, will cause either the
lower or upper 32 bits to be missed. In another case it is cast as a
u32, causing the upper 32 bits to be cleared.
This patch corrects those places by extending the access methods to
64 bits.
Signed-off-by: Sam Bobroff <sam.bobroff@au1.ibm.com>
Reviewed-by: Laurent Vivier <lvivier@redhat.com>
Reviewed-by: Thomas Huth <thuth@redhat.com>
Tested-by: Thomas Huth <thuth@redhat.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
POWER8 introduced a new interrupt type called "Facility unavailable interrupt"
which contains its status message in a new register called FSCR.
Handle these exits and try to emulate instructions for unhandled facilities.
Follow-on patches enable KVM to expose specific facilities into the guest.
Signed-off-by: Alexander Graf <agraf@suse.de>
With this patch if HV is included, interrupts come in to the HV version
of the kvmppc_interrupt code, which then jumps to the PR handler,
renamed to kvmppc_interrupt_pr, if the guest is a PR guest. This helps
in enabling both HV and PR, which we do in later patch
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Move this duplicated definition to ppc_asm.h and remove the
braces which prevent the use of %rN register names
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Pull KVM changes from Avi Kivity:
"Changes include additional instruction emulation, page-crossing MMIO,
faster dirty logging, preventing the watchdog from killing a stopped
guest, module autoload, a new MSI ABI, and some minor optimizations
and fixes. Outside x86 we have a small s390 and a very large ppc
update.
Regarding the new (for kvm) rebaseless workflow, some of the patches
that were merged before we switch trees had to be rebased, while
others are true pulls. In either case the signoffs should be correct
now."
Fix up trivial conflicts in Documentation/feature-removal-schedule.txt
arch/powerpc/kvm/book3s_segment.S and arch/x86/include/asm/kvm_para.h.
I suspect the kvm_para.h resolution ends up doing the "do I have cpuid"
check effectively twice (it was done differently in two different
commits), but better safe than sorry ;)
* 'next' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (125 commits)
KVM: make asm-generic/kvm_para.h have an ifdef __KERNEL__ block
KVM: s390: onereg for timer related registers
KVM: s390: epoch difference and TOD programmable field
KVM: s390: KVM_GET/SET_ONEREG for s390
KVM: s390: add capability indicating COW support
KVM: Fix mmu_reload() clash with nested vmx event injection
KVM: MMU: Don't use RCU for lockless shadow walking
KVM: VMX: Optimize %ds, %es reload
KVM: VMX: Fix %ds/%es clobber
KVM: x86 emulator: convert bsf/bsr instructions to emulate_2op_SrcV_nobyte()
KVM: VMX: unlike vmcs on fail path
KVM: PPC: Emulator: clean up SPR reads and writes
KVM: PPC: Emulator: clean up instruction parsing
kvm/powerpc: Add new ioctl to retreive server MMU infos
kvm/book3s: Make kernel emulated H_PUT_TCE available for "PR" KVM
KVM: PPC: bookehv: Fix r8/r13 storing in level exception handler
KVM: PPC: Book3S: Enable IRQs during exit handling
KVM: PPC: Fix PR KVM on POWER7 bare metal
KVM: PPC: Fix stbux emulation
KVM: PPC: bookehv: Use lwz/stw instead of PPC_LL/PPC_STL for 32-bit fields
...
When jumping back into the kernel to code that knows that it would be
using HSRR registers instead of SRR registers, we need to make sure we
pass it all information on where to jump to in HSRR registers.
Unfortunately, we used r10 to store the information to distinguish between
the HSRR and SRR case. That register got clobbered in between though,
rendering the later comparison invalid.
Instead, let's use cr1 to store this information. That way we don't
need yet another register and everyone's happy.
This fixes PR KVM on POWER7 bare metal for me.
Signed-off-by: Alexander Graf <agraf@suse.de>
When running on a system that is HV capable, some interrupts use HSRR
SPRs instead of the normal SRR SPRs. These are also used in the Linux
handlers to jump back to code after an interrupt got processed.
Unfortunately, in our "jump back to the real host handler after we've
done the context switch" code, we were only setting the SRR SPRs,
rendering Linux to jump back to some invalid IP after it's processed
the interrupt.
This fixes random crashes on p7 opal mode with PR KVM for me.
Signed-off-by: Alexander Graf <agraf@suse.de>
In addition to normal "priviledged instruction" traps, we can also receive
"emulation assist" traps on newer hardware that has the HV bit set.
Handle that one the same way as a privileged instruction, including the
instruction fetching. That way we don't execute old instructions that we
happen to still leave in that field when an emul assist trap comes.
This fixes -M mac99 / -M g3beige on p7 bare metal for me.
Signed-off-by: Alexander Graf <agraf@suse.de>
When running on a system that is HV capable, some interrupts use HSRR
SPRs instead of the normal SRR SPRs. These are also used in the Linux
handlers to jump back to code after an interrupt got processed.
Unfortunately, in our "jump back to the real host handler after we've
done the context switch" code, we were only setting the SRR SPRs,
rendering Linux to jump back to some invalid IP after it's processed
the interrupt.
This fixes random crashes on p7 opal mode with PR KVM for me.
Signed-off-by: Alexander Graf <agraf@suse.de>
By shuffling a few instructions around we can execute more memory
loads in parallel, giving us a small performance boost.
With this patch and a simple priviledged SPR access loop guest, I get
a speed bump from 2013052 to 2035607 exits per second.
Signed-off-by: Alexander Graf <agraf@suse.de>
This simplifies the way that the book3s_pr makes the transition to
real mode when entering the guest. We now call kvmppc_entry_trampoline
(renamed from kvmppc_rmcall) in the base kernel using a normal function
call instead of doing an indirect call through a pointer in the vcpu.
If kvm is a module, the module loader takes care of generating a
trampoline as it does for other calls to functions outside the module.
kvmppc_entry_trampoline then disables interrupts and jumps to
kvmppc_handler_trampoline_enter in real mode using an rfi[d].
That then uses the link register as the address to return to
(potentially in module space) when the guest exits.
This also simplifies the way that we call the Linux interrupt handler
when we exit the guest due to an external, decrementer or performance
monitor interrupt. Instead of turning on the MMU, then deciding that
we need to call the Linux handler and turning the MMU back off again,
we now go straight to the handler at the point where we would turn the
MMU on. The handler will then return to the virtual-mode code
(potentially in the module).
Along the way, this moves the setting and clearing of the HID5 DCBZ32
bit into real-mode interrupts-off code, and also makes sure that
we clear the MSR[RI] bit before loading values into SRR0/1.
The net result is that we no longer need any code addresses to be
stored in vcpu->arch.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
We have a few traps where we cache the instruction that cause the trap
for analysis later on. Since we now need to be able to distinguish
between SC 0 and SC 1 system calls and the only way to find out which
is which is by looking at the instruction, we also read out the instruction
causing the system call.
Signed-off-by: Alexander Graf <agraf@suse.de>
This replaces the single CPU_FTR_HVMODE_206 bit with two bits, one to
indicate that we have a usable hypervisor mode, and another to indicate
that the processor conforms to PowerISA version 2.06. We also add
another bit to indicate that the processor conforms to ISA version 2.01
and set that for PPC970 and derivatives.
Some PPC970 chips (specifically those in Apple machines) have a
hypervisor mode in that MSR[HV] is always 1, but the hypervisor mode
is not useful in the sense that there is no way to run any code in
supervisor mode (HV=0 PR=0). On these processors, the LPES0 and LPES1
bits in HID4 are always 0, and we use that as a way of detecting that
hypervisor mode is not useful.
Where we have a feature section in assembly code around code that
only applies on POWER7 in hypervisor mode, we use a construct like
END_FTR_SECTION_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206)
The definition of END_FTR_SECTION_IFSET is such that the code will
be enabled (not overwritten with nops) only if all bits in the
provided mask are set.
Note that the CPU feature check in __tlbie() only needs to check the
ARCH_206 bit, not the HVMODE bit, because __tlbie() can only get called
if we are running bare-metal, i.e. in hypervisor mode.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
This adds support for KVM running on 64-bit Book 3S processors,
specifically POWER7, in hypervisor mode. Using hypervisor mode means
that the guest can use the processor's supervisor mode. That means
that the guest can execute privileged instructions and access privileged
registers itself without trapping to the host. This gives excellent
performance, but does mean that KVM cannot emulate a processor
architecture other than the one that the hardware implements.
This code assumes that the guest is running paravirtualized using the
PAPR (Power Architecture Platform Requirements) interface, which is the
interface that IBM's PowerVM hypervisor uses. That means that existing
Linux distributions that run on IBM pSeries machines will also run
under KVM without modification. In order to communicate the PAPR
hypercalls to qemu, this adds a new KVM_EXIT_PAPR_HCALL exit code
to include/linux/kvm.h.
Currently the choice between book3s_hv support and book3s_pr support
(i.e. the existing code, which runs the guest in user mode) has to be
made at kernel configuration time, so a given kernel binary can only
do one or the other.
This new book3s_hv code doesn't support MMIO emulation at present.
Since we are running paravirtualized guests, this isn't a serious
restriction.
With the guest running in supervisor mode, most exceptions go straight
to the guest. We will never get data or instruction storage or segment
interrupts, alignment interrupts, decrementer interrupts, program
interrupts, single-step interrupts, etc., coming to the hypervisor from
the guest. Therefore this introduces a new KVMTEST_NONHV macro for the
exception entry path so that we don't have to do the KVM test on entry
to those exception handlers.
We do however get hypervisor decrementer, hypervisor data storage,
hypervisor instruction storage, and hypervisor emulation assist
interrupts, so we have to handle those.
In hypervisor mode, real-mode accesses can access all of RAM, not just
a limited amount. Therefore we put all the guest state in the vcpu.arch
and use the shadow_vcpu in the PACA only for temporary scratch space.
We allocate the vcpu with kzalloc rather than vzalloc, and we don't use
anything in the kvmppc_vcpu_book3s struct, so we don't allocate it.
We don't have a shared page with the guest, but we still need a
kvm_vcpu_arch_shared struct to store the values of various registers,
so we include one in the vcpu_arch struct.
The POWER7 processor has a restriction that all threads in a core have
to be in the same partition. MMU-on kernel code counts as a partition
(partition 0), so we have to do a partition switch on every entry to and
exit from the guest. At present we require the host and guest to run
in single-thread mode because of this hardware restriction.
This code allocates a hashed page table for the guest and initializes
it with HPTEs for the guest's Virtual Real Memory Area (VRMA). We
require that the guest memory is allocated using 16MB huge pages, in
order to simplify the low-level memory management. This also means that
we can get away without tracking paging activity in the host for now,
since huge pages can't be paged or swapped.
This also adds a few new exports needed by the book3s_hv code.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
There are several fields in struct kvmppc_book3s_shadow_vcpu that
temporarily store bits of host state while a guest is running,
rather than anything relating to the particular guest or vcpu.
This splits them out into a new kvmppc_host_state structure and
modifies the definitions in asm-offsets.c to suit.
On 32-bit, we have a kvmppc_host_state structure inside the
kvmppc_book3s_shadow_vcpu since the assembly code needs to be able
to get to them both with one pointer. On 64-bit they are separate
fields in the PACA. This means that on 64-bit we don't need to
copy the kvmppc_host_state in and out on vcpu load/unload, and
in future will mean that the book3s_hv code doesn't need a
shadow_vcpu struct in the PACA at all. That does mean that we
have to be careful not to rely on any values persisting in the
hstate field of the paca across any point where we could block
or get preempted.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Instead of branching out-of-line with the DO_KVM macro to check if we
are in a KVM guest at the time of an interrupt, this moves the KVM
check inline in the first-level interrupt handlers. This speeds up
the non-KVM case and makes sure that none of the interrupt handlers
are missing the check.
Because the first-level interrupt handlers are now larger, some things
had to be move out of line in exceptions-64s.S.
This all necessitated some minor changes to the interrupt entry code
in KVM. This also streamlines the book3s_32 KVM test.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
This uses feature sections to arrange that we always use HSPRG1
as the scratch register in the interrupt entry code rather than
SPRG2 when we're running in hypervisor mode on POWER7. This will
ensure that we don't trash the guest's SPRG2 when we are running
KVM guests. To simplify the code, we define GET_SCRATCH0() and
SET_SCRATCH0() macros like the GET_PACA/SET_PACA macros.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Pass the register type to the prolog, also provides alternate "HV"
version of hardware interrupt (0x500) and adjust LPES accordingly
We tag those interrupts by setting bit 0x2 in the trap number
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
In the process of merging Book3S_32 and 64 I somehow ended up having the
alignment interrupt handler take last_inst, but the fetching code not
fetching it. So we ended up with stale last_inst values.
Let's just enable last_inst fetching for alignment interrupts too.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
This is the code that will later be used instead of book3s_64_slb.S. It
does the last step of guest entry and the first generic steps of guest
exiting, once we have determined the interrupt is a KVM interrupt.
It also reads the last used instruction from the guest virtual address
space if necessary, to speed up that path.
The new thing about this file is that it makes use of generic long load
and store functions and calls a macro to fill in the actual segment
switching code. That still needs to be done differently for book3s_32 and
book3s_64.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>