Use the fileattr API to let the VFS handle locking, permission checking and
conversion.
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Cc: Darrick J. Wong <djwong@kernel.org>
xfs_setfilesize() is the only remaining caller of the internal
__xfs_setfilesize() helper. Fold them into a single function.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
XFS no longer attaches anthing to ioend->io_private. Remove the
unnecessary ->io_private merging code. This removes the only remaining
user of xfs_setfilesize_ioend() so remove that function as well.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Open code xfs_ioend_needs_workqueue() into the only remaining
caller.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Per-inode ioend completion batching has a log reservation deadlock
vector between preallocated append transactions and transactions
that are acquired at completion time for other purposes (i.e.,
unwritten extent conversion or COW fork remaps). For example, if the
ioend completion workqueue task executes on a batch of ioends that
are sorted such that an append ioend sits at the tail, it's possible
for the outstanding append transaction reservation to block
allocation of transactions required to process preceding ioends in
the list.
Append ioend completion is historically the common path for on-disk
inode size updates. While file extending writes may have completed
sometime earlier, the on-disk inode size is only updated after
successful writeback completion. These transactions are preallocated
serially from writeback context to mitigate concurrency and
associated log reservation pressure across completions processed by
multi-threaded workqueue tasks.
However, now that delalloc blocks unconditionally map to unwritten
extents at physical block allocation time, size updates via append
ioends are relatively rare. This means that inode size updates most
commonly occur as part of the preexisting completion time
transaction to convert unwritten extents. As a result, there is no
longer a strong need to preallocate size update transactions.
Remove the preallocation of inode size update transactions to avoid
the ioend completion processing log reservation deadlock. Instead,
continue to send all potential size extending ioends to workqueue
context for completion and allocate the transaction from that
context. This ensures that no outstanding log reservation is owned
by the ioend completion worker task when it begins to process
ioends.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
A previous commit removed a call to xfs_attr3_leaf_read that
assigned an error return code to variable error. We now have
a few early error return paths to label 'out' that return
error if error is set; however error now is uninitialized
so potentially garbage is being returned. Fix this by setting
error to zero to restore the original behaviour where error
was zero at the label 'restart'.
Addresses-Coverity: ("Uninitialized scalar variable")
Fixes: 07120f1abd ("xfs: Add xfs_has_attr and subroutines")
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Now that the scrub context stores a pointer to the file that was used to
invoke the scrub call, the struct xfs_inode pointer that we passed to
all the setup functions is no longer necessary. This is only ever used
if the caller wants us to scrub the metadata of the open file.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
While running a new fstest that races a readonly remount with scrub
running in repair mode, I observed the kernel tripping over debugging
assertions in the log quiesce code that were checking that the CIL was
empty. When the sysadmin runs scrub in repair mode, the scrub code
allocates real transactions (with reservations) to change things, but
doesn't increment the superblock writers count to block a readonly
remount attempt while it is running.
We don't require the userspace caller to have a writable file descriptor
to run repairs, so we have to call mnt_want_write_file to obtain freeze
protection and increment the writers count. It's ok to remove the call
to sb_start_write for the dry-run case because commit 8321ddb2fa
removed the behavior where scrub and fsfreeze fight over the buffer LRU.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
list_sort() internally casts the comparison function passed to it
to a different type with constant struct list_head pointers, and
uses this pointer to call the functions, which trips indirect call
Control-Flow Integrity (CFI) checking.
Instead of removing the consts, this change defines the
list_cmp_func_t type and changes the comparison function types of
all list_sort() callers to use const pointers, thus avoiding type
mismatches.
Suggested-by: Nick Desaulniers <ndesaulniers@google.com>
Signed-off-by: Sami Tolvanen <samitolvanen@google.com>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Kees Cook <keescook@chromium.org>
Tested-by: Nick Desaulniers <ndesaulniers@google.com>
Tested-by: Nathan Chancellor <nathan@kernel.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20210408182843.1754385-10-samitolvanen@google.com
Fix the weird split of responsibilities between xfs_can_free_eofblocks
and xfs_free_eofblocks by moving the chunk of code that looks for any
actual post-EOF space mappings from the second function into the first.
This clears the way for deferred inode inactivation to be able to decide
if an inode needs inactivation work before committing the released inode
to the inactivation code paths (vs. marking it for reclaim).
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
In xfs_inode_free_eofblocks, move the xfs_can_free_eofblocks call
further down in the function to the point where we have taken the
IOLOCK. This is preparation for the next patch, where we will need that
lock (or equivalent) so that we can check if there are any post-eof
blocks to clean out.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Default attr fork offset is based on inode size, so is a fixed
geometry parameter of the inode. Move it to the xfs_ino_geometry
structure and stop calculating it on every call to
xfs_default_attroffset().
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Tested-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Device inodes have a non-default data fork size of 8 bytes
as checked/enforced by xfs_repair. xfs_default_attroffset() doesn't
handle this, so lets do a minor refactor so it does.
Fixes: e6a688c332 ("xfs: initialise attr fork on inode create")
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Tested-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Due to confusion on when the XFS_IFEXTENT needs to be set, the
changes in e6a688c332 ("xfs: initialise attr fork on inode
create") failed to set the flag when initialising the empty
attribute fork at inode creation. Set this flag the same way
xfs_bmap_add_attrfork() does after attry fork allocation.
Fixes: e6a688c332 ("xfs: initialise attr fork on inode create")
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Tested-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
The pitfalls of regression testing on a machine without realising
that selinux was disabled. Only set the attr fork during inode
allocation if the attr feature bits are already set on the
superblock.
Fixes: e6a688c332 ("xfs: initialise attr fork on inode create")
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Tested-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
xchk_btree_check_minrecs() checks if the contents of the immediate child of a
bmbt root block can fit within the root block. This check could fail on inodes
with an attr fork since xfs_bmap_add_attrfork_btree() used to demote the
current root node of the data fork as the child of a newly allocated root node
if it found that the size of "struct xfs_btree_block" along with the space
required for records exceeded that of space available in the data fork.
xfs_bmap_add_attrfork_btree() should have used "struct xfs_bmdr_block" instead
of "struct xfs_btree_block" for the above mentioned space requirement
calculation. This commit disables the check for unoptimized (in terms of
disk space usage) data fork bmbt trees since there could be filesystems
in use that already have such a layout.
Suggested-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
The incore data fork of an inode stores the bmap btree root node as 'struct
xfs_btree_block'. However, the ondisk version of the inode stores the bmap
btree root node as a 'struct xfs_bmdr_block'.
xfs_bmap_add_attrfork_btree() checks if the btree root node fits inside the
data fork of the inode. However, it incorrectly uses 'struct xfs_btree_block'
to compute the size of the bmap btree root node. Since size of 'struct
xfs_btree_block' is larger than that of 'struct xfs_bmdr_block',
xfs_bmap_add_attrfork_btree() could end up unnecessarily demoting the current
root node as the child of newly allocated root node.
This commit optimizes space usage by modifying xfs_bmap_add_attrfork_btree()
to use 'struct xfs_bmdr_block' to check if the bmap btree root node fits
inside the data fork of the inode.
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Use of the flag has had no effect since kernel commit 288699feca
("xfs: drop dmapi hooks"), which removed all dmapi related code, so
deprecate it.
Signed-off-by: Anthony Iliopoulos <ailiop@suse.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Merge _xfs_dic2xflags into its only caller.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Move the crtime field from struct xfs_icdinode into stuct xfs_inode and
remove the now entirely unused struct xfs_icdinode.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
In preparation of removing the historic icinode struct, move the flags2
field into the containing xfs_inode structure.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
In preparation of removing the historic icinode struct, move the flags
field into the containing xfs_inode structure.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
In preparation of removing the historic icinode struct, move the
forkoff field into the containing xfs_inode structure.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
The i_cowextsize field is only used for v3 inodes, and the i_flushiter
field is only used for v1/v2 inodes. Use a union to pack the inode a
littler better after adding a few missing guards around their usage.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Clean up xfs_ioctl_setattr a bit by using XFS_B_TO_FSB.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Add a local xfs_mount variable, and use the XFS_FSB_TO_B helper.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
In preparation of removing the historic icinode struct, move the
flushiter field into the containing xfs_inode structure.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
In preparation of removing the historic icinode struct, move the
cowextsize field into the containing xfs_inode structure. Also
switch to use the xfs_extlen_t instead of a uint32_t.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
In preparation of removing the historic icinode struct, move the extsize
field into the containing xfs_inode structure.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
In preparation of removing the historic icinode struct, move the nblocks
field into the containing xfs_inode structure.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
In preparation of removing the historic icinode struct, move the on-disk
size field into the containing xfs_inode structure.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
In preparation of removing the historic icinode struct, move the projid
field into the containing xfs_inode structure.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
The xfs_icdinode structure just contains a random mix of inode field,
which are all read from the on-disk inode and mostly not looked at
before reading the inode or initializing a new inode cluster. The
only exceptions are the forkoff and blocks field, which are used
in sanity checks for freshly allocated inodes.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
The legacy DMAPI fields were never set by upstream Linux XFS, and have no
way to be read using the kernel APIs. So instead of bloating the in-core
inode for them just copy them from the on-disk inode into the log when
logging the inode. The only caveat is that we need to make sure to zero
the fields for newly read or deleted inodes, which is solved using a new
flag in the inode.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
The crtime only exists for v5 inodes, so only copy it for those.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Make sure di_flags2 is always initialized. We currently get this implicitly
by clearing the dinode core on allocating the in-core inode, but that is
about to go away.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Split looking up the dinode from xfs_imap_to_bp, which can be
significantly simplified as a result.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
A directory with one directory block which in turns consists of two or more fs
blocks is incorrectly flagged as corrupt by scrub since it assumes that
"Block" format directories have a data fork single extent spanning the file
offset range of [0, Dir block size - 1].
This commit fixes the bug by removing the incorrect check.
Signed-off-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
xfs/538 can cause the following call trace to be printed when executing on a
multi-block directory configuration,
WARNING: CPU: 1 PID: 2578 at fs/xfs/libxfs/xfs_bmap.c:717 xfs_bmap_extents_to_btree+0x520/0x5d0
Call Trace:
? xfs_buf_rele+0x4f/0x450
xfs_bmap_add_extent_hole_real+0x747/0x960
xfs_bmapi_allocate+0x39a/0x440
xfs_bmapi_write+0x507/0x9e0
xfs_da_grow_inode_int+0x1cd/0x330
? up+0x12/0x60
xfs_dir2_grow_inode+0x62/0x110
? xfs_trans_log_inode+0x234/0x2d0
xfs_dir2_sf_to_block+0x103/0x940
? xfs_dir2_sf_check+0x8c/0x210
? xfs_da_compname+0x19/0x30
? xfs_dir2_sf_lookup+0xd0/0x3d0
xfs_dir2_sf_addname+0x10d/0x910
xfs_dir_createname+0x1ad/0x210
xfs_create+0x404/0x620
xfs_generic_create+0x24c/0x320
path_openat+0xda6/0x1030
do_filp_open+0x88/0x130
? kmem_cache_alloc+0x50/0x210
? __cond_resched+0x16/0x40
? kmem_cache_alloc+0x50/0x210
do_sys_openat2+0x97/0x150
__x64_sys_creat+0x49/0x70
do_syscall_64+0x33/0x40
entry_SYSCALL_64_after_hwframe+0x44/0xae
This occurs because xfs_bmap_exact_minlen_extent_alloc() initializes
xfs_alloc_arg->total to xfs_bmalloca->minlen. In the context of
xfs_bmap_exact_minlen_extent_alloc(), xfs_bmalloca->minlen has a value of 1
and hence the space allocator could choose an AG which has less than
xfs_bmalloca->total number of free blocks available. As the transaction
proceeds, one of the future space allocation requests could fail due to
non-availability of free blocks in the AG that was originally chosen.
This commit fixes the bug by assigning xfs_alloc_arg->total to the value of
xfs_bmalloca->total.
Fixes: 3015196746 ("xfs: Introduce error injection to allocate only minlen size extents for files")
Signed-off-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
With dax enabled filesystems, a direct write operation into an existing
unwritten extent results in xfs_iomap_write_direct() zero-ing and converting
the extent into a normal extent before the actual data is copied from the
userspace buffer.
The inode extent count can increase by 2 if the extent range being written to
maps to the middle of the existing unwritten extent range. Hence this commit
uses XFS_IEXT_WRITE_UNWRITTEN_CNT as the extent count delta when such a write
operation is being performed.
Fixes: 727e1acd29 ("xfs: Check for extent overflow when trivally adding a new extent")
Reported-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Removal of kmem_zone_init wrappers accidentally changed a slab cache
name from "xfs_trans" to "xf_trans". Fix this so that userspace
consumers of /proc/slabinfo and /sys/kernel/slab can find it again.
Fixes: b1231760e4 ("xfs: Remove slab init wrappers")
Signed-off-by: Anthony Iliopoulos <ailiop@suse.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
per-AG resv failure after fixing up freespace is hard to test in an
effective way, so directly add an error injection path to observe
such error handling path works as expected.
Signed-off-by: Gao Xiang <hsiangkao@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
As the first step of shrinking, this attempts to enable shrinking
unused space in the last allocation group by fixing up freespace
btree, agi, agf and adjusting super block and use a helper
xfs_ag_shrink_space() to fixup the last AG.
This can be all done in one transaction for now, so I think no
additional protection is needed.
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Gao Xiang <hsiangkao@redhat.com>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
This patch introduces a helper to shrink unused space in the last AG
by fixing up the freespace btree.
Also make sure that the per-AG reservation works under the new AG
size. If such per-AG reservation or extent allocation fails, roll
the transaction so the new transaction could cancel without any side
effects.
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Gao Xiang <hsiangkao@redhat.com>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Move out related logic for initializing new added AGs to a new helper
in preparation for shrinking. No logic changes.
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Gao Xiang <hsiangkao@redhat.com>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
sb_fdblocks will be updated lazily if lazysbcount is enabled,
therefore when shrinking the filesystem sb_fdblocks could be
larger than sb_dblocks and xfs_validate_sb_write() would fail.
Even for growfs case, it'd be better to update lazy sb counters
immediately to reflect the real sb counters.
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Gao Xiang <hsiangkao@redhat.com>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
s/strutures/structures/
Signed-off-by: Bhaskar Chowdhury <unixbhaskar@gmail.com>
Reviewed-by: Pavel Reichl <preichl@redhat.com>
Acked-by: Randy Dunlap <rdunlap@infradead.org>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
s/sytemcall/syscall/
Signed-off-by: Bhaskar Chowdhury <unixbhaskar@gmail.com>
Acked-by: Randy Dunlap <rdunlap@infradead.org>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
s/filesytem/filesystem/
s/instrumention/instrumentation/
Signed-off-by: Bhaskar Chowdhury <unixbhaskar@gmail.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
- 21.92% __xfs_trans_commit
- 21.62% xfs_log_commit_cil
- 11.69% xfs_trans_unreserve_and_mod_sb
- 11.58% __percpu_counter_compare
- 11.45% __percpu_counter_sum
- 10.29% _raw_spin_lock_irqsave
- 10.28% do_raw_spin_lock
__pv_queued_spin_lock_slowpath
We debated just getting rid of it last time this came up and
there was no real objection to removing it. Now it's the biggest
scalability limitation for debug kernels even on smallish machines,
so let's just get rid of it.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
On debug kernels, we call xfs_dir3_leaf_check_int() multiple times
on every directory modification. The robust hash ordering checks it
does on every entry in the leaf on every call results in a massive
CPU overhead which slows down debug kernels by a large amount.
We use xfs_dir3_leaf_check_int() for the verifiers as well, so we
can't just gut the function to reduce overhead. What we can do,
however, is reduce the work it does when it is called from the
debug interfaces, just leaving the high level checks in place and
leaving the robust validation to the verifiers. This means the debug
checks will catch gross errors, but subtle bugs might not be caught
until a verifier is run.
It is easy enough to restore the existing debug behaviour if the
developer needs it (just change a call parameter in the debug code),
but overwise the overhead makes testing large directory block sizes
on debug kernels very slow.
Profile at an unlink rate of ~80k file/s on a 64k block size
filesystem before the patch:
40.30% [kernel] [k] xfs_dir3_leaf_check_int
10.98% [kernel] [k] __xfs_dir3_data_check
8.10% [kernel] [k] xfs_verify_dir_ino
4.42% [kernel] [k] memcpy
2.22% [kernel] [k] xfs_dir2_data_get_ftype
1.52% [kernel] [k] do_raw_spin_lock
Profile after, at an unlink rate of ~125k files/s (+50% improvement)
has largely dropped the leaf verification debug overhead out of the
profile.
16.53% [kernel] [k] __xfs_dir3_data_check
12.53% [kernel] [k] xfs_verify_dir_ino
7.97% [kernel] [k] memcpy
3.36% [kernel] [k] xfs_dir2_data_get_ftype
2.86% [kernel] [k] __pv_queued_spin_lock_slowpath
Create shows a similar change in profile and a +25% improvement in
performance.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
We call xfs_dir_ino_validate() for every dir entry in a directory
when doing validity checking of the directory. It calls
xfs_verify_dir_ino() then emits a corruption report if bad or does
error injection if good. It is extremely costly:
43.27% [kernel] [k] xfs_dir3_leaf_check_int
10.28% [kernel] [k] __xfs_dir3_data_check
6.61% [kernel] [k] xfs_verify_dir_ino
4.16% [kernel] [k] xfs_errortag_test
4.00% [kernel] [k] memcpy
3.48% [kernel] [k] xfs_dir_ino_validate
7% of the cpu usage in this directory traversal workload is
xfs_dir_ino_validate() doing absolutely nothing.
We don't need error injection to simulate a bad inode numbers in the
directory structure because we can do that by fuzzing the structure
on disk.
And we don't need a corruption report, because the
__xfs_dir3_data_check() will emit one if the inode number is bad.
So just call xfs_verify_dir_ino() directly here, and get rid of all
this unnecessary overhead:
40.30% [kernel] [k] xfs_dir3_leaf_check_int
10.98% [kernel] [k] __xfs_dir3_data_check
8.10% [kernel] [k] xfs_verify_dir_ino
4.42% [kernel] [k] memcpy
2.22% [kernel] [k] xfs_dir2_data_get_ftype
1.52% [kernel] [k] do_raw_spin_lock
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
From a concurrent rm -rf workload:
41.04% [kernel] [k] xfs_dir3_leaf_check_int
9.85% [kernel] [k] __xfs_dir3_data_check
5.60% [kernel] [k] xfs_verify_ino
5.32% [kernel] [k] xfs_agino_range
4.21% [kernel] [k] memcpy
3.06% [kernel] [k] xfs_errortag_test
2.57% [kernel] [k] xfs_dir_ino_validate
1.66% [kernel] [k] xfs_dir2_data_get_ftype
1.17% [kernel] [k] do_raw_spin_lock
1.11% [kernel] [k] xfs_verify_dir_ino
0.84% [kernel] [k] __raw_callee_save___pv_queued_spin_unlock
0.83% [kernel] [k] xfs_buf_find
0.64% [kernel] [k] xfs_log_commit_cil
THere's an awful lot of overhead in just range checking inode
numbers in that, but each inode number check is not a lot of code.
The total is a bit over 14.5% of the CPU time is spent validating
inode numbers.
The problem is that they deeply nested global scope functions so the
overhead here is all in function call marshalling.
text data bss dec hex filename
2077 0 0 2077 81d fs/xfs/libxfs/xfs_types.o.orig
2197 0 0 2197 895 fs/xfs/libxfs/xfs_types.o
There's a small increase in binary size by inlining all the local
nested calls in the verifier functions, but the same workload now
profiles as:
40.69% [kernel] [k] xfs_dir3_leaf_check_int
10.52% [kernel] [k] __xfs_dir3_data_check
6.68% [kernel] [k] xfs_verify_dir_ino
4.22% [kernel] [k] xfs_errortag_test
4.15% [kernel] [k] memcpy
3.53% [kernel] [k] xfs_dir_ino_validate
1.87% [kernel] [k] xfs_dir2_data_get_ftype
1.37% [kernel] [k] do_raw_spin_lock
0.98% [kernel] [k] xfs_buf_find
0.94% [kernel] [k] __raw_callee_save___pv_queued_spin_unlock
0.73% [kernel] [k] xfs_log_commit_cil
Now we only spend just over 10% of the time validing inode numbers
for the same workload. Hence a few "inline" keyworks is good enough
to reduce the validation overhead by 30%...
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
We process the buf_log_item bitmap one set bit at a time with
xfs_next_bit() so we can detect if a region crosses a memcpy
discontinuity in the buffer data address. This has massive overhead
on large buffers (e.g. 64k directory blocks) because we do a lot of
unnecessary checks and xfs_buf_offset() calls.
For example, 16-way concurrent create workload on debug kernel
running CPU bound has this at the top of the profile at ~120k
create/s on 64kb directory block size:
20.66% [kernel] [k] xfs_dir3_leaf_check_int
7.10% [kernel] [k] memcpy
6.22% [kernel] [k] xfs_next_bit
3.55% [kernel] [k] xfs_buf_offset
3.53% [kernel] [k] xfs_buf_item_format
3.34% [kernel] [k] __pv_queued_spin_lock_slowpath
3.04% [kernel] [k] do_raw_spin_lock
2.84% [kernel] [k] xfs_buf_item_size_segment.isra.0
2.31% [kernel] [k] __raw_callee_save___pv_queued_spin_unlock
1.36% [kernel] [k] xfs_log_commit_cil
(debug checks hurt large blocks)
The only buffers with discontinuities in the data address are
unmapped buffers, and they are only used for inode cluster buffers
and only for logging unlinked pointers. IOWs, it is -rare- that we
even need to detect a discontinuity in the buffer item formatting
code.
Optimise all this by using xfs_contig_bits() to find the size of
the contiguous regions, then test for a discontiunity inside it. If
we find one, do the slow "bit at a time" method we do now. If we
don't, then just copy the entire contiguous range in one go.
Profile now looks like:
25.26% [kernel] [k] xfs_dir3_leaf_check_int
9.25% [kernel] [k] memcpy
5.01% [kernel] [k] __pv_queued_spin_lock_slowpath
2.84% [kernel] [k] do_raw_spin_lock
2.22% [kernel] [k] __raw_callee_save___pv_queued_spin_unlock
1.88% [kernel] [k] xfs_buf_find
1.53% [kernel] [k] memmove
1.47% [kernel] [k] xfs_log_commit_cil
....
0.34% [kernel] [k] xfs_buf_item_format
....
0.21% [kernel] [k] xfs_buf_offset
....
0.16% [kernel] [k] xfs_contig_bits
....
0.13% [kernel] [k] xfs_buf_item_size_segment.isra.0
So the bit scanning over for the dirty region tracking for the
buffer log items is basically gone. Debug overhead hurts even more
now...
Perf comparison
dir block creates unlink
size (kb) time rate time
Original 4 4m08s 220k 5m13s
Original 64 7m21s 115k 13m25s
Patched 4 3m59s 230k 5m03s
Patched 64 6m23s 143k 12m33s
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Otherwise it doesn't correctly calculate the number of vectors
in a logged buffer that has a contiguous map that gets split into
multiple regions because the range spans discontigous memory.
Probably never been hit in practice - we don't log contiguous ranges
on unmapped buffers (inode clusters).
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
When we modify btrees repeatedly, we regularly increase the size of
the logged region by a single chunk at a time (per transaction
commit). This results in the CIL formatting code having to
reallocate the log vector buffer every time the buffer dirty region
grows. Hence over a typical 4kB btree buffer, we might grow the log
vector 4096/128 = 32x over a short period where we repeatedly add
or remove records to/from the buffer over a series of running
transaction. This means we are doing 32 memory allocations and frees
over this time during a performance critical path in the journal.
The amount of space tracked in the CIL for the object is calculated
during the ->iop_format() call for the buffer log item, but the
buffer memory allocated for it is calculated by the ->iop_size()
call. The size callout determines the size of the buffer, the format
call determines the space used in the buffer.
Hence we can oversize the buffer space required in the size
calculation without impacting the amount of space used and accounted
to the CIL for the changes being logged. This allows us to reduce
the number of allocations by rounding up the buffer size to allow
for future growth. This can safe a substantial amount of CPU time in
this path:
- 46.52% 2.02% [kernel] [k] xfs_log_commit_cil
- 44.49% xfs_log_commit_cil
- 30.78% _raw_spin_lock
- 30.75% do_raw_spin_lock
30.27% __pv_queued_spin_lock_slowpath
(oh, ouch!)
....
- 1.05% kmem_alloc_large
- 1.02% kmem_alloc
0.94% __kmalloc
This overhead here us what this patch is aimed at. After:
- 0.76% kmem_alloc_large
- 0.75% kmem_alloc
0.70% __kmalloc
The size of 512 bytes is based on the bitmap chunk size being 128
bytes and that random directory entry updates almost never require
more than 3-4 128 byte regions to be logged in the directory block.
The other observation is for per-ag btrees. When we are inserting
into a new btree block, we'll pack it from the front. Hence the
first few records land in the first 128 bytes so we log only 128
bytes, the next 8-16 records land in the second region so now we log
256 bytes. And so on. If we are doing random updates, it will only
allocate every 4 random 128 byte regions that are dirtied instead of
every single one.
Any larger than 512 bytes and I noticed an increase in memory
footprint in my scalability workloads. Any less than this and I
didn't really see any significant benefit to CPU usage.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Gao Xiang <hsiangkao@redhat.com>
When we allocate a new inode, we often need to add an attribute to
the inode as part of the create. This can happen as a result of
needing to add default ACLs or security labels before the inode is
made visible to userspace.
This is highly inefficient right now. We do the create transaction
to allocate the inode, then we do an "add attr fork" transaction to
modify the just created empty inode to set the inode fork offset to
allow attributes to be stored, then we go and do the attribute
creation.
This means 3 transactions instead of 1 to allocate an inode, and
this greatly increases the load on the CIL commit code, resulting in
excessive contention on the CIL spin locks and performance
degradation:
18.99% [kernel] [k] __pv_queued_spin_lock_slowpath
3.57% [kernel] [k] do_raw_spin_lock
2.51% [kernel] [k] __raw_callee_save___pv_queued_spin_unlock
2.48% [kernel] [k] memcpy
2.34% [kernel] [k] xfs_log_commit_cil
The typical profile resulting from running fsmark on a selinux enabled
filesytem is adds this overhead to the create path:
- 15.30% xfs_init_security
- 15.23% security_inode_init_security
- 13.05% xfs_initxattrs
- 12.94% xfs_attr_set
- 6.75% xfs_bmap_add_attrfork
- 5.51% xfs_trans_commit
- 5.48% __xfs_trans_commit
- 5.35% xfs_log_commit_cil
- 3.86% _raw_spin_lock
- do_raw_spin_lock
__pv_queued_spin_lock_slowpath
- 0.70% xfs_trans_alloc
0.52% xfs_trans_reserve
- 5.41% xfs_attr_set_args
- 5.39% xfs_attr_set_shortform.constprop.0
- 4.46% xfs_trans_commit
- 4.46% __xfs_trans_commit
- 4.33% xfs_log_commit_cil
- 2.74% _raw_spin_lock
- do_raw_spin_lock
__pv_queued_spin_lock_slowpath
0.60% xfs_inode_item_format
0.90% xfs_attr_try_sf_addname
- 1.99% selinux_inode_init_security
- 1.02% security_sid_to_context_force
- 1.00% security_sid_to_context_core
- 0.92% sidtab_entry_to_string
- 0.90% sidtab_sid2str_get
0.59% sidtab_sid2str_put.part.0
- 0.82% selinux_determine_inode_label
- 0.77% security_transition_sid
0.70% security_compute_sid.part.0
And fsmark creation rate performance drops by ~25%. The key point to
note here is that half the additional overhead comes from adding the
attribute fork to the newly created inode. That's crazy, considering
we can do this same thing at inode create time with a couple of
lines of code and no extra overhead.
So, if we know we are going to add an attribute immediately after
creating the inode, let's just initialise the attribute fork inside
the create transaction and chop that whole chunk of code out of
the create fast path. This completely removes the performance
drop caused by enabling SELinux, and the profile looks like:
- 8.99% xfs_init_security
- 9.00% security_inode_init_security
- 6.43% xfs_initxattrs
- 6.37% xfs_attr_set
- 5.45% xfs_attr_set_args
- 5.42% xfs_attr_set_shortform.constprop.0
- 4.51% xfs_trans_commit
- 4.54% __xfs_trans_commit
- 4.59% xfs_log_commit_cil
- 2.67% _raw_spin_lock
- 3.28% do_raw_spin_lock
3.08% __pv_queued_spin_lock_slowpath
0.66% xfs_inode_item_format
- 0.90% xfs_attr_try_sf_addname
- 0.60% xfs_trans_alloc
- 2.35% selinux_inode_init_security
- 1.25% security_sid_to_context_force
- 1.21% security_sid_to_context_core
- 1.19% sidtab_entry_to_string
- 1.20% sidtab_sid2str_get
- 0.86% sidtab_sid2str_put.part.0
- 0.62% _raw_spin_lock_irqsave
- 0.77% do_raw_spin_lock
__pv_queued_spin_lock_slowpath
- 0.84% selinux_determine_inode_label
- 0.83% security_transition_sid
0.86% security_compute_sid.part.0
Which indicates the XFS overhead of creating the selinux xattr has
been halved. This doesn't fix the CIL lock contention problem, just
means it's not a limiting factor for this workload. Lock contention
in the security subsystems is going to be an issue soon, though...
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
[djwong: fix compilation error when CONFIG_SECURITY=n]
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Gao Xiang <hsiangkao@redhat.com>
Add the BUILD_BUG_ON to xfs_errortag_add() in order to make sure that
the length of xfs_errortag_random_default matches XFS_ERRTAG_MAX when
building.
Signed-off-by: Gao Xiang <hsiangkao@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Skip the warnings about mount option being deprecated if we are
remounting and deprecated option state is not changing.
Bug: https://bugzilla.kernel.org/show_bug.cgi?id=211605
Fix-suggested-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Pavel Reichl <preichl@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Rename mp variable to parsisng_mp so it is easy to distinguish
between current mount point handle and handle for mount point
which mount options are being parsed.
Suggested-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Pavel Reichl <preichl@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Since we're about to start using the blockgc workqueue to dispose of
inactivated inodes, strip the "block" prefix from the name; now it's
merely the general garbage collection (gc) workqueue.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Files containing metadata (quota records, rt bitmap and summary info)
are fully managed by the filesystem, which means that all resource
cleanup must be explicit, not automatic. This means that they should
never be subjected automatic to post-eof truncation, nor should they be
freed automatically even if the link count drops to zero.
In other words, xfs_inactive() should leave these files alone. Add the
necessary predicate functions to make this happen. This adds a second
layer of prevention for the kinds of fs corruption that was fixed by
commit f4c32e87de. If we ever decide to support removing metadata
files, we should make all those metadata updates explicit.
Rearrange the order of #includes to fix compiler errors, since
xfs_mount.h is supposed to be included before xfs_inode.h
Followup-to: f4c32e87de ("xfs: fix realtime bitmap/summary file truncation when growing rt volume")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Use the AG btree height limits that we precomputed into the xfs_mount to
validate the AG headers instead of using XFS_BTREE_MAXLEVELS.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Functions called by this function cannot fail, so get rid of the return
and error checking.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Since xchk_ag_read_headers initializes fields in struct xchk_ag, we
might as well set the AG number and save the callers the trouble.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
If scrub observes cross-referencing errors while scanning a data
structure, mark the data structure sick. There's /something/
inconsistent, even if we can't really tell what it is.
Fixes: 4860a05d24 ("xfs: scrub/repair should update filesystem metadata health")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
If a scrubber cannot complete its check and signals an incomplete check,
we must bail out immediately without updating health status, trying a
repair, etc. because our scan is incomplete and we therefore do not know
much more.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
When xchk_quota_item figures out that it needs to terminate the scrub
operation, it needs to return some error code to abort the loop, but
instead it returns zero and the loop keeps running. Fix this by making
it use ECANCELED, and fix the other loop bailout condition check at the
bottom too.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
If we can't read the AGF header, we never actually set a value for
freelen and usedlen. These two variables are used to make the worst
case estimate of btree size, so it's safe to set them to the AG size as
a fallback.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
A recent log refactoring patchset from Brian Foster relaxed fsfreeze
behavior with regards to the buffer cache -- now freeze only waits for
pending buffer IO to finish, and does not try to drain the buffer cache
LRU. As a result, fsfreeze should no longer stall indefinitely while
fsmap runs. Drop the sb_start_write calls around fsmap invocations.
While we're cleaning things, add a comment to the xfs_trans_alloc_empty
call explaining why we're running around with empty transactions.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Give filesystem two little helpers that do the right thing when
initializing the i_uid and i_gid fields on idmapped and non-idmapped
mounts. Filesystems shouldn't have to be concerned with too many
details.
Link: https://lore.kernel.org/r/20210320122623.599086-5-christian.brauner@ubuntu.com
Inspired-by: Vivek Goyal <vgoyal@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: linux-fsdevel@vger.kernel.org
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
Vivek pointed out that the fs{g,u}id_into_mnt() naming scheme can be
misleading as it could be understood as implying they do the exact same
thing as i_{g,u}id_into_mnt(). The original motivation for this naming
scheme was to signal to callers that the helpers will always take care
to map the k{g,u}id such that the ownership is expressed in terms of the
mnt_users.
Get rid of the confusion by renaming those helpers to something more
sensible. Al suggested mapped_fs{g,u}id() which seems a really good fit.
Usually filesystems don't need to bother with these helpers directly
only in some cases where they allocate objects that carry {g,u}ids which
are either filesystem specific (e.g. xfs quota objects) or don't have a
clean set of helpers as inodes have.
Link: https://lore.kernel.org/r/20210320122623.599086-3-christian.brauner@ubuntu.com
Inspired-by: Vivek Goyal <vgoyal@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Darrick J. Wong <djwong@kernel.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: linux-fsdevel@vger.kernel.org
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
BULKSTAT_SINGLE exposed the ondisk uids/gids just like bulkstat, and can
be called on any inode, including ones not visible in the current mount.
Fixes: f736d93d76 ("xfs: support idmapped mounts")
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
If we allocate quota inodes in the process of mounting a filesystem but
then decide to abort the mount, it's possible that the quota inodes are
sitting around pinned by the log. Now that inode reclaim relies on the
AIL to flush inodes, we have to force the log and push the AIL in
between releasing the quota inodes and kicking off reclaim to tear down
all the incore inodes. Do this by extracting the bits we need from the
unmount path and reusing them. As an added bonus, failed writes during
a failed mount will not retry forever now.
This was originally found during a fuzz test of metadata directories
(xfs/1546), but the actual symptom was that reclaim hung up on the quota
inodes.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Nowadays, we indirectly use the idmap-aware helper functions in the VFS
to set the initial uid and gid of a file being created. Unfortunately,
we didn't convert the quota code, which means we attach the wrong dquots
to files created on an idmapped mount.
Fixes: f736d93d76 ("xfs: support idmapped mounts")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Acked-by: Christian Brauner <christian.brauner@ubuntu.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
- Restore a disused sysctl control knob that was inadvertently dropped
during the merge window to avoid fstests regressions.
- Don't speculatively release freed blocks from the busy list until
we're actually allocating them, which fixes a rare log recovery
regression.
- Don't nest transactions when scanning for free space.
- Add an idiot^Wmaintainer light to detect nested transactions. ;)
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEUzaAxoMeQq6m2jMV+H93GTRKtOsFAmA3zW8ACgkQ+H93GTRK
tOtT4xAAmZ5BdQ6V3yUeT/N++L6Ax62T2VzEryZvVK/ZFyVBRYKi9LOL1exq1cja
HXINPuYWAD8TbGVU9/lZR1yUX/y1VvJR0EPly8EN6WpGFeErSxLs++YzP1Q8iv5i
ZtniscpGE6JvCcDeRH5kBfklGpyzTf3t6Xe8x+6+/aawf34ChNlM/gQcAyKvYYU5
Jb9j7BqbRAnhvPEfa554yxIIoZhmTDYY7Wx7VMKCMcOP1lfriC+I1iuiZIMONIQJ
mMgz9XnHVo256+YvkvwRKp294r+MEkuJL5EBXrs01r3PwVdaigo13qTk8l1ZC3zS
VYkC/sRoiyMwnJvKEUNtnM3/8Zu/DvPp9iqXiWc60UBGqpBkm8Jgv+W6H7u1FinP
0M0Wt2wHC7e51uW5G/8QwUXZv+n8IZHyZkkYbjyXRkhfyFlexYwTVchZz9q/RB/A
HEZ9jcIke8Rwkav4f0kJ00Y/7FQSPn6ItapXf92rl00z3Z5S2sqBaT5kIotsW0Ke
634yPknkLuBDQg4j8l3A88ik2SNFRQQfBXsjt27He/s2wV0Dj8RjDnLWfoV7P5to
Sc2lx3HhL4OCojAXXAFP3MDKz0nqcuUTPoPCeS6QKQGcjTzVvoI7ZutXODcxi67k
Q7AK+gIqHRWA8F+4wciYDwAHMES1rRAa7/iuYmtCtT1sBdXp9NU=
=g9K3
-----END PGP SIGNATURE-----
Merge tag 'xfs-5.12-merge-6' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
Pull more xfs updates from Darrick Wong:
"The most notable fix here prevents premature reuse of freed metadata
blocks, and adding the ability to detect accidental nested
transactions, which are not allowed here.
- Restore a disused sysctl control knob that was inadvertently
dropped during the merge window to avoid fstests regressions.
- Don't speculatively release freed blocks from the busy list until
we're actually allocating them, which fixes a rare log recovery
regression.
- Don't nest transactions when scanning for free space.
- Add an idiot^Wmaintainer light to detect nested transactions. ;)"
* tag 'xfs-5.12-merge-6' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux:
xfs: use current->journal_info for detecting transaction recursion
xfs: don't nest transactions when scanning for eofblocks
xfs: don't reuse busy extents on extent trim
xfs: restore speculative_cow_prealloc_lifetime sysctl
-----BEGIN PGP SIGNATURE-----
iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAmA6njIQHGF4Ym9lQGtl
cm5lbC5kawAKCRD301j7KXHgprolD/9zWti9LsZvA7yE+PhVwrwF3CsNzLfQlClw
99HaA7HxtAc/VLJrnD/SubhCAPdBC5B2xPv6faajdwF2iUR3Rr1Uc93CQ3uP2KKq
kvm6ALTpzPTMI6YSABhY74sg9BkkoDbMo54JQYVQPleiE+5eDLbuFZck6ObfUHyY
a4aaImlndWp/t14GzrClL4hucF+5KJy846P+QCVclkh0yl8xSsqZ5LIFU7tu3iQb
HpZ5HKLT/2ma/EOr3wknnsIe97AUZQU0q5aMparhYlm+qR511eop3QXx850FL/oC
tEGceKLij6qazmkiocKVzML8Fs+Y9/a4vCMjLCScWJmzDlmKdlH2uudeahN6b9Hm
15qRQHOjl1Hc2bdr5ZVn87nq9RWhSm18C+SRMwOKHCOnEhwxqM3RjRfAgj4BJ6QB
PFbFqdY+8Y1YLPFmn9hph72ePaEcN4L2IXW6TI/WX8mot8ODAnkq9Hr38dKwzO+i
0mon6DVyJKKho6XwvVu5IYurkR2beQprjeVUxwZjjT6DxUgsc+J6itK5LDHFSkeZ
qZlXn5Di8MkiXg0DFJYDQiFXnO0Z5GlRWOGPVfBaOr3x+1dqzDdHGw4oz1oGqvnr
GNNYCsYIpDGm7eauX5lqL5MUFpjqRCceXy5JSHPhnWWw617nYkr4H9jdsV9HiTX1
tQFx05QW3w==
=ccMs
-----END PGP SIGNATURE-----
Merge tag 'block-5.12-2021-02-27' of git://git.kernel.dk/linux-block
Pull more block updates from Jens Axboe:
"A few stragglers (and one due to me missing it originally), and fixes
for changes in this merge window mostly. In particular:
- blktrace cleanups (Chaitanya, Greg)
- Kill dead blk_pm_* functions (Bart)
- Fixes for the bio alloc changes (Christoph)
- Fix for the partition changes (Christoph, Ming)
- Fix for turning off iopoll with polled IO inflight (Jeffle)
- nbd disconnect fix (Josef)
- loop fsync error fix (Mauricio)
- kyber update depth fix (Yang)
- max_sectors alignment fix (Mikulas)
- Add bio_max_segs helper (Matthew)"
* tag 'block-5.12-2021-02-27' of git://git.kernel.dk/linux-block: (21 commits)
block: Add bio_max_segs
blktrace: fix documentation for blk_fill_rw()
block: memory allocations in bounce_clone_bio must not fail
block: remove the gfp_mask argument to bounce_clone_bio
block: fix bounce_clone_bio for passthrough bios
block-crypto-fallback: use a bio_set for splitting bios
block: fix logging on capacity change
blk-settings: align max_sectors on "logical_block_size" boundary
block: reopen the device in blkdev_reread_part
block: don't skip empty device in in disk_uevent
blktrace: remove debugfs file dentries from struct blk_trace
nbd: handle device refs for DESTROY_ON_DISCONNECT properly
kyber: introduce kyber_depth_updated()
loop: fix I/O error on fsync() in detached loop devices
block: fix potential IO hang when turning off io_poll
block: get rid of the trace rq insert wrapper
blktrace: fix blk_rq_merge documentation
blktrace: fix blk_rq_issue documentation
blktrace: add blk_fill_rwbs documentation comment
block: remove superfluous param in blk_fill_rwbs()
...
It's often inconvenient to use BIO_MAX_PAGES due to min() requiring the
sign to be the same. Introduce bio_max_segs() and change BIO_MAX_PAGES to
be unsigned to make it easier for the users.
Reviewed-by: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com>
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Because the iomap code using PF_MEMALLOC_NOFS to detect transaction
recursion in XFS is just wrong. Remove it from the iomap code and
replace it with XFS specific internal checks using
current->journal_info instead.
[djwong: This change also realigns the lifetime of NOFS flag changes to
match the incore transaction, instead of the inconsistent scheme we have
now.]
Fixes: 9070733b4e ("xfs: abstract PF_FSTRANS to PF_MEMALLOC_NOFS")
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Brian Foster reported a lockdep warning on xfs/167:
============================================
WARNING: possible recursive locking detected
5.11.0-rc4 #35 Tainted: G W I
--------------------------------------------
fsstress/17733 is trying to acquire lock:
ffff8e0fd1d90650 (sb_internal){++++}-{0:0}, at: xfs_free_eofblocks+0x104/0x1d0 [xfs]
but task is already holding lock:
ffff8e0fd1d90650 (sb_internal){++++}-{0:0}, at: xfs_trans_alloc_inode+0x5f/0x160 [xfs]
stack backtrace:
CPU: 38 PID: 17733 Comm: fsstress Tainted: G W I 5.11.0-rc4 #35
Hardware name: Dell Inc. PowerEdge R740/01KPX8, BIOS 1.6.11 11/20/2018
Call Trace:
dump_stack+0x8b/0xb0
__lock_acquire.cold+0x159/0x2ab
lock_acquire+0x116/0x370
xfs_trans_alloc+0x1ad/0x310 [xfs]
xfs_free_eofblocks+0x104/0x1d0 [xfs]
xfs_blockgc_scan_inode+0x24/0x60 [xfs]
xfs_inode_walk_ag+0x202/0x4b0 [xfs]
xfs_inode_walk+0x66/0xc0 [xfs]
xfs_trans_alloc+0x160/0x310 [xfs]
xfs_trans_alloc_inode+0x5f/0x160 [xfs]
xfs_alloc_file_space+0x105/0x300 [xfs]
xfs_file_fallocate+0x270/0x460 [xfs]
vfs_fallocate+0x14d/0x3d0
__x64_sys_fallocate+0x3e/0x70
do_syscall_64+0x33/0x40
entry_SYSCALL_64_after_hwframe+0x44/0xa9
The cause of this is the new code that spurs a scan to garbage collect
speculative preallocations if we fail to reserve enough blocks while
allocating a transaction. While the warning itself is a fairly benign
lockdep complaint, it does expose a potential livelock if the rwsem
behavior ever changes with regards to nesting read locks when someone's
waiting for a write lock.
Fix this by freeing the transaction and jumping back to xfs_trans_alloc
like this patch in the V4 submission[1].
[1] https://lore.kernel.org/linux-xfs/161142798066.2171939.9311024588681972086.stgit@magnolia/
Fixes: a1a7d05a05 ("xfs: flush speculative space allocations when we run out of space")
Reported-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Freed extents are marked busy from the point the freeing transaction
commits until the associated CIL context is checkpointed to the log.
This prevents reuse and overwrite of recently freed blocks before
the changes are committed to disk, which can lead to corruption
after a crash. The exception to this rule is that metadata
allocation is allowed to reuse busy extents because metadata changes
are also logged.
As of commit 97d3ac75e5 ("xfs: exact busy extent tracking"), XFS
has allowed modification or complete invalidation of outstanding
busy extents for metadata allocations. This implementation assumes
that use of the associated extent is imminent, which is not always
the case. For example, the trimmed extent might not satisfy the
minimum length of the allocation request, or the allocation
algorithm might be involved in a search for the optimal result based
on locality.
generic/019 reproduces a corruption caused by this scenario. First,
a metadata block (usually a bmbt or symlink block) is freed from an
inode. A subsequent bmbt split on an unrelated inode attempts a near
mode allocation request that invalidates the busy block during the
search, but does not ultimately allocate it. Due to the busy state
invalidation, the block is no longer considered busy to subsequent
allocation. A direct I/O write request immediately allocates the
block and writes to it. Finally, the filesystem crashes while in a
state where the initial metadata block free had not committed to the
on-disk log. After recovery, the original metadata block is in its
original location as expected, but has been corrupted by the
aforementioned dio.
This demonstrates that it is fundamentally unsafe to modify busy
extent state for extents that are not guaranteed to be allocated.
This applies to pretty much all of the code paths that currently
trim busy extents for one reason or another. Therefore to address
this problem, drop the reuse mechanism from the busy extent trim
path. This code already knows how to return partial non-busy ranges
of the targeted free extent and higher level code tracks the busy
state of the allocation attempt. If a block allocation fails where
one or more candidate extents is busy, we force the log and retry
the allocation.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
In commit 9669f51de5 I tried to get rid of the undocumented cow gc
lifetime knob. The knob's function was never documented and it now
doesn't really have a function since eof and cow gc have been
consolidated.
Regrettably, xfs/231 relies on it and regresses on for-next. I did not
succeed at getting far enough through fstests patch review for the fixup
to land in time.
Restore the sysctl knob, document what it did (does?), put it on the
deprecation schedule, and rip out a redundant function.
Fixes: 9669f51de5 ("xfs: consolidate the eofblocks and cowblocks workers")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCYCegywAKCRCRxhvAZXjc
ouJ6AQDlf+7jCQlQdeKKoN9QDFfMzG1ooemat36EpRRTONaGuAD8D9A4sUsG4+5f
4IU5Lj9oY4DEmF8HenbWK2ZHsesL2Qg=
=yPaw
-----END PGP SIGNATURE-----
Merge tag 'idmapped-mounts-v5.12' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux
Pull idmapped mounts from Christian Brauner:
"This introduces idmapped mounts which has been in the making for some
time. Simply put, different mounts can expose the same file or
directory with different ownership. This initial implementation comes
with ports for fat, ext4 and with Christoph's port for xfs with more
filesystems being actively worked on by independent people and
maintainers.
Idmapping mounts handle a wide range of long standing use-cases. Here
are just a few:
- Idmapped mounts make it possible to easily share files between
multiple users or multiple machines especially in complex
scenarios. For example, idmapped mounts will be used in the
implementation of portable home directories in
systemd-homed.service(8) where they allow users to move their home
directory to an external storage device and use it on multiple
computers where they are assigned different uids and gids. This
effectively makes it possible to assign random uids and gids at
login time.
- It is possible to share files from the host with unprivileged
containers without having to change ownership permanently through
chown(2).
- It is possible to idmap a container's rootfs and without having to
mangle every file. For example, Chromebooks use it to share the
user's Download folder with their unprivileged containers in their
Linux subsystem.
- It is possible to share files between containers with
non-overlapping idmappings.
- Filesystem that lack a proper concept of ownership such as fat can
use idmapped mounts to implement discretionary access (DAC)
permission checking.
- They allow users to efficiently changing ownership on a per-mount
basis without having to (recursively) chown(2) all files. In
contrast to chown (2) changing ownership of large sets of files is
instantenous with idmapped mounts. This is especially useful when
ownership of a whole root filesystem of a virtual machine or
container is changed. With idmapped mounts a single syscall
mount_setattr syscall will be sufficient to change the ownership of
all files.
- Idmapped mounts always take the current ownership into account as
idmappings specify what a given uid or gid is supposed to be mapped
to. This contrasts with the chown(2) syscall which cannot by itself
take the current ownership of the files it changes into account. It
simply changes the ownership to the specified uid and gid. This is
especially problematic when recursively chown(2)ing a large set of
files which is commong with the aforementioned portable home
directory and container and vm scenario.
- Idmapped mounts allow to change ownership locally, restricting it
to specific mounts, and temporarily as the ownership changes only
apply as long as the mount exists.
Several userspace projects have either already put up patches and
pull-requests for this feature or will do so should you decide to pull
this:
- systemd: In a wide variety of scenarios but especially right away
in their implementation of portable home directories.
https://systemd.io/HOME_DIRECTORY/
- container runtimes: containerd, runC, LXD:To share data between
host and unprivileged containers, unprivileged and privileged
containers, etc. The pull request for idmapped mounts support in
containerd, the default Kubernetes runtime is already up for quite
a while now: https://github.com/containerd/containerd/pull/4734
- The virtio-fs developers and several users have expressed interest
in using this feature with virtual machines once virtio-fs is
ported.
- ChromeOS: Sharing host-directories with unprivileged containers.
I've tightly synced with all those projects and all of those listed
here have also expressed their need/desire for this feature on the
mailing list. For more info on how people use this there's a bunch of
talks about this too. Here's just two recent ones:
https://www.cncf.io/wp-content/uploads/2020/12/Rootless-Containers-in-Gitpod.pdfhttps://fosdem.org/2021/schedule/event/containers_idmap/
This comes with an extensive xfstests suite covering both ext4 and
xfs:
https://git.kernel.org/brauner/xfstests-dev/h/idmapped_mounts
It covers truncation, creation, opening, xattrs, vfscaps, setid
execution, setgid inheritance and more both with idmapped and
non-idmapped mounts. It already helped to discover an unrelated xfs
setgid inheritance bug which has since been fixed in mainline. It will
be sent for inclusion with the xfstests project should you decide to
merge this.
In order to support per-mount idmappings vfsmounts are marked with
user namespaces. The idmapping of the user namespace will be used to
map the ids of vfs objects when they are accessed through that mount.
By default all vfsmounts are marked with the initial user namespace.
The initial user namespace is used to indicate that a mount is not
idmapped. All operations behave as before and this is verified in the
testsuite.
Based on prior discussions we want to attach the whole user namespace
and not just a dedicated idmapping struct. This allows us to reuse all
the helpers that already exist for dealing with idmappings instead of
introducing a whole new range of helpers. In addition, if we decide in
the future that we are confident enough to enable unprivileged users
to setup idmapped mounts the permission checking can take into account
whether the caller is privileged in the user namespace the mount is
currently marked with.
The user namespace the mount will be marked with can be specified by
passing a file descriptor refering to the user namespace as an
argument to the new mount_setattr() syscall together with the new
MOUNT_ATTR_IDMAP flag. The system call follows the openat2() pattern
of extensibility.
The following conditions must be met in order to create an idmapped
mount:
- The caller must currently have the CAP_SYS_ADMIN capability in the
user namespace the underlying filesystem has been mounted in.
- The underlying filesystem must support idmapped mounts.
- The mount must not already be idmapped. This also implies that the
idmapping of a mount cannot be altered once it has been idmapped.
- The mount must be a detached/anonymous mount, i.e. it must have
been created by calling open_tree() with the OPEN_TREE_CLONE flag
and it must not already have been visible in the filesystem.
The last two points guarantee easier semantics for userspace and the
kernel and make the implementation significantly simpler.
By default vfsmounts are marked with the initial user namespace and no
behavioral or performance changes are observed.
The manpage with a detailed description can be found here:
1d7b902e28
In order to support idmapped mounts, filesystems need to be changed
and mark themselves with the FS_ALLOW_IDMAP flag in fs_flags. The
patches to convert individual filesystem are not very large or
complicated overall as can be seen from the included fat, ext4, and
xfs ports. Patches for other filesystems are actively worked on and
will be sent out separately. The xfstestsuite can be used to verify
that port has been done correctly.
The mount_setattr() syscall is motivated independent of the idmapped
mounts patches and it's been around since July 2019. One of the most
valuable features of the new mount api is the ability to perform
mounts based on file descriptors only.
Together with the lookup restrictions available in the openat2()
RESOLVE_* flag namespace which we added in v5.6 this is the first time
we are close to hardened and race-free (e.g. symlinks) mounting and
path resolution.
While userspace has started porting to the new mount api to mount
proper filesystems and create new bind-mounts it is currently not
possible to change mount options of an already existing bind mount in
the new mount api since the mount_setattr() syscall is missing.
With the addition of the mount_setattr() syscall we remove this last
restriction and userspace can now fully port to the new mount api,
covering every use-case the old mount api could. We also add the
crucial ability to recursively change mount options for a whole mount
tree, both removing and adding mount options at the same time. This
syscall has been requested multiple times by various people and
projects.
There is a simple tool available at
https://github.com/brauner/mount-idmapped
that allows to create idmapped mounts so people can play with this
patch series. I'll add support for the regular mount binary should you
decide to pull this in the following weeks:
Here's an example to a simple idmapped mount of another user's home
directory:
u1001@f2-vm:/$ sudo ./mount --idmap both:1000:1001:1 /home/ubuntu/ /mnt
u1001@f2-vm:/$ ls -al /home/ubuntu/
total 28
drwxr-xr-x 2 ubuntu ubuntu 4096 Oct 28 22:07 .
drwxr-xr-x 4 root root 4096 Oct 28 04:00 ..
-rw------- 1 ubuntu ubuntu 3154 Oct 28 22:12 .bash_history
-rw-r--r-- 1 ubuntu ubuntu 220 Feb 25 2020 .bash_logout
-rw-r--r-- 1 ubuntu ubuntu 3771 Feb 25 2020 .bashrc
-rw-r--r-- 1 ubuntu ubuntu 807 Feb 25 2020 .profile
-rw-r--r-- 1 ubuntu ubuntu 0 Oct 16 16:11 .sudo_as_admin_successful
-rw------- 1 ubuntu ubuntu 1144 Oct 28 00:43 .viminfo
u1001@f2-vm:/$ ls -al /mnt/
total 28
drwxr-xr-x 2 u1001 u1001 4096 Oct 28 22:07 .
drwxr-xr-x 29 root root 4096 Oct 28 22:01 ..
-rw------- 1 u1001 u1001 3154 Oct 28 22:12 .bash_history
-rw-r--r-- 1 u1001 u1001 220 Feb 25 2020 .bash_logout
-rw-r--r-- 1 u1001 u1001 3771 Feb 25 2020 .bashrc
-rw-r--r-- 1 u1001 u1001 807 Feb 25 2020 .profile
-rw-r--r-- 1 u1001 u1001 0 Oct 16 16:11 .sudo_as_admin_successful
-rw------- 1 u1001 u1001 1144 Oct 28 00:43 .viminfo
u1001@f2-vm:/$ touch /mnt/my-file
u1001@f2-vm:/$ setfacl -m u:1001:rwx /mnt/my-file
u1001@f2-vm:/$ sudo setcap -n 1001 cap_net_raw+ep /mnt/my-file
u1001@f2-vm:/$ ls -al /mnt/my-file
-rw-rwxr--+ 1 u1001 u1001 0 Oct 28 22:14 /mnt/my-file
u1001@f2-vm:/$ ls -al /home/ubuntu/my-file
-rw-rwxr--+ 1 ubuntu ubuntu 0 Oct 28 22:14 /home/ubuntu/my-file
u1001@f2-vm:/$ getfacl /mnt/my-file
getfacl: Removing leading '/' from absolute path names
# file: mnt/my-file
# owner: u1001
# group: u1001
user::rw-
user:u1001:rwx
group::rw-
mask::rwx
other::r--
u1001@f2-vm:/$ getfacl /home/ubuntu/my-file
getfacl: Removing leading '/' from absolute path names
# file: home/ubuntu/my-file
# owner: ubuntu
# group: ubuntu
user::rw-
user:ubuntu:rwx
group::rw-
mask::rwx
other::r--"
* tag 'idmapped-mounts-v5.12' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux: (41 commits)
xfs: remove the possibly unused mp variable in xfs_file_compat_ioctl
xfs: support idmapped mounts
ext4: support idmapped mounts
fat: handle idmapped mounts
tests: add mount_setattr() selftests
fs: introduce MOUNT_ATTR_IDMAP
fs: add mount_setattr()
fs: add attr_flags_to_mnt_flags helper
fs: split out functions to hold writers
namespace: only take read lock in do_reconfigure_mnt()
mount: make {lock,unlock}_mount_hash() static
namespace: take lock_mount_hash() directly when changing flags
nfs: do not export idmapped mounts
overlayfs: do not mount on top of idmapped mounts
ecryptfs: do not mount on top of idmapped mounts
ima: handle idmapped mounts
apparmor: handle idmapped mounts
fs: make helpers idmap mount aware
exec: handle idmapped mounts
would_dump: handle idmapped mounts
...
- vDSO build improvements including support for building with BSD.
- Cleanup to the AMU support code and initialisation rework to support
cpufreq drivers built as modules.
- Removal of synthetic frame record from exception stack when entering
the kernel from EL0.
- Add support for the TRNG firmware call introduced by Arm spec
DEN0098.
- Cleanup and refactoring across the board.
- Avoid calling arch_get_random_seed_long() from
add_interrupt_randomness()
- Perf and PMU updates including support for Cortex-A78 and the v8.3
SPE extensions.
- Significant steps along the road to leaving the MMU enabled during
kexec relocation.
- Faultaround changes to initialise prefaulted PTEs as 'old' when
hardware access-flag updates are supported, which drastically
improves vmscan performance.
- CPU errata updates for Cortex-A76 (#1463225) and Cortex-A55
(#1024718)
- Preparatory work for yielding the vector unit at a finer granularity
in the crypto code, which in turn will one day allow us to defer
softirq processing when it is in use.
- Support for overriding CPU ID register fields on the command-line.
-----BEGIN PGP SIGNATURE-----
iQFEBAABCgAuFiEEPxTL6PPUbjXGY88ct6xw3ITBYzQFAmAmwZcQHHdpbGxAa2Vy
bmVsLm9yZwAKCRC3rHDchMFjNLA1B/0XMwWUhmJ4ZPK4sr28YWHNGLuCFHDgkMKU
dEmS806OF9d0J7fTczGsKdS4IKtXWko67Z0UGiPIStwfm0itSW2Zgbo9KZeDPqPI
fH0s23nQKxUMyNW7b9p4cTV3YuGVMZSBoMug2jU2DEDpSqeGBk09NPi6inERBCz/
qZxcqXTKxXbtOY56eJmq09UlFZiwfONubzuCrrUH7LU8ZBSInM/6Q4us/oVm4zYI
Pnv996mtL4UxRqq/KoU9+cQ1zsI01kt9/coHwfCYvSpZEVAnTWtfECsJ690tr3mF
TSKQLvOzxbDtU+HcbkNVKW0A38EIO1xXr8yXW9SJx6BJBkyb24xo
=IwMb
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Will Deacon:
- vDSO build improvements including support for building with BSD.
- Cleanup to the AMU support code and initialisation rework to support
cpufreq drivers built as modules.
- Removal of synthetic frame record from exception stack when entering
the kernel from EL0.
- Add support for the TRNG firmware call introduced by Arm spec
DEN0098.
- Cleanup and refactoring across the board.
- Avoid calling arch_get_random_seed_long() from
add_interrupt_randomness()
- Perf and PMU updates including support for Cortex-A78 and the v8.3
SPE extensions.
- Significant steps along the road to leaving the MMU enabled during
kexec relocation.
- Faultaround changes to initialise prefaulted PTEs as 'old' when
hardware access-flag updates are supported, which drastically
improves vmscan performance.
- CPU errata updates for Cortex-A76 (#1463225) and Cortex-A55
(#1024718)
- Preparatory work for yielding the vector unit at a finer granularity
in the crypto code, which in turn will one day allow us to defer
softirq processing when it is in use.
- Support for overriding CPU ID register fields on the command-line.
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (85 commits)
drivers/perf: Replace spin_lock_irqsave to spin_lock
mm: filemap: Fix microblaze build failure with 'mmu_defconfig'
arm64: Make CPU_BIG_ENDIAN depend on ld.bfd or ld.lld 13.0.0+
arm64: cpufeatures: Allow disabling of Pointer Auth from the command-line
arm64: Defer enabling pointer authentication on boot core
arm64: cpufeatures: Allow disabling of BTI from the command-line
arm64: Move "nokaslr" over to the early cpufeature infrastructure
KVM: arm64: Document HVC_VHE_RESTART stub hypercall
arm64: Make kvm-arm.mode={nvhe, protected} an alias of id_aa64mmfr1.vh=0
arm64: Add an aliasing facility for the idreg override
arm64: Honor VHE being disabled from the command-line
arm64: Allow ID_AA64MMFR1_EL1.VH to be overridden from the command line
arm64: cpufeature: Add an early command-line cpufeature override facility
arm64: Extract early FDT mapping from kaslr_early_init()
arm64: cpufeature: Use IDreg override in __read_sysreg_by_encoding()
arm64: cpufeature: Add global feature override facility
arm64: Move SCTLR_EL1 initialisation to EL-agnostic code
arm64: Simplify init_el2_state to be non-VHE only
arm64: Move VHE-specific SPE setup to mutate_to_vhe()
arm64: Drop early setting of MDSCR_EL2.TPMS
...
-----BEGIN PGP SIGNATURE-----
iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAmAtmIwQHGF4Ym9lQGtl
cm5lbC5kawAKCRD301j7KXHgplzLEAC5O+3rBM8QuiJdo39Yppmuw4hDJ6hOKynP
EJQLKQQi0VfXgU+MprGvcbpFYmNbgICvUICQkEzJuk++kPCu/BJtJz0yErQeLgS+
RdXiPV6enbF7iRML5TVRTr1q/z7sJMXcIIJ8Pz/rU/JNfGYExVd0WfnEY9mp1jOt
Bl9V+qyTazdP+Ma4+uEPatSayqcdi1rxB5I+7v/sLiOvKZZWkaRZjUZ/mxAjUfvK
dBOOPjMygEo3tCLkIyyA6lpLvr1r+SUZhLuebRLEKa3To3TW6RtoG0qwpKmI2iKw
ylLeVLB60nM9RUxjflVOfBsHxz1bDg5Ve86y5nCjQd4Jo8x1c4DnecyGE5/Tu8Rg
rgbsfD6nFWzhDCvcZT0XrfQ4ZAjIL2IfT+ypQiQ6UlRd3hvIKRmzWMkjuH2svr0u
ey9Kq+lYerI4cM0F3W73gzUKdIQOuCzBCYxQuSQQomscBa7FCInyU192dAI9Aj6l
Yd06mgKu6qCx6zLv6JfpBqaBHZMwyGE4dmZgPQFuuwO+b4N+Ck3Jm5fzEzw/xIxQ
wdo/DlsAl60BXentB6FByGBJaCjVdSymRqN/xNCAbFKCjmr6TLBuXPfg1gYYO7xC
VOcVjWe8iN3wWHZab3t2mxMKH9B9B/KKzIhu6TNHSmgtQ5paZPRCBx995pDyRw26
WC22RGC2MA==
=os1E
-----END PGP SIGNATURE-----
Merge tag 'for-5.12/block-2021-02-17' of git://git.kernel.dk/linux-block
Pull core block updates from Jens Axboe:
"Another nice round of removing more code than what is added, mostly
due to Christoph's relentless pursuit of tech debt removal/cleanups.
This pull request contains:
- Two series of BFQ improvements (Paolo, Jan, Jia)
- Block iov_iter improvements (Pavel)
- bsg error path fix (Pan)
- blk-mq scheduler improvements (Jan)
- -EBUSY discard fix (Jan)
- bvec allocation improvements (Ming, Christoph)
- bio allocation and init improvements (Christoph)
- Store bdev pointer in bio instead of gendisk + partno (Christoph)
- Block trace point cleanups (Christoph)
- hard read-only vs read-only split (Christoph)
- Block based swap cleanups (Christoph)
- Zoned write granularity support (Damien)
- Various fixes/tweaks (Chunguang, Guoqing, Lei, Lukas, Huhai)"
* tag 'for-5.12/block-2021-02-17' of git://git.kernel.dk/linux-block: (104 commits)
mm: simplify swapdev_block
sd_zbc: clear zone resources for non-zoned case
block: introduce blk_queue_clear_zone_settings()
zonefs: use zone write granularity as block size
block: introduce zone_write_granularity limit
block: use blk_queue_set_zoned in add_partition()
nullb: use blk_queue_set_zoned() to setup zoned devices
nvme: cleanup zone information initialization
block: document zone_append_max_bytes attribute
block: use bi_max_vecs to find the bvec pool
md/raid10: remove dead code in reshape_request
block: mark the bio as cloned in bio_iov_bvec_set
block: set BIO_NO_PAGE_REF in bio_iov_bvec_set
block: remove a layer of indentation in bio_iov_iter_get_pages
block: turn the nr_iovecs argument to bio_alloc* into an unsigned short
block: remove the 1 and 4 vec bvec_slabs entries
block: streamline bvec_alloc
block: factor out a bvec_alloc_gfp helper
block: move struct biovec_slab to bio.c
block: reuse BIO_INLINE_VECS for integrity bvecs
...
- Fix an ABBA deadlock when renaming files on overlayfs.
- Make sure that we can't overflow the inode extent counters when adding
to or removing extents from a file.
- Make directory sgid inheritance work the same way as all the other
filesystems.
- Don't drain the buffer cache on freeze and ro remount, which should
reduce the amount of time if read-only workloads are continuing
during the freeze.
- Fix a bug where symlink size isn't reported to the vfs in ecryptfs.
- Disentangle log cleaning from log covering. This refactoring sets us
up for future changes to the log, though for now it simply means that
we can use covering for freezes, and cleaning becomes something we
only do at unmount.
- Speed up file fsyncs by reducing iolock cycling.
- Fix delalloc blocks leaking when changing the project id fails because
of input validation errors in FSSETXATTR.
- Fix oversized quota reservation when converting unwritten extents
during a DAX write.
- Create a transaction allocation helper function to standardize the
idiom of allocating a transaction, reserving blocks, locking inodes,
and reserving quota. Replace all the open-coded logic for file
creation, file ownership changes, and file modifications to use them.
- Actually shut down the fs if the incore quota reservations get
corrupted.
- Fix background block garbage collection scans to not block and to
actually clean out CoW staging extents properly.
- Run block gc scans when we run low on project quota.
- Use the standardized transaction allocation helpers to make it so that
ENOSPC and EDQUOT errors during reservation will back out, invoke the
block gc scanner, and try again. This is preparation for introducing
background inode garbage collection in the next cycle.
- Combine speculative post-EOF block garbage collection with speculative
copy on write block garbage collection.
- Enable multithreaded quotacheck.
- Allow sysadmins to tweak the CPU affinities and maximum concurrency
levels of quotacheck and background blockgc worker pools.
- Expose the inode btree counter feature in the fs geometry ioctl.
- Cleanups of the growfs code in preparation for starting work on
filesystem shrinking.
- Fix all the bloody gcc warnings that the maintainer knows about. :P
- Fix a RST syntax error.
- Don't trigger bmbt corruption assertions after the fs shuts down.
- Restore behavior of forcing SIGBUS on a shut down filesystem when
someone triggers a mmap write fault (or really, any buffered write).
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEUzaAxoMeQq6m2jMV+H93GTRKtOsFAmAlX/UACgkQ+H93GTRK
tOta+RAAiGqLKxeY07HH7F98pRJ86j6lU0zmc5i5UCOGMvZd8hLKDdThzggsjqO6
rrUSc7Ppg7MQt1JdXLSdZw2N6Ksb9yy6chufj+j3Dq1JQfSL4YvBO/LlXmZmFE6d
80Qbqq6HFSRWb6JzCMr3knhC+FJovAGhFgZYZGBZ817A/FXacTg9/A5Ow8SX81WX
42s517QOmegAn7YhC3xcPZp5iavjbMd7Y9v7izpuo4FBB9AY7NYyb5wVhvffILfS
/SMLQPw3T/tccRJuVJ8TfLA9R+B9+LaGmQ5tn/AtdwN+Lv7ykinzGKYLagkdlTmE
onGkEIwrebEgq9phT47eX7ixiEt7oWQiQGZukXLVn7mL/0WPVI2pbYi/M1BNpi8i
UftOEVroav+m4h0DF3duOE7rLGuBIEdjPuuAs85QhZ6UTusBjwxp1gOJbjuN0Up9
9hBGTtYQIRhWxHkxWKAeuYzIbtMxC2S2XGxnW4cNOxbE7GxwfxBw0KP/38ZP4iYQ
LKt6JVX+iFDQ+lH8JA6DD7+j+m7W37Alu89OPmpW2nYpFyisFDY+1dEIFvPw9roZ
BtbKlZzS2O2zD67/tTVh+ZcPoEcPfp156GDCrgfgdIdiBvQtGbyOLB/WQC6wSU1L
2PLt1inFBx5wNrIEMFMHT1hsduRihNMM+eLn6LV5XIK2RmSCT+I=
=CaLz
-----END PGP SIGNATURE-----
Merge tag 'xfs-5.12-merge-5' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
Pull xfs updates from Darrick Wong:
"There's a lot going on this time, which seems about right for this
drama-filled year.
Community developers added some code to speed up freezing when
read-only workloads are still running, refactored the logging code,
added checks to prevent file extent counter overflow, reduced iolock
cycling to speed up fsync and gc scans, and started the slow march
towards supporting filesystem shrinking.
There's a huge refactoring of the internal speculative preallocation
garbage collection code which fixes a bunch of bugs, makes the gc
scheduling per-AG and hence multithreaded, and standardizes the retry
logic when we try to reserve space or quota, can't, and want to
trigger a gc scan. We also enable multithreaded quotacheck to reduce
mount times further. This is also preparation for background file gc,
which may or may not land for 5.13.
We also fixed some deadlocks in the rename code, fixed a quota
accounting leak when FSSETXATTR fails, restored the behavior that
write faults to an mmap'd region actually cause a SIGBUS, fixed a bug
where sgid directory inheritance wasn't quite working properly, and
fixed a bug where symlinks weren't working properly in ecryptfs. We
also now advertise the inode btree counters feature that was
introduced two cycles ago.
Summary:
- Fix an ABBA deadlock when renaming files on overlayfs.
- Make sure that we can't overflow the inode extent counters when
adding to or removing extents from a file.
- Make directory sgid inheritance work the same way as all the other
filesystems.
- Don't drain the buffer cache on freeze and ro remount, which should
reduce the amount of time if read-only workloads are continuing
during the freeze.
- Fix a bug where symlink size isn't reported to the vfs in ecryptfs.
- Disentangle log cleaning from log covering. This refactoring sets
us up for future changes to the log, though for now it simply means
that we can use covering for freezes, and cleaning becomes
something we only do at unmount.
- Speed up file fsyncs by reducing iolock cycling.
- Fix delalloc blocks leaking when changing the project id fails
because of input validation errors in FSSETXATTR.
- Fix oversized quota reservation when converting unwritten extents
during a DAX write.
- Create a transaction allocation helper function to standardize the
idiom of allocating a transaction, reserving blocks, locking
inodes, and reserving quota. Replace all the open-coded logic for
file creation, file ownership changes, and file modifications to
use them.
- Actually shut down the fs if the incore quota reservations get
corrupted.
- Fix background block garbage collection scans to not block and to
actually clean out CoW staging extents properly.
- Run block gc scans when we run low on project quota.
- Use the standardized transaction allocation helpers to make it so
that ENOSPC and EDQUOT errors during reservation will back out,
invoke the block gc scanner, and try again. This is preparation for
introducing background inode garbage collection in the next cycle.
- Combine speculative post-EOF block garbage collection with
speculative copy on write block garbage collection.
- Enable multithreaded quotacheck.
- Allow sysadmins to tweak the CPU affinities and maximum concurrency
levels of quotacheck and background blockgc worker pools.
- Expose the inode btree counter feature in the fs geometry ioctl.
- Cleanups of the growfs code in preparation for starting work on
filesystem shrinking.
- Fix all the bloody gcc warnings that the maintainer knows about. :P
- Fix a RST syntax error.
- Don't trigger bmbt corruption assertions after the fs shuts down.
- Restore behavior of forcing SIGBUS on a shut down filesystem when
someone triggers a mmap write fault (or really, any buffered
write)"
* tag 'xfs-5.12-merge-5' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux: (85 commits)
xfs: consider shutdown in bmapbt cursor delete assert
xfs: fix boolreturn.cocci warnings
xfs: restore shutdown check in mapped write fault path
xfs: fix rst syntax error in admin guide
xfs: fix incorrect root dquot corruption error when switching group/project quota types
xfs: get rid of xfs_growfs_{data,log}_t
xfs: rename `new' to `delta' in xfs_growfs_data_private()
libxfs: expose inobtcount in xfs geometry
xfs: don't bounce the iolock between free_{eof,cow}blocks
xfs: expose the blockgc workqueue knobs publicly
xfs: parallelize block preallocation garbage collection
xfs: rename block gc start and stop functions
xfs: only walk the incore inode tree once per blockgc scan
xfs: consolidate the eofblocks and cowblocks workers
xfs: consolidate incore inode radix tree posteof/cowblocks tags
xfs: remove trivial eof/cowblocks functions
xfs: hide xfs_icache_free_cowblocks
xfs: hide xfs_icache_free_eofblocks
xfs: relocate the eofb/cowb workqueue functions
xfs: set WQ_SYSFS on all workqueues in debug mode
...
The assert in xfs_btree_del_cursor() checks that the bmapbt block
allocation field has been handled correctly before the cursor is
freed. This field is used for accurate calculation of indirect block
reservation requirements (for delayed allocations), for example.
generic/019 reproduces a scenario where this assert fails because
the filesystem has shutdown while in the middle of a bmbt record
insertion. This occurs after a bmbt block has been allocated via the
cursor but before the higher level bmap function (i.e.
xfs_bmap_add_extent_hole_real()) completes and resets the field.
Update the assert to accommodate the transient state if the
filesystem has shutdown. While here, clean up the indentation and
comments in the function.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
fs/xfs/xfs_log.c:1062:9-10: WARNING: return of 0/1 in function 'xfs_log_need_covered' with return type bool
Return statements in functions returning bool should use
true/false instead of 1/0.
Generated by: scripts/coccinelle/misc/boolreturn.cocci
Fixes: 37444fc4cc ("xfs: lift writable fs check up into log worker task")
CC: Brian Foster <bfoster@redhat.com>
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: kernel test robot <lkp@intel.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
XFS triggers an iomap warning in the write fault path due to a
!PageUptodate() page if a write fault happens to occur on a page
that recently failed writeback. The iomap writeback error handling
code can clear the Uptodate flag if no portion of the page is
submitted for I/O. This is reproduced by fstest generic/019, which
combines various forms of I/O with simulated disk failures that
inevitably lead to filesystem shutdown (which then unconditionally
fails page writeback).
This is a regression introduced by commit f150b42343 ("xfs: split
the iomap ops for buffered vs direct writes") due to the removal of
a shutdown check and explicit error return in the ->iomap_begin()
path used by the write fault path. The explicit error return
historically translated to a SIGBUS, but now carries on with iomap
processing where it complains about the unexpected state. Restore
the shutdown check to xfs_buffered_write_iomap_begin() to restore
historical behavior.
Fixes: f150b42343 ("xfs: split the iomap ops for buffered vs direct writes")
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
While writing up a regression test for broken behavior when a chprojid
request fails, I noticed that we were logging corruption notices about
the root dquot of the group/project quota file at mount time when
testing V4 filesystems.
In commit afeda6000b, I was trying to improve ondisk dquot validation
by making sure that when we load an ondisk dquot into memory on behalf
of an incore dquot, the dquot id and type matches. Unfortunately, I
forgot that V4 filesystems only have two quota files, and can switch
that file between group and project quota types at mount time. When we
perform that switch, we'll try to load the default quota limits from the
root dquot prior to running quotacheck and log a corruption error when
the types don't match.
This is inconsequential because quotacheck will reset the second quota
file as part of doing the switch, but we shouldn't leave scary messages
in the kernel log.
Fixes: afeda6000b ("xfs: validate ondisk/incore dquot flags")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
The mp variable in xfs_file_compat_ioctl is only used when
BROKEN_X86_ALIGNMENT is define. Remove it and just open code the
dereference in a few places.
Link: https://lore.kernel.org/r/20210203173009.462205-1-christian.brauner@ubuntu.com
Fixes: f736d93d76 ("xfs: support idmapped mounts")
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Acked-by: Christian Brauner <christian.brauner@ubuntu.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
Such usage isn't encouraged by the kernel coding style. Leave the
definitions alone in case of userspace users.
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Gao Xiang <hsiangkao@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
It actually means the delta block count of growfs. Rename it in order
to make it clear. Also introduce nb_div to avoid reusing `delta`.
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Gao Xiang <hsiangkao@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
As xfs supports the feature of inode btree block counters now, expose
this feature flag in xfs geometry, for userspace can check if the
inobtcnt is enabled or not.
Signed-off-by: Zorro Lang <zlang@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Since xfs_inode_free_eofblocks and xfs_inode_free_cowblocks are now
internal static functions, we can save ourselves a cycling of the iolock
by passing the lock state out to xfs_blockgc_scan_inode and letting it
do all the unlocking.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Expose the workqueue sysfs knobs for the speculative preallocation gc
workers on all kernels, and update the sysadmin information.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Split the block preallocation garbage collection work into per-AG work
items so that we can take advantage of parallelization.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Shorten the names of the two functions that start and stop block
preallocation garbage collection and move them up to the other blockgc
functions.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Perform background block preallocation gc scans more efficiently by
walking the incore inode tree once.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Remove the separate cowblocks work items and knob so that we can control
and run everything from a single blockgc work queue. Note that the
speculative_prealloc_lifetime sysfs knob retains its historical name
even though the functions move to prefix xfs_blockgc_*.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
The clearing of posteof blocks and cowblocks serve the same purpose:
removing speculative block preallocations from inactive files. We don't
need to burn two radix tree tags on this, so combine them into one.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Change the one remaining caller of xfs_icache_free_cowblocks to use our
new combined blockgc scan function instead, since we will soon be
combining the two scans. This introduces a slight behavior change,
since a readonly remount now clears out post-EOF preallocations and not
just CoW staging extents.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Change the one remaining caller of xfs_icache_free_eofblocks to use our
new combined blockgc scan function instead, since we will soon be
combining the two scans. This introduces a slight behavior change,
since the XFS_IOC_FREE_EOFBLOCKS now clears out speculative CoW
reservations in addition to post-eof blocks.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Move the xfs_{eof,cow}blocks_worker and xfs_queue_{eof,cow}blocks
functions further down in the file so that the cleanups in the next
patches won't have to pre-declare static functions. No functional
changes.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
When CONFIG_XFS_DEBUG=y, set WQ_SYSFS on all workqueues that we create
so that we (developers) have a means to monitor cpu affinity and whatnot
for background workers. In the next patchset we'll expose knobs for
more of the workqueues publicly and document it, but not now.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Increase the parallelism level for pwork clients to the workqueue
defaults so that we can take advantage of computers with a lot of CPUs
and a lot of hardware. On fast systems this will speed up quotacheck by
a large factor, and the following posteof/cowblocks cleanup series will
use the functionality presented in this patch to run garbage collection
as quickly as possible.
We do this by switching the pwork workqueue to unbounded, since the
current user (quotacheck) runs lengthy scans for each work item and we
don't care about dispatching the work on a warm cpu cache or anything
like that. Also set WQ_SYSFS so that we can monitor where the wq is
running.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
If a fs modification (creation, file write, reflink, etc.) is unable to
reserve enough space to handle the modification, try clearing whatever
space the filesystem might have been hanging onto in the hopes of
speeding up the filesystem. The flushing behavior will become
particularly important when we add deferred inode inactivation because
that will increase the amount of space that isn't actively tied to user
data.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
In anticipation of more restructuring of the eof/cowblocks gc code,
refactor calling of those two functions into a single internal helper
function, then present a new standard interface to purge speculative
block preallocations and start shifting higher level code to use that.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Add some tracepoints so that we can observe when the speculative
preallocation garbage collector runs.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
If a file user, group, or project change is unable to reserve enough
quota to handle the modification, try clearing whatever space the
filesystem might have been hanging onto in the hopes of speeding up the
filesystem. The flushing behavior will become particularly important
when we add deferred inode inactivation because that will increase the
amount of space that isn't actively tied to user data.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
If an inode creation is unable to reserve enough quota to handle the
modification, try clearing whatever space the filesystem might have been
hanging onto in the hopes of speeding up the filesystem. The flushing
behavior will become particularly important when we add deferred inode
inactivation because that will increase the amount of space that isn't
actively tied to user data.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
If a fs modification (data write, reflink, xattr set, fallocate, etc.)
is unable to reserve enough quota to handle the modification, try
clearing whatever space the filesystem might have been hanging onto in
the hopes of speeding up the filesystem. The flushing behavior will
become particularly important when we add deferred inode inactivation
because that will increase the amount of space that isn't actively tied
to user data.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Now that we've converted xfs_reflink_remap_extent to use the new
xfs_trans_alloc_inode API, we can focus on its slightly unusual behavior
with regard to quota reservations.
Since it's valid to remap written blocks into a hole, we must be able to
increase the quota count by the number of blocks in the mapping.
However, the incore space reservation process requires us to supply an
asymptotic guess before we can gain exclusive access to resources. We'd
like to reserve all the quota we need up front, but we also don't want
to fail a written -> allocated remap operation unnecessarily.
The solution is to make the remap_extents function call the transaction
allocation function twice. The first time we ask to reserve enough
space and quota to handle the absolute worst case situation, but if that
fails, we can fall back to the old strategy: ask for the bare minimum
space reservation upfront and increase the quota reservation later if we
need to.
Later in this patchset we change the transaction and quota code to try
to reclaim space if we cannot reserve free space or quota.
Restructuring the remap_extent function in this manner means that if the
fallback increase fails, we can pass that back to the caller knowing
that the transaction allocation already tried freeing space.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Change the signature of xfs_blockgc_free_quota in preparation for the
next few patches. Callers can now pass EOF_FLAGS into the function to
control scan parameters; and the function will now pass back any
corruption errors seen while scanning, though for our retry loops we'll
just try again unconditionally.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Move this function further down in the file so that later cleanups won't
have to declare static functions. Change the name because we're about
to rework all the code that performs garbage collection of speculatively
allocated file blocks. No functional changes.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Buffered writers who have run out of quota reservation call
xfs_inode_free_quota_blocks to try to free any space reservations that
might reduce the quota usage. Unfortunately, the buffered write path
treats "out of project quota" the same as "out of overall space" so this
function has never supported scanning for space that might ease an "out
of project quota" condition.
We're about to start using this function for cases where we actually
/can/ tell if we're out of project quota, so add in this functionality.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Don't stall the cowblocks scan on a locked inode if we possibly can.
We'd much rather the background scanner keep moving.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
The functions to run an eof/cowblocks scan to try to reduce quota usage
are kind of a mess -- the logic repeatedly initializes an eofb structure
and there are logic bugs in the code that result in the cowblocks scan
never actually happening.
Replace all three functions with a single function that fills out an
eofb and runs both eof and cowblocks scans.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
If we ever screw up the quota reservations enough to trip the
assertions, something's wrong with the quota code. Shut down the
filesystem when this happens, because this is corruption.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Rename the 'code' variable to 'error' to follow the naming convention of
most other functions in xfs.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Now that the only caller of this function is xfs_trans_alloc_ichange,
just open-code the meat of _chown_reserve in that caller. Drop the
(redundant) [ugp]id checks because xfs has a 1:1 relationship between
quota ids and incore dquots.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
For file ownership (uid, gid, prid) changes, create a new helper
xfs_trans_alloc_ichange that allocates a transaction and reserves the
appropriate amount of quota against that transction in preparation for a
change of user, group, or project id. Replace all the open-coded idioms
with a single call to this helper so that we can contain the retry loops
in the next patchset.
This changes the locking behavior for ichange transactions slightly.
Since tr_ichange does not have a permanent reservation and cannot roll,
we pass XFS_ILOCK_EXCL to ijoin so that the inode will be unlocked
automatically at commit time.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
For file creation, create a new helper xfs_trans_alloc_icreate that
allocates a transaction and reserves the appropriate amount of quota
against that transction. Replace all the open-coded idioms with a
single call to this helper so that we can contain the retry loops in the
next patchset.
This changes the locking behavior for non-tempfile creation slightly, in
that we now make the quota reservation without holding the directory
ILOCK. While the dquots chosen for inode creation are based on the
directory state at a given point in time, the directory ILOCK was
released as soon as the dquot references are picked up. Hence it was
never necessary to hold the directory ILOCK for the quota reservation.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
The two remaining callers of xfs_trans_reserve_quota_nblks are in the
reflink code. These conversions aren't as uniform as the previous
conversions, so call that out in a separate patch.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Make it so that we can reserve rt blocks with the xfs_trans_alloc_inode
wrapper function, then convert a few more callsites.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Create a new helper xfs_trans_alloc_inode that allocates a transaction,
locks and joins an inode to it, and then reserves the appropriate amount
of quota against that transction. Then replace all the open-coded
idioms with a single call to this helper.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Modify xfs_trans_reserve_quota_nblks so that we can reserve data and
realtime blocks from the dquot at the same time. This change has the
theoretical side effect that for allocations to realtime files we will
reserve from the dquot both the number of rtblocks being allocated and
the number of bmbt blocks that might be needed to add the mapping.
However, since the mount code disables quota if it finds a realtime
device, this should not result in any behavior changes.
Now that we've moved the inode creation callers away from using the
_nblks function, we can repurpose the (now unused) ninos argument for
realtime blocks, so make that change. This also replaces the flags
argument with a boolean parameter to force the reservation since we
don't need to distinguish between data and rt quota reservations any
more, and the only flag being passed in was FORCE_RES.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Fix some build warnings on gcc 10.2 when quotas are disabled.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Create a proper helper so that inode creation calls can reserve quota
with a dedicated function.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com>
xfs_trans_cancel will release all the quota resources that were reserved
on behalf of the transaction, so get rid of the explicit unreserve step.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Create a couple of convenience wrappers for creating and deleting quota
block reservations against future changes.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Convert a few xfs_trans_*reserve* callsites that are open-coding other
convenience functions.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
In commit 3b0fe47805, we reduced the free space requirement to
perform a pre-write unwritten extent conversion on an S_DAX file. Since
we're not actually allocating any space, the logic goes, we only need
enough reservation to handle shape changes in the bmbt.
The same logic should have been applied to quota -- we're not allocating
any space, so we only need to reserve enough quota to handle the bmbt
shape changes.
Fixes: 3b0fe47805 ("xfs: Don't use reserved blocks for data blocks with DAX")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
While refactoring the quota code to create a function to allocate inode
change transactions, I noticed that xfs_qm_vop_chown_reserve does more
than just make reservations: it also *modifies* the incore counts
directly to handle the owner id change for the delalloc blocks.
I then observed that the fssetxattr code continues validating input
arguments after making the quota reservation but before dirtying the
transaction. If the routine decides to error out, it fails to undo the
accounting switch! This leads to incorrect quota reservation and
failure down the line.
We can fix this by making the reservation function do only that -- for
the new dquot, it reserves ondisk and delalloc blocks to the
transaction, and the old dquot hangs on to its incore reservation for
now. Once we actually switch the dquots, we can then update the incore
reservations because we've dirtied the transaction and it's too late to
turn back now.
No fixes tag because this has been broken since the start of git.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Attempt shared locking for unaligned DIO, but only if the the
underlying extent is already allocated and in written state. On
failure, retry with the existing exclusive locking.
Test case is fio randrw of 512 byte IOs using AIO and an iodepth of
32 IOs.
Vanilla:
READ: bw=4560KiB/s (4670kB/s), 4560KiB/s-4560KiB/s (4670kB/s-4670kB/s), io=134MiB (140MB), run=30001-30001msec
WRITE: bw=4567KiB/s (4676kB/s), 4567KiB/s-4567KiB/s (4676kB/s-4676kB/s), io=134MiB (140MB), run=30001-30001msec
Patched:
READ: bw=37.6MiB/s (39.4MB/s), 37.6MiB/s-37.6MiB/s (39.4MB/s-39.4MB/s), io=1127MiB (1182MB), run=30002-30002msec
WRITE: bw=37.6MiB/s (39.4MB/s), 37.6MiB/s-37.6MiB/s (39.4MB/s-39.4MB/s), io=1128MiB (1183MB), run=30002-30002msec
That's an improvement from ~18k IOPS to a ~150k IOPS, which is
about the IOPS limit of the VM block device setup I'm testing on.
4kB block IO comparison:
READ: bw=296MiB/s (310MB/s), 296MiB/s-296MiB/s (310MB/s-310MB/s), io=8868MiB (9299MB), run=30002-30002msec
WRITE: bw=296MiB/s (310MB/s), 296MiB/s-296MiB/s (310MB/s-310MB/s), io=8878MiB (9309MB), run=30002-30002msec
Which is ~150k IOPS, same as what the test gets for sub-block
AIO+DIO writes with this patch.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
[hch: rebased, split unaligned from nowait]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
The unaligned DIO write path is more convolted than the normal path,
and we are about to make it more complex. Keep the block aligned
fast path dio write code trim and simple by splitting out the
unaligned DIO code from it.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
[hch: rebased, fixed a few minor nits]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Use a more suitable event class.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Pass the iocb and iov_iter to the tracepoints and leave decoding of
actual arguments to the code only run when tracing is enabled.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
The iomap code has been designed from the start not to do magic fallback,
so remove the assert in preparation for further code cleanups.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Drop a few pointless aio_ prefixes.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Ensure we don't block on the iolock, or waiting for I/O in
xfs_file_aio_write_checks if the caller asked to avoid that.
Fixes: 29a5d29ec1 ("xfs: nowait aio support")
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Add a helper to factor out the nowait locking logical for the read/write
helpers.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
With both CONFIG_XFS_DEBUG and CONFIG_XFS_WARN disabled, the only reference to
local variable "error" in xfs_bmap_compute_alignments() gets eliminated during
pre-processing stage of the compilation process. This causes the compiler to
generate a "set but not used" warning.
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Brian Foster <bfoster@redhat.com>
The log variable is only used in kernels with asserts enabled.
Remove it and open code the dereference to avoid unused variable
warnings.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
There is no point in allocating memory for a synchronous flush.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com>
Acked-by: Damien Le Moal <damien.lemoal@wdc.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Enable idmapped mounts for xfs. This basically just means passing down
the user_namespace argument from the VFS methods down to where it is
passed to the relevant helpers.
Note that full-filesystem bulkstat is not supported from inside idmapped
mounts as it is an administrative operation that acts on the whole file
system. The limitation is not applied to the bulkstat single operation
that just operates on a single inode.
Link: https://lore.kernel.org/r/20210121131959.646623-40-christian.brauner@ubuntu.com
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
Extend some inode methods with an additional user namespace argument. A
filesystem that is aware of idmapped mounts will receive the user
namespace the mount has been marked with. This can be used for
additional permission checking and also to enable filesystems to
translate between uids and gids if they need to. We have implemented all
relevant helpers in earlier patches.
As requested we simply extend the exisiting inode method instead of
introducing new ones. This is a little more code churn but it's mostly
mechanical and doesnt't leave us with additional inode methods.
Link: https://lore.kernel.org/r/20210121131959.646623-25-christian.brauner@ubuntu.com
Cc: Christoph Hellwig <hch@lst.de>
Cc: David Howells <dhowells@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: linux-fsdevel@vger.kernel.org
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
The posix acl permission checking helpers determine whether a caller is
privileged over an inode according to the acls associated with the
inode. Add helpers that make it possible to handle acls on idmapped
mounts.
The vfs and the filesystems targeted by this first iteration make use of
posix_acl_fix_xattr_from_user() and posix_acl_fix_xattr_to_user() to
translate basic posix access and default permissions such as the
ACL_USER and ACL_GROUP type according to the initial user namespace (or
the superblock's user namespace) to and from the caller's current user
namespace. Adapt these two helpers to handle idmapped mounts whereby we
either map from or into the mount's user namespace depending on in which
direction we're translating.
Similarly, cap_convert_nscap() is used by the vfs to translate user
namespace and non-user namespace aware filesystem capabilities from the
superblock's user namespace to the caller's user namespace. Enable it to
handle idmapped mounts by accounting for the mount's user namespace.
In addition the fileystems targeted in the first iteration of this patch
series make use of the posix_acl_chmod() and, posix_acl_update_mode()
helpers. Both helpers perform permission checks on the target inode. Let
them handle idmapped mounts. These two helpers are called when posix
acls are set by the respective filesystems to handle this case we extend
the ->set() method to take an additional user namespace argument to pass
the mount's user namespace down.
Link: https://lore.kernel.org/r/20210121131959.646623-9-christian.brauner@ubuntu.com
Cc: Christoph Hellwig <hch@lst.de>
Cc: David Howells <dhowells@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: linux-fsdevel@vger.kernel.org
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
When file attributes are changed most filesystems rely on the
setattr_prepare(), setattr_copy(), and notify_change() helpers for
initialization and permission checking. Let them handle idmapped mounts.
If the inode is accessed through an idmapped mount map it into the
mount's user namespace. Afterwards the checks are identical to
non-idmapped mounts. If the initial user namespace is passed nothing
changes so non-idmapped mounts will see identical behavior as before.
Helpers that perform checks on the ia_uid and ia_gid fields in struct
iattr assume that ia_uid and ia_gid are intended values and have already
been mapped correctly at the userspace-kernelspace boundary as we
already do today. If the initial user namespace is passed nothing
changes so non-idmapped mounts will see identical behavior as before.
Link: https://lore.kernel.org/r/20210121131959.646623-8-christian.brauner@ubuntu.com
Cc: Christoph Hellwig <hch@lst.de>
Cc: David Howells <dhowells@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: linux-fsdevel@vger.kernel.org
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
The inode_owner_or_capable() helper determines whether the caller is the
owner of the inode or is capable with respect to that inode. Allow it to
handle idmapped mounts. If the inode is accessed through an idmapped
mount it according to the mount's user namespace. Afterwards the checks
are identical to non-idmapped mounts. If the initial user namespace is
passed nothing changes so non-idmapped mounts will see identical
behavior as before.
Similarly, allow the inode_init_owner() helper to handle idmapped
mounts. It initializes a new inode on idmapped mounts by mapping the
fsuid and fsgid of the caller from the mount's user namespace. If the
initial user namespace is passed nothing changes so non-idmapped mounts
will see identical behavior as before.
Link: https://lore.kernel.org/r/20210121131959.646623-7-christian.brauner@ubuntu.com
Cc: Christoph Hellwig <hch@lst.de>
Cc: David Howells <dhowells@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: linux-fsdevel@vger.kernel.org
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: James Morris <jamorris@linux.microsoft.com>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
In order to determine whether a caller holds privilege over a given
inode the capability framework exposes the two helpers
privileged_wrt_inode_uidgid() and capable_wrt_inode_uidgid(). The former
verifies that the inode has a mapping in the caller's user namespace and
the latter additionally verifies that the caller has the requested
capability in their current user namespace.
If the inode is accessed through an idmapped mount map it into the
mount's user namespace. Afterwards the checks are identical to
non-idmapped inodes. If the initial user namespace is passed all
operations are a nop so non-idmapped mounts will not see a change in
behavior.
Link: https://lore.kernel.org/r/20210121131959.646623-5-christian.brauner@ubuntu.com
Cc: Christoph Hellwig <hch@lst.de>
Cc: David Howells <dhowells@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: linux-fsdevel@vger.kernel.org
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: James Morris <jamorris@linux.microsoft.com>
Acked-by: Serge Hallyn <serge@hallyn.com>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
Pass a set of flags to iomap_dio_rw instead of the boolean
wait_for_completion argument. The IOMAP_DIO_FORCE_WAIT flag
replaces the wait_for_completion, but only needs to be passed
when the iocb isn't synchronous to start with to simplify the
callers.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
[djwong: rework xfs_file.c so that we can push iomap changes separately]
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
If the inode is not pinned by the time fsync is called we don't need the
ilock to protect against concurrent clearing of ili_fsync_fields as the
inode won't need a log flush or clearing of these fields. Not taking
the iolock allows for full concurrency of fsync and thus O_DSYNC
completions with io_uring/aio write submissions.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Factor out the log syncing logic into two helpers to make the code easier
to read and more maintainable.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Filesystem freeze cleans the log and immediately redirties it so log
recovery runs if a crash occurs after the filesystem is frozen. Now
that log quiesce covers the log, there is no need to clean the log and
redirty it to trigger log recovery because covering has the same
effect. Update xfs_fs_freeze() to quiesce (and thus cover) the log.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
xfs_quiesce_attr() is now a wrapper for xfs_log_clean(). Remove it
and call xfs_log_clean() directly.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
These two calls are repeated at the beginning of xfs_log_quiesce().
Drop them from xfs_quiesce_attr().
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
xfs_log_sbcount() calls xfs_sync_sb() to sync superblock counters to
disk when lazy superblock accounting is enabled. This occurs on
unmount, freeze, and read-only (re)mount and ensures the final
values are calculated and persisted to disk before each form of
quiesce completes.
Now that log covering occurs in all of these contexts and uses the
same xfs_sync_sb() mechanism to update log state, there is no need
to log the superblock separately for any reason. Update the log
quiesce path to sync the superblock at least once for any mount
where lazy superblock accounting is enabled. If the log is already
covered, it will remain in the covered state. Otherwise, the next
sync as part of the normal covering sequence will carry the
associated superblock update with it. Remove xfs_log_sbcount() now
that it is no longer needed.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Now that log covering occurs on quiesce, we'd like to reuse the
underlying superblock sync for final superblock updates. This
includes things like lazy superblock counter updates, log feature
incompat bits in the future, etc. One quirk to this approach is that
once the log is in the IDLE (i.e. already covered) state, any
subsequent log write resets the state back to NEED. This means that
a final superblock sync to an already covered log requires two more
sb syncs to return the log back to IDLE again.
For example, if a lazy superblock enabled filesystem is mount cycled
without any modifications, the unmount path syncs the superblock
once and writes an unmount record. With the desired log quiesce
covering behavior, we sync the superblock three times at unmount
time: once for the lazy superblock counter update and twice more to
cover the log. By contrast, if the log is active or only partially
covered at unmount time, a final superblock sync would doubly serve
as the one or two remaining syncs required to cover the log.
This duplicate covering sequence is unnecessary because the
filesystem remains consistent if a crash occurs at any point. The
superblock will either be recovered in the event of a crash or
written back before the log is quiesced and potentially cleaned with
an unmount record.
Update the log covering state machine to remain in the IDLE state if
additional covering checkpoints pass through the log. This
facilitates final superblock updates (such as lazy superblock
counters) via a single sb sync without losing covered status. This
provides some consistency with the active and partially covered
cases and also avoids harmless, but spurious checkpoints when
quiescing the log.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
The log quiesce mechanism historically terminates by marking the log
clean with an unmount record. The primary objective is to indicate
that log recovery is no longer required after the quiesce has
flushed all in-core changes and written back filesystem metadata.
While this is perfectly fine, it is somewhat hacky as currently used
in certain contexts. For example, filesystem freeze quiesces (i.e.
cleans) the log and immediately redirties it with a dummy superblock
transaction to ensure that log recovery runs in the event of a
crash.
While this functions correctly, cleaning the log from freeze context
is clearly superfluous given the current redirtying behavior.
Instead, the desired behavior can be achieved by simply covering the
log. This effectively retires all on-disk log items from the active
range of the log by issuing two synchronous and sequential dummy
superblock update transactions that serve to update the on-disk log
head and tail. The subtle difference is that the log technically
remains dirty due to the lack of an unmount record, though recovery
is effectively a no-op due to the content of the checkpoints being
clean (i.e. the unmodified on-disk superblock).
Log covering currently runs in the background and only triggers once
the filesystem and log has idled. The purpose of the background
mechanism is to prevent log recovery from replaying the most
recently logged items long after those items may have been written
back. In the quiesce path, the log has been deliberately idled by
forcing the log and pushing the AIL until empty in a context where
no further mutable filesystem operations are allowed. Therefore, we
can cover the log as the final step in the log quiesce codepath to
reflect that all previously active items have been successfully
written back.
This facilitates selective log covering from certain contexts (i.e.
freeze) that only seek to quiesce, but not necessarily clean the
log. Note that as a side effect of this change, log covering now
occurs when cleaning the log as well. This is harmless, facilitates
subsequent cleanups, and is mostly temporary as various operations
switch to use explicit log covering.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Log quiesce is currently associated with cleaning the log, which is
accomplished by writing an unmount record as the last step of the
quiesce sequence. The quiesce codepath is a bit convoluted in this
regard due to how it is reused from various contexts. In preparation
to create separate log cleaning and log covering interfaces, lift
the write of the unmount record into a new cleaning helper and call
that wherever xfs_log_quiesce() is currently invoked. No functional
changes.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
The log covering helper checks whether the filesystem is writable to
determine whether to cover the log. The helper is currently only
called from the background log worker. In preparation to reuse the
helper from freezing contexts, lift the check into xfs_log_worker().
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
xfs_log_sbcount() syncs the superblock specifically to accumulate
the in-core percpu superblock counters and commit them to disk. This
is required to maintain filesystem consistency across quiesce
(freeze, read-only mount/remount) or unmount when lazy superblock
accounting is enabled because individual transactions do not update
the superblock directly.
This mechanism works as expected for writable mounts, but
xfs_log_sbcount() skips the update for read-only mounts. Read-only
mounts otherwise still allow log recovery and write out an unmount
record during log quiesce. If a read-only mount performs log
recovery, it can modify the in-core superblock counters and write an
unmount record when the filesystem unmounts without ever syncing the
in-core counters. This leaves the filesystem with a clean log but in
an inconsistent state with regard to lazy sb counters.
Update xfs_log_sbcount() to use the same logic
xfs_log_unmount_write() uses to determine when to write an unmount
record. This ensures that lazy accounting is always synced before
the log is cleaned. Refactor this logic into a new helper to
distinguish between a writable filesystem and a writable log.
Specifically, the log is writable unless the filesystem is mounted
with the norecovery mount option, the underlying log device is
read-only, or the filesystem is shutdown. Drop the freeze state
check because the update is already allowed during the freezing
process and no context calls this function on an already frozen fs.
Also, retain the shutdown check in xfs_log_unmount_write() to catch
the case where the preceding log force might have triggered a
shutdown.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Gao Xiang <hsiangkao@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Bill O'Donnell <billodo@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
When XFS creates a new symlink, it writes its size to disk but not to the
VFS inode. This causes i_size_read() to return 0 for that symlink until
it is re-read from disk, for example when the system is rebooted.
I found this inconsistency while protecting directories with eCryptFS.
The command "stat path/to/symlink/in/ecryptfs" will report "Size: 0" if
the symlink was created after the last reboot on an XFS root.
Call i_size_write() in xfs_symlink()
Signed-off-by: Jeffrey Mitchell <jeffrey.mitchell@starlab.io>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
xfs_buftarg_drain() is called from xfs_log_quiesce() to ensure the
buffer cache is reclaimed during unmount. xfs_log_quiesce() is also
called from xfs_quiesce_attr(), however, which means that cache
state is completely drained for filesystem freeze and read-only
remount. While technically harmless, this is unnecessarily
heavyweight. Both freeze and read-only mounts allow reads and thus
allow population of the buffer cache. Therefore, the transitional
sequence in either case really only needs to quiesce outstanding
writes to return the filesystem in a generally read-only state.
Additionally, some users have reported that attempts to freeze a
filesystem concurrent with a read-heavy workload causes the freeze
process to stall for a significant amount of time. This occurs
because, as mentioned above, the read workload repopulates the
buffer LRU while the freeze task attempts to drain it.
To improve this situation, replace the drain in xfs_log_quiesce()
with a buffer I/O quiesce and lift the drain into the unmount path.
This removes buffer LRU reclaim from freeze and read-only [re]mount,
but ensures the LRU is still drained before the filesystem unmounts.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
xfs_wait_buftarg() is vaguely named and somewhat overloaded. Its
primary purpose is to reclaim all buffers from the provided buffer
target LRU. In preparation to refactor xfs_wait_buftarg() into
serialization and LRU draining components, rename the function and
associated helpers to something more descriptive. This patch has no
functional changes with the minor exception of renaming a
tracepoint.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
An assert failure is triggered by syzkaller test due to
ATTR_KILL_PRIV is not cleared before xfs_setattr_size.
As ATTR_KILL_PRIV is not checked/used by xfs_setattr_size,
just remove it from the assert.
Signed-off-by: Yumei Huang <yuhuang@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
XFS always inherits the SGID bit if it is set on the parent inode, while
the generic inode_init_owner does not do this in a few cases where it can
create a possible security problem, see commit 0fa3ecd878
("Fix up non-directory creation in SGID directories") for details.
Switch XFS to use the generic helper for the normal path to fix this,
just keeping the simple field inheritance open coded for the case of the
non-sgid case with the bsdgrpid mount option.
Fixes: 1da177e4c3 ("Linux-2.6.12-rc2")
Reported-by: Christian Brauner <christian.brauner@ubuntu.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
The comment in xfs_file_aio_write_checks() about calling file_modified()
after dropping the ilock doesn't make sense, because the code that
unconditionally acquires and drops the ilock was removed by
commit 467f78992a ("xfs: reduce ilock hold times in
xfs_file_aio_write_checks").
Remove this outdated comment.
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
This commit adds XFS_ERRTAG_BMAP_ALLOC_MINLEN_EXTENT error tag which
helps userspace test programs to get xfs_bmap_btalloc() to always
allocate minlen sized extents.
This is required for test programs which need a guarantee that minlen
extents allocated for a file do not get merged with their existing
neighbours in the inode's BMBT. "Inode fork extent overflow check" for
Directories, Xattrs and extension of realtime inodes need this since the
file offset at which the extents are being allocated cannot be
explicitly controlled from userspace.
One way to use this error tag is to,
1. Consume all of the free space by sequentially writing to a file.
2. Punch alternate blocks of the file. This causes CNTBT to contain
sufficient number of one block sized extent records.
3. Inject XFS_ERRTAG_BMAP_ALLOC_MINLEN_EXTENT error tag.
After step 3, xfs_bmap_btalloc() will issue space allocation
requests for minlen sized extents only.
ENOSPC error code is returned to userspace when there aren't any "one
block sized" extents left in any of the AGs.
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Chandan Babu R <chandanrlinux@gmail.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
This commit moves over the code in xfs_bmap_btalloc() which is
responsible for processing an allocated extent to a new function. Apart
from xfs_bmap_btalloc(), the new function will be invoked by another
function introduced in a future commit.
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Chandan Babu R <chandanrlinux@gmail.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
This commit moves over the code which computes stripe alignment and
extent size hint alignment into a separate function. Apart from
xfs_bmap_btalloc(), the new function will be used by another function
introduced in a future commit.
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Chandan Babu R <chandanrlinux@gmail.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
The check for verifying if the allocated extent is from an AG whose
index is greater than or equal to that of tp->t_firstblock is already
done a couple of statements earlier in the same function. Hence this
commit removes the redundant assert statement.
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Chandan Babu R <chandanrlinux@gmail.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
This commit adds XFS_ERRTAG_REDUCE_MAX_IEXTENTS error tag which enables
userspace programs to test "Inode fork extent count overflow detection"
by reducing maximum possible inode fork extent count to 10.
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Signed-off-by: Chandan Babu R <chandanrlinux@gmail.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Removing an initial range of source/donor file's extent and adding a new
extent (from donor/source file) in its place will cause extent count to
increase by 1.
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Signed-off-by: Chandan Babu R <chandanrlinux@gmail.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Remapping an extent involves unmapping the existing extent and mapping
in the new extent. When unmapping, an extent containing the entire unmap
range can be split into two extents,
i.e. | Old extent | hole | Old extent |
Hence extent count increases by 1.
Mapping in the new extent into the destination file can increase the
extent count by 1.
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Chandan Babu R <chandanrlinux@gmail.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Moving an extent to data fork can cause a sub-interval of an existing
extent to be unmapped. This will increase extent count by 1. Mapping in
the new extent can increase the extent count by 1 again i.e.
| Old extent | New extent | Old extent |
Hence number of extents increases by 2.
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Signed-off-by: Chandan Babu R <chandanrlinux@gmail.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
A write to a sub-interval of an existing unwritten extent causes
the original extent to be split into 3 extents
i.e. | Unwritten | Real | Unwritten |
Hence extent count can increase by 2.
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Signed-off-by: Chandan Babu R <chandanrlinux@gmail.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Adding/removing an xattr can cause XFS_DA_NODE_MAXDEPTH extents to be
added. One extra extent for dabtree in case a local attr is large enough
to cause a double split. It can also cause extent count to increase
proportional to the size of a remote xattr's value.
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Signed-off-by: Chandan Babu R <chandanrlinux@gmail.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
A rename operation is essentially a directory entry remove operation
from the perspective of parent directory (i.e. src_dp) of rename's
source. Hence the only place where we check for extent count overflow
for src_dp is in xfs_bmap_del_extent_real(). xfs_bmap_del_extent_real()
returns -ENOSPC when it detects a possible extent count overflow and in
response, the higher layers of directory handling code do the following:
1. Data/Free blocks: XFS lets these blocks linger until a future remove
operation removes them.
2. Dabtree blocks: XFS swaps the blocks with the last block in the Leaf
space and unmaps the last block.
For target_dp, there are two cases depending on whether the destination
directory entry exists or not.
When destination directory entry does not exist (i.e. target_ip ==
NULL), extent count overflow check is performed only when transaction
has a non-zero sized space reservation associated with it. With a
zero-sized space reservation, XFS allows a rename operation to continue
only when the directory has sufficient free space in its data/leaf/free
space blocks to hold the new entry.
When destination directory entry exists (i.e. target_ip != NULL), all
we need to do is change the inode number associated with the already
existing entry. Hence there is no need to perform an extent count
overflow check.
Signed-off-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Directory entry removal must always succeed; Hence XFS does the
following during low disk space scenario:
1. Data/Free blocks linger until a future remove operation.
2. Dabtree blocks would be swapped with the last block in the leaf space
and then the new last block will be unmapped.
This facility is reused during low inode extent count scenario i.e. this
commit causes xfs_bmap_del_extent_real() to return -ENOSPC error code so
that the above mentioned behaviour is exercised causing no change to the
directory's extent count.
Signed-off-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Directory entry addition can cause the following,
1. Data block can be added/removed.
A new extent can cause extent count to increase by 1.
2. Free disk block can be added/removed.
Same behaviour as described above for Data block.
3. Dabtree blocks.
XFS_DA_NODE_MAXDEPTH blocks can be added. Each of these
can be new extents. Hence extent count can increase by
XFS_DA_NODE_MAXDEPTH.
Signed-off-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
The extent mapping the file offset at which a hole has to be
inserted will be split into two extents causing extent count to
increase by 1.
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Signed-off-by: Chandan Babu R <chandanrlinux@gmail.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
When adding a new data extent (without modifying an inode's existing
extents) the extent count increases only by 1. This commit checks for
extent count overflow in such cases.
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Signed-off-by: Chandan Babu R <chandanrlinux@gmail.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
XFS does not check for possible overflow of per-inode extent counter
fields when adding extents to either data or attr fork.
For e.g.
1. Insert 5 million xattrs (each having a value size of 255 bytes) and
then delete 50% of them in an alternating manner.
2. On a 4k block sized XFS filesystem instance, the above causes 98511
extents to be created in the attr fork of the inode.
xfsaild/loop0 2008 [003] 1475.127209: probe:xfs_inode_to_disk: (ffffffffa43fb6b0) if_nextents=98511 i_ino=131
3. The incore inode fork extent counter is a signed 32-bit
quantity. However the on-disk extent counter is an unsigned 16-bit
quantity and hence cannot hold 98511 extents.
4. The following incorrect value is stored in the attr extent counter,
# xfs_db -f -c 'inode 131' -c 'print core.naextents' /dev/loop0
core.naextents = -32561
This commit adds a new helper function (i.e.
xfs_iext_count_may_overflow()) to check for overflow of the per-inode
data and xattr extent counters. Future patches will use this function to
make sure that an FS operation won't cause the extent counter to
overflow.
Suggested-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Chandan Babu R <chandanrlinux@gmail.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
When overlayfs is running on top of xfs and the user unlinks a file in
the overlay, overlayfs will create a whiteout inode and ask xfs to
"rename" the whiteout file atop the one being unlinked. If the file
being unlinked loses its one nlink, we then have to put the inode on the
unlinked list.
This requires us to grab the AGI buffer of the whiteout inode to take it
off the unlinked list (which is where whiteouts are created) and to grab
the AGI buffer of the file being deleted. If the whiteout was created
in a higher numbered AG than the file being deleted, we'll lock the AGIs
in the wrong order and deadlock.
Therefore, grab all the AGI locks we think we'll need ahead of time, and
in order of increasing AG number per the locking rules.
Reported-by: wenli xie <wlxie7296@gmail.com>
Fixes: 93597ae8da ("xfs: Fix deadlock between AGI and AGF when target_ip exists in xfs_rename()")
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
alloc_set_pte() has two users with different requirements: in the
faultaround code, it called from an atomic context and PTE page table
has to be preallocated. finish_fault() can sleep and allocate page table
as needed.
PTL locking rules are also strange, hard to follow and overkill for
finish_fault().
Let's untangle the mess. alloc_set_pte() has gone now. All locking is
explicit.
The price is some code duplication to handle huge pages in faultaround
path, but it should be fine, having overall improvement in readability.
Link: https://lore.kernel.org/r/20201229132819.najtavneutnf7ajp@box
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
[will: s/from from/from/ in comment; spotted by willy]
Signed-off-by: Will Deacon <will@kernel.org>
- Introduce a "needsrepair" "feature" to flag a filesystem as needing a
pass through xfs_repair. This is key to enabling filesystem upgrades
(in xfs_db) that require xfs_repair to make minor adjustments to metadata.
- Refactor parameter checking of recovered log intent items so that we
actually use the same validation code as them that generate the intent
items.
- Various fixes to online scrub not reacting correctly to directory
entries pointing to inodes that cannot be igetted.
- Refactor validation helpers for data and rt volume extents.
- Refactor XFS_TRANS_DQ_DIRTY out of existence.
- Fix a longstanding bug where mounting with "uqnoenforce" would start
user quotas in non-enforcing mode but /proc/mounts would display
"usrquota", implying that they are being enforced.
- Don't flag dax+reflink inodes as corruption since that is a valid (but
not fully functional) combination right now.
- Clean up raid stripe validation functions.
- Refactor the inode allocation code to be more straightforward.
- Small prep cleanup for idmapping support.
- Get rid of the xfs_buf_t typedef.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEUzaAxoMeQq6m2jMV+H93GTRKtOsFAl/bjbwACgkQ+H93GTRK
tOsKhg//YW1fjY5HS7O4SojkhpJXvWQ8xgSmKP6hzmaEoKtSdqk9F7c1Nm+ZF3hH
qBpmlSyVYvoFnRwMnEU+P2MZ78x64XeDYabG9qJ0GFLcrL0uzq9EVM5xJJMSgETd
Bo7i9JSMGumT2J2LCNUMpahnjgFuhc+C5Wn4cIdTonkMdLBLMOuTHBemDWom9CT+
6vNm6/cAi2IhxFlXMEPVBLmcUEpkZ869/eArwC1hQShGuUzSGhdztcuGdl9wtItm
WpYNPhB+wuHkC+mn6IYNFm+Wa30CE4iuk2tL9cFbSxX9DOQ/sxILjQ1eRPnSJzUD
dXoKkVI3NqSmOeL/EyewNmOx2BzO/WyisPLV2dftIA3D+a7rd0iCJ+ZEagVlzqJG
krjwK+IA/y9ckwIjg1Nia8+mc5u858yF8r9VZLwafgaLurL2o/wBSPRE/lbaM8xG
6S+84MhKXzhkh1XW7b/pf2oM0ab4doAJD3+PclqI4djYxnbn7jrebzKj//CKL1a9
0Sl8ZF2yrFfjBUvvDH5r8IAP9DfdbcrcGbl+6HuKdVS1naW0v2l4J2T0hCjHXnt4
P5mtUl0U2K/b6vR2C41BuCgkFul9aLV78OJa3SF31/KaebJQrvVbuwL+pEfr9y8/
mVjbmlYqLBJ22fMQK1uW7TkA7hIG8zNPJjamwv69pasT8j1Q3iE=
=job0
-----END PGP SIGNATURE-----
Merge tag 'xfs-5.11-merge-4' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
Pull xfs updates from Darrick Wong:
"In this release we add the ability to set a 'needsrepair' flag
indicating that we /know/ the filesystem requires xfs_repair, but
other than that, it's the usual strengthening of metadata validation
and miscellaneous cleanups.
Summary:
- Introduce a "needsrepair" "feature" to flag a filesystem as needing
a pass through xfs_repair. This is key to enabling filesystem
upgrades (in xfs_db) that require xfs_repair to make minor
adjustments to metadata.
- Refactor parameter checking of recovered log intent items so that
we actually use the same validation code as them that generate the
intent items.
- Various fixes to online scrub not reacting correctly to directory
entries pointing to inodes that cannot be igetted.
- Refactor validation helpers for data and rt volume extents.
- Refactor XFS_TRANS_DQ_DIRTY out of existence.
- Fix a longstanding bug where mounting with "uqnoenforce" would
start user quotas in non-enforcing mode but /proc/mounts would
display "usrquota", implying that they are being enforced.
- Don't flag dax+reflink inodes as corruption since that is a valid
(but not fully functional) combination right now.
- Clean up raid stripe validation functions.
- Refactor the inode allocation code to be more straightforward.
- Small prep cleanup for idmapping support.
- Get rid of the xfs_buf_t typedef"
* tag 'xfs-5.11-merge-4' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux: (40 commits)
xfs: remove xfs_buf_t typedef
fs/xfs: convert comma to semicolon
xfs: open code updating i_mode in xfs_set_acl
xfs: remove xfs_vn_setattr_nonsize
xfs: kill ialloced in xfs_dialloc()
xfs: spilt xfs_dialloc() into 2 functions
xfs: move xfs_dialloc_roll() into xfs_dialloc()
xfs: move on-disk inode allocation out of xfs_ialloc()
xfs: introduce xfs_dialloc_roll()
xfs: convert noroom, okalloc in xfs_dialloc() to bool
xfs: don't catch dax+reflink inodes as corruption in verifier
xfs: fix the forward progress assertion in xfs_iwalk_run_callbacks
xfs: remove unneeded return value check for *init_cursor()
xfs: introduce xfs_validate_stripe_geometry()
xfs: show the proper user quota options
xfs: remove the unused XFS_B_FSB_OFFSET macro
xfs: remove unnecessary null check in xfs_generic_create
xfs: directly return if the delta equal to zero
xfs: check tp->t_dqinfo value instead of the XFS_TRANS_DQ_DIRTY flag
xfs: delete duplicated tp->t_dqinfo null check and allocation
...
Prepare for kernel xfs_buf alignment by getting rid of the
xfs_buf_t typedef from userspace.
[darrick: This patch is a port of a userspace patch removing the
xfs_buf_t typedef in preparation to make the userspace xfs_buf code
behave more like its kernel counterpart.]
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
-----BEGIN PGP SIGNATURE-----
iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAl/Xec8QHGF4Ym9lQGtl
cm5lbC5kawAKCRD301j7KXHgpoLbEACzXypgZWwMdfgRckA/Vt333rXHtbhUV+hK
2XP+P81iRvr9Esi31UPbRp82vrgcDO0cpI1QmQojS5U5TIQP88BfXptfRZZu48eb
wT5RDDNQ34HItqAh/yEuYsv9yUKcxeIrB99tBVvM+4UmQg9zTdIW3mg6PvCBdbhV
N38jI0tCF/PJatjfRuphT/nXonQLPWBlVDmZk06KZQFOwQe9ep1vUi1+nbiRPuo3
geFBpTh1Kp6Vl1B3n4RpECs6Y7I0RRuJdaH2sDizICla1/BW91F9fQwHimNnUxUq
e1Q1kMuh6ftcQGkYlHSYcPhuv6CvorldTZCO5arPxWpcwvxriTSMRPWAgUr5pEiF
fhiGhqeDu9e6vl9vS31wUD1B30hy+jFz9wyjRrDwJ3cPHH1JVBjTzvdX+cIh/1ku
IbIwUMteUtvUrzqAv/DzbGhedp7xWtOFaVo8j0QFYh9zkjd6b8yDOF/yztwX2gjY
Xt1cd+KpDSiN449ZRaoMI0sCJAxqzhMa6nsWlb0L7KuNyWKAbvKQBm9Rb47FLV9A
Vx70KC+zkFoyw23capvIahmQazerriUJ5PGe0lVm6ROgmIFdCpXTPDjnrvq/6RZ/
GEpD7gTW9atGJ7EuEE8686sAfKD5kneChWLX5EHXf0d0AG5Mr2lKsluiGp5LpPJg
Q1Xqs6xwww==
=zo4w
-----END PGP SIGNATURE-----
Merge tag 'for-5.11/block-2020-12-14' of git://git.kernel.dk/linux-block
Pull block updates from Jens Axboe:
"Another series of killing more code than what is being added, again
thanks to Christoph's relentless cleanups and tech debt tackling.
This contains:
- blk-iocost improvements (Baolin Wang)
- part0 iostat fix (Jeffle Xu)
- Disable iopoll for split bios (Jeffle Xu)
- block tracepoint cleanups (Christoph Hellwig)
- Merging of struct block_device and hd_struct (Christoph Hellwig)
- Rework/cleanup of how block device sizes are updated (Christoph
Hellwig)
- Simplification of gendisk lookup and removal of block device
aliasing (Christoph Hellwig)
- Block device ioctl cleanups (Christoph Hellwig)
- Removal of bdget()/blkdev_get() as exported API (Christoph Hellwig)
- Disk change rework, avoid ->revalidate_disk() (Christoph Hellwig)
- sbitmap improvements (Pavel Begunkov)
- Hybrid polling fix (Pavel Begunkov)
- bvec iteration improvements (Pavel Begunkov)
- Zone revalidation fixes (Damien Le Moal)
- blk-throttle limit fix (Yu Kuai)
- Various little fixes"
* tag 'for-5.11/block-2020-12-14' of git://git.kernel.dk/linux-block: (126 commits)
blk-mq: fix msec comment from micro to milli seconds
blk-mq: update arg in comment of blk_mq_map_queue
blk-mq: add helper allocating tagset->tags
Revert "block: Fix a lockdep complaint triggered by request queue flushing"
nvme-loop: use blk_mq_hctx_set_fq_lock_class to set loop's lock class
blk-mq: add new API of blk_mq_hctx_set_fq_lock_class
block: disable iopoll for split bio
block: Improve blk_revalidate_disk_zones() checks
sbitmap: simplify wrap check
sbitmap: replace CAS with atomic and
sbitmap: remove swap_lock
sbitmap: optimise sbitmap_deferred_clear()
blk-mq: skip hybrid polling if iopoll doesn't spin
blk-iocost: Factor out the base vrate change into a separate function
blk-iocost: Factor out the active iocgs' state check into a separate function
blk-iocost: Move the usage ratio calculation to the correct place
blk-iocost: Remove unnecessary advance declaration
blk-iocost: Fix some typos in comments
blktrace: fix up a kerneldoc comment
block: remove the request_queue to argument request based tracepoints
...
Replace a comma between expression statements by a semicolon.
Signed-off-by: Zheng Yongjun <zhengyongjun3@huawei.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Rather than going through the big and hairy xfs_setattr_nonsize function,
just open code a transactional i_mode and i_ctime update. This allows
to mark xfs_setattr_nonsize and remove the flags argument to it.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Gao Xiang <hsiangkao@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Merge xfs_vn_setattr_nonsize into the only caller.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Gao Xiang <hsiangkao@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
It's enough to just use return code, and get rid of an argument.
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Gao Xiang <hsiangkao@redhat.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
This patch explicitly separates free inode chunk allocation and
inode allocation into two individual high level operations.
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Gao Xiang <hsiangkao@redhat.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Get rid of the confusing ialloc_context and failure handling around
xfs_dialloc() by moving xfs_dialloc_roll() into xfs_dialloc().
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Gao Xiang <hsiangkao@redhat.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
So xfs_ialloc() will only address in-core inode allocation then,
Also, rename xfs_ialloc() to xfs_dir_ialloc_init() in order to
keep everything in xfs_inode.c under the same namespace.
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Gao Xiang <hsiangkao@redhat.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Introduce a helper to make the on-disk inode allocation rolling
logic clearer in preparation of the following cleanup.
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Gao Xiang <hsiangkao@redhat.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Boolean is preferred for such use.
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Gao Xiang <hsiangkao@redhat.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
We don't yet support dax on reflinked files, but that is in the works.
Further, having the flag set does not automatically mean that the inode
is actually "in the CPU direct access state," which depends on several
other conditions in addition to the flag being set.
As such, we should not catch this as corruption in the verifier - simply
not actually enabling S_DAX on reflinked files is enough for now.
Fixes: 4f435ebe7d ("xfs: don't mix reflink and DAX mode for now")
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
[darrick: fix the scrubber too]
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
In commit 27c14b5daa we started tracking the last inode seen during an
inode walk to avoid infinite loops if a corrupt inobt record happens to
have a lower ir_startino than the record preceeding it. Unfortunately,
the assertion trips over the case where there are completely empty inobt
records (which can happen quite easily on 64k page filesystems) because
we advance the tracking cursor without actually putting the empty record
into the processing buffer. Fix the assert to allow for this case.
Reported-by: zlang@redhat.com
Fixes: 27c14b5daa ("xfs: ensure inobt record walks always make forward progress")
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Zorro Lang <zlang@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Since *init_cursor() can always return a valid cursor, the NULL check
in caller is unneeded. So clean them up.
This also keeps the behavior consistent with other callers.
Signed-off-by: Joseph Qi <joseph.qi@linux.alibaba.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Introduce a common helper to consolidate stripe validation process.
Also make kernel code xfs_validate_sb_common() use it first.
Signed-off-by: Gao Xiang <hsiangkao@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
The quota option 'usrquota' should be shown if both the XFS_UQUOTA_ACCT
and XFS_UQUOTA_ENFD flags are set. The option 'uqnoenforce' should be
shown when only the XFS_UQUOTA_ACCT flag is set. The current code logic
seems wrong, Fix it and show proper options.
Signed-off-by: Kaixu Xia <kaixuxia@tencent.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
There are no callers of the XFS_B_FSB_OFFSET macro, so remove it.
Signed-off-by: Kaixu Xia <kaixuxia@tencent.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
The function posix_acl_release() test the passed-in argument and
move on only when it is non-null, so maybe the null check in
xfs_generic_create is unnecessary.
Signed-off-by: Kaixu Xia <kaixuxia@tencent.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
The xfs_trans_mod_dquot() function will allocate new tp->t_dqinfo if
it is NULL and make the changes in the tp->t_dqinfo->dqs[XFS_QM_TRANS
_{USR,GRP,PRJ}]. Nowadays seems none of the callers want to join the
dquots to the transaction and push them to device when the delta is
zero. Actually, most of time the caller would check the delta and go
on only when the delta value is not zero, so we should bail out when
it is zero.
Signed-off-by: Kaixu Xia <kaixuxia@tencent.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Nowadays the only things that the XFS_TRANS_DQ_DIRTY flag seems to do
are indicates the tp->t_dqinfo->dqs[XFS_QM_TRANS_{USR,GRP,PRJ}] values
changed and check in xfs_trans_apply_dquot_deltas() and the unreserve
variant xfs_trans_unreserve_and_mod_dquots(). Actually, we also can
use the tp->t_dqinfo value instead of the XFS_TRANS_DQ_DIRTY flag, that
is to say, we allocate the new tp->t_dqinfo only when the qtrx values
changed, so the tp->t_dqinfo value isn't NULL equals the XFS_TRANS_DQ_DIRTY
flag is set, we only need to check if tp->t_dqinfo == NULL in
xfs_trans_apply_dquot_deltas() and its unreserve variant to determine
whether lock all of the dquots and join them to the transaction.
Signed-off-by: Kaixu Xia <kaixuxia@tencent.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
The function xfs_trans_mod_dquot_byino() wraps around
xfs_trans_mod_dquot() to account for quotas, and also there is the
function call chain xfs_trans_reserve_quota_bydquots -> xfs_trans_dqresv
-> xfs_trans_mod_dquot, both of them do the duplicated null check and
allocation. Thus we can delete the duplicated operation from them.
Signed-off-by: Kaixu Xia <kaixuxia@tencent.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Get rid of this one-off namespace since we're done converting things to
fscontext now.
Suggested-by: Dave Chinner <david@fromorbit.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Refactor all the open-coded validation of file block ranges into a
single helper, and teach the bmap scrubber to check the ranges.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Refactor all the open-coded validation of realtime device extents into a
single helper.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Refactor all the open-coded validation of non-static data device extents
into a single helper.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
It's possible that xfs_iget can return EINVAL for inodes that the inobt
thinks are free, or ENOENT for inodes that look free. If this is the
case, mark the directory corrupt immediately when we check ftype. Note
that we already check the ftype of the '.' and '..' entries, so we
can skip the iget part since we already know the inode type for '.' and
we have a separate parent pointer scrubber for '..'.
Fixes: a5c46e5e89 ("xfs: scrub directory metadata")
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
xfs_iget can return -ENOENT for a file that the inobt thinks is
allocated but has zeroed mode. This currently causes scrub to exit
with an operational error instead of flagging this as a corruption. The
end result is that scrub mistakenly reports the ENOENT to the user
instead of "directory parent pointer corrupt" like we do for EINVAL.
Fixes: 5927268f5a ("xfs: flag inode corruption if parent ptr doesn't get us a real inode")
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Detect file block mappings with a blockcount that's either so large that
integer overflows occur or are zero, because neither are valid in the
filesystem. Worse yet, attempting directory modifications causes the
iext code to trip over the bmbt key handling and takes the filesystem
down. We can fix most of this by preventing the bad metadata from
entering the incore structures in the first place.
Found by setting blockcount=0 in a directory data fork mapping and
watching the fireworks.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Add a trace point so that we can capture when a recovered log intent
item fails to recover.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
The rmap, and refcount log intent items were added to support the rmap
and reflink features. Because these features come with changes to the
ondisk format, the log items aren't tied to a log incompat flag.
However, the log recovery routines don't actually check for those
feature flags. The kernel has no business replayng an intent item for a
feature that isn't enabled, so check that as part of recovered log item
validation. (Note that kernels pre-dating rmap and reflink already fail
log recovery on the unknown log item type code.)
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
The code that validates recovered extent-free intent items is kind of a
mess -- it doesn't use the standard xfs type validators, and it doesn't
check for things that it should. Fix the validator function to use the
standard validation helpers and look for more types of obvious errors.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
When we recover a extent-free intent from the log, we need to validate
its contents before we try to replay them. Hoist the checking code into
a separate function in preparation to refactor this code to use
validation helpers.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
The code that validates recovered refcount intent items is kind of a
mess -- it doesn't use the standard xfs type validators, and it doesn't
check for things that it should. Fix the validator function to use the
standard validation helpers and look for more types of obvious errors.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
When we recover a refcount intent from the log, we need to validate its
contents before we try to replay them. Hoist the checking code into a
separate function in preparation to refactor this code to use validation
helpers.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
The code that validates recovered rmap intent items is kind of a mess --
it doesn't use the standard xfs type validators, and it doesn't check
for things that it should. Fix the validator function to use the
standard validation helpers and look for more types of obvious errors.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
When we recover a rmap intent from the log, we need to validate its
contents before we try to replay them. Hoist the checking code into a
separate function in preparation to refactor this code to use validation
helpers.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
The code that validates recovered bmap intent items is kind of a mess --
it doesn't use the standard xfs type validators, and it doesn't check
for things that it should. Fix the validator function to use the
standard validation helpers and look for more types of obvious errors.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
When we recover a bmap intent from the log, we need to validate its
contents before we try to replay them. Hoist the checking code into a
separate function in preparation to refactor this code to use validation
helpers.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Make it so that libxfs recognizes the needsrepair feature. Note that
the kernel will still refuse to mount these.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Define an incompat feature flag to indicate that the filesystem needs to
be repaired. While libxfs will recognize this feature, the kernel will
refuse to mount if the feature flag is set, and only xfs_repair will be
able to clear the flag. The goal here is to force the admin to run
xfs_repair to completion after upgrading the filesystem, or if we
otherwise detect anomalies.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
A couple of the superblock validation checks apply only to the kernel,
so move them to xfs_fc_fill_super before we add the needsrepair "feature",
which will prevent the kernel (but not xfsprogs) from mounting the
filesystem. This also reduces the diff between kernel and userspace
libxfs.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Store the frozen superblock in struct block_device to avoid the awkward
interface that can return a sb only used a cookie, an ERR_PTR or NULL.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jan Kara <jack@suse.cz>
Acked-by: Chao Yu <yuchao0@huawei.com> [f2fs]
Signed-off-by: Jens Axboe <axboe@kernel.dk>
This reverts commit 6ff646b2ce.
Your maintainer committed a major braino in the rmap code by adding the
attr fork, bmbt, and unwritten extent usage bits into rmap record key
comparisons. While XFS uses the usage bits *in the rmap records* for
cross-referencing metadata in xfs_scrub and xfs_repair, it only needs
the owner and offset information to distinguish between reverse mappings
of the same physical extent into the data fork of a file at multiple
offsets. The other bits are not important for key comparisons for index
lookups, and never have been.
Eric Sandeen reports that this causes regressions in generic/299, so
undo this patch before it does more damage.
Reported-by: Eric Sandeen <sandeen@sandeen.net>
Fixes: 6ff646b2ce ("xfs: fix rmap key and record comparison functions")
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Jens has reported a situation where partial direct IOs can be issued
and completed yet still return -EAGAIN. We don't want this to report
a short IO as we want XFS to complete user DIO entirely or not at
all.
This partial IO situation can occur on a write IO that is split
across an allocated extent and a hole, and the second mapping is
returning EAGAIN because allocation would be required.
The trivial reproducer:
$ sudo xfs_io -fdt -c "pwrite 0 4k" -c "pwrite -V 1 -b 8k -N 0 8k" /mnt/scr/foo
wrote 4096/4096 bytes at offset 0
4 KiB, 1 ops; 0.0001 sec (27.509 MiB/sec and 7042.2535 ops/sec)
pwrite: Resource temporarily unavailable
$
The pwritev2(0, 8kB, RWF_NOWAIT) call returns EAGAIN having done
the first 4kB write:
xfs_file_direct_write: dev 259:1 ino 0x83 size 0x1000 offset 0x0 count 0x2000
iomap_apply: dev 259:1 ino 0x83 pos 0 length 8192 flags WRITE|DIRECT|NOWAIT (0x31) ops xfs_direct_write_iomap_ops caller iomap_dio_rw actor iomap_dio_actor
xfs_ilock_nowait: dev 259:1 ino 0x83 flags ILOCK_SHARED caller xfs_ilock_for_iomap
xfs_iunlock: dev 259:1 ino 0x83 flags ILOCK_SHARED caller xfs_direct_write_iomap_begin
xfs_iomap_found: dev 259:1 ino 0x83 size 0x1000 offset 0x0 count 8192 fork data startoff 0x0 startblock 24 blockcount 0x1
iomap_apply_dstmap: dev 259:1 ino 0x83 bdev 259:1 addr 102400 offset 0 length 4096 type MAPPED flags DIRTY
Here the first iomap loop has mapped the first 4kB of the file and
issued the IO, and we enter the second iomap_apply loop:
iomap_apply: dev 259:1 ino 0x83 pos 4096 length 4096 flags WRITE|DIRECT|NOWAIT (0x31) ops xfs_direct_write_iomap_ops caller iomap_dio_rw actor iomap_dio_actor
xfs_ilock_nowait: dev 259:1 ino 0x83 flags ILOCK_SHARED caller xfs_ilock_for_iomap
xfs_iunlock: dev 259:1 ino 0x83 flags ILOCK_SHARED caller xfs_direct_write_iomap_begin
And we exit with -EAGAIN out because we hit the allocate case trying
to make the second 4kB block.
Then IO completes on the first 4kB and the original IO context
completes and unlocks the inode, returning -EAGAIN to userspace:
xfs_end_io_direct_write: dev 259:1 ino 0x83 isize 0x1000 disize 0x1000 offset 0x0 count 4096
xfs_iunlock: dev 259:1 ino 0x83 flags IOLOCK_SHARED caller xfs_file_dio_aio_write
There are other vectors to the same problem when we re-enter the
mapping code if we have to make multiple mappinfs under NOWAIT
conditions. e.g. failing trylocks, COW extents being found,
allocation being required, and so on.
Avoid all these potential problems by only allowing IOMAP_NOWAIT IO
to go ahead if the mapping we retrieve for the IO spans an entire
allocated extent. This avoids the possibility of subsequent mappings
to complete the IO from triggering NOWAIT semantics by any means as
NOWAIT IO will now only enter the mapping code once per NOWAIT IO.
Reported-and-tested-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
In xfs_initialize_perag(), if kmem_zalloc(), xfs_buf_hash_init(), or
radix_tree_preload() failed, the returned value 'error' is not set
accordingly.
Reported-as-fixing: 8b26c5825e ("xfs: handle ENOMEM correctly during initialisation of perag structures")
Fixes: 9b24717979 ("xfs: cache unlinked pointers in an rhashtable")
Reported-by: Hulk Robot <hulkci@huawei.com>
Signed-off-by: Yu Kuai <yukuai3@huawei.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
The aim of the inode btree record iterator function is to call a
callback on every record in the btree. To avoid having to tear down and
recreate the inode btree cursor around every callback, it caches a
certain number of records in a memory buffer. After each batch of
callback invocations, we have to perform a btree lookup to find the
next record after where we left off.
However, if the keys of the inode btree are corrupt, the lookup might
put us in the wrong part of the inode btree, causing the walk function
to loop forever. Therefore, we add extra cursor tracking to make sure
that we never go backwards neither when performing the lookup nor when
jumping to the next inobt record. This also fixes an off by one error
where upon resume the lookup should have been for the inode /after/ the
point at which we stopped.
Found by fuzzing xfs/460 with keys[2].startino = ones causing bulkstat
and quotacheck to hang.
Fixes: a211432c27 ("xfs: create simplified inode walk function")
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Currently, commit e9e2eae89d dropped a (int) decoration from
XFS_LITINO(mp), and since sizeof() expression is also involved,
the result of XFS_LITINO(mp) is simply as the size_t type
(commonly unsigned long).
Considering the expression in xfs_attr_shortform_bytesfit():
offset = (XFS_LITINO(mp) - bytes) >> 3;
let "bytes" be (int)340, and
"XFS_LITINO(mp)" be (unsigned long)336.
on 64-bit platform, the expression is
offset = ((unsigned long)336 - (int)340) >> 3 =
(int)(0xfffffffffffffffcUL >> 3) = -1
but on 32-bit platform, the expression is
offset = ((unsigned long)336 - (int)340) >> 3 =
(int)(0xfffffffcUL >> 3) = 0x1fffffff
instead.
so offset becomes a large positive number on 32-bit platform, and
cause xfs_attr_shortform_bytesfit() returns maxforkoff rather than 0.
Therefore, one result is
"ASSERT(new_size <= XFS_IFORK_SIZE(ip, whichfork));"
assertion failure in xfs_idata_realloc(), which was also the root
cause of the original bugreport from Dennis, see:
https://bugzilla.redhat.com/show_bug.cgi?id=1894177
And it can also be manually triggered with the following commands:
$ touch a;
$ setfattr -n user.0 -v "`seq 0 80`" a;
$ setfattr -n user.1 -v "`seq 0 80`" a
on 32-bit platform.
Fix the case in xfs_attr_shortform_bytesfit() by bailing out
"XFS_LITINO(mp) < bytes" in advance suggested by Eric and a misleading
comment together with this bugfix suggested by Darrick. It seems the
other users of XFS_LITINO(mp) are not impacted.
Fixes: e9e2eae89d ("xfs: only check the superblock version for dinode size calculation")
Cc: <stable@vger.kernel.org> # 5.7+
Reported-and-tested-by: Dennis Gilmore <dgilmore@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Gao Xiang <hsiangkao@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Teach the directory scrubber to check all the bestfree entries,
including the null ones. We want to be able to detect the case where
the entry is null but there actually /is/ a directory data block.
Found by fuzzing lbests[0] = ones in xfs/391.
Fixes: df481968f3 ("xfs: scrub directory freespace")
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
We always know the correct state of the rmap record flags (attr, bmbt,
unwritten) so check them by direct comparison.
Fixes: d852657ccf ("xfs: cross-reference reverse-mapping btree")
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
The comment and logic in xchk_btree_check_minrecs for dealing with
inode-rooted btrees isn't quite correct. While the direct children of
the inode root are allowed to have fewer records than what would
normally be allowed for a regular ondisk btree block, this is only true
if there is only one child block and the number of records don't fit in
the inode root.
Fixes: 08a3a692ef ("xfs: btree scrub should check minrecs")
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
We also need to drop the iolock when invalidate_inode_pages2 fails, not
only on all other error or successful cases.
Fixes: 527851124d ("xfs: implement pNFS export operations")
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Fix some serious WTF in the reference count scrubber's rmap fragment
processing. The code comment says that this loop is supposed to move
all fragment records starting at or before bno onto the worklist, but
there's no obvious reason why nr (the number of items added) should
increment starting from 1, and breaking the loop when we've added the
target number seems dubious since we could have more rmap fragments that
should have been added to the worklist.
This seems to manifest in xfs/411 when adding one to the refcount field.
Fixes: dbde19da96 ("xfs: cross-reference the rmapbt data with the refcountbt")
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Keys for extent interval records in the reverse mapping btree are
supposed to be computed as follows:
(physical block, owner, fork, is_btree, is_unwritten, offset)
This provides users the ability to look up a reverse mapping from a bmbt
record -- start with the physical block; then if there are multiple
records for the same block, move on to the owner; then the inode fork
type; and so on to the file offset.
However, the key comparison functions incorrectly remove the
fork/btree/unwritten information that's encoded in the on-disk offset.
This means that lookup comparisons are only done with:
(physical block, owner, offset)
This means that queries can return incorrect results. On consistent
filesystems this hasn't been an issue because blocks are never shared
between forks or with bmbt blocks; and are never unwritten. However,
this bug means that online repair cannot always detect corruption in the
key information in internal rmapbt nodes.
Found by fuzzing keys[1].attrfork = ones on xfs/371.
Fixes: 4b8ed67794 ("xfs: add rmap btree operations")
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
When the bmbt scrubber is looking up rmap extents, we need to set the
extent flags from the bmbt record fully. This will matter once we fix
the rmap btree comparison functions to check those flags correctly.
Fixes: d852657ccf ("xfs: cross-reference reverse-mapping btree")
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Pass the same oldext argument (which contains the existing rmapping's
unwritten state) to xfs_rmap_lookup_le_range at the start of
xfs_rmap_convert_shared. At this point in the code, flags is zero,
which means that we perform lookups using the wrong key.
Fixes: 3f165b334e ("xfs: convert unwritten status of reverse mappings for shared files")
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
There's no reason to flush an entire file when we're unsharing part of
a file. Therefore, only initiate writeback on the selected range.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
The kernel has always allowed directories to have the rtinherit flag
set, even if there is no rt device, so this check is wrong.
Fixes: 80e4e12688 ("xfs: scrub inodes")
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
In commit 7588cbeec6, we tried to fix a race stemming from the lack of
coordination between higher level code that wants to allocate and remap
CoW fork extents into the data fork. Christoph cites as examples the
always_cow mode, and a directio write completion racing with writeback.
According to the comments before the goto retry, we want to restart the
lookup to catch the extent in the data fork, but we don't actually reset
whichfork or cow_fsb, which means the second try executes using stale
information. Up until now I think we've gotten lucky that either
there's something left in the CoW fork to cause cow_fsb to be reset, or
either data/cow fork sequence numbers have advanced enough to force a
fresh lookup from the data fork. However, if we reach the retry with an
empty stable CoW fork and a stable data fork, neither of those things
happens. The retry foolishly re-calls xfs_convert_blocks on the CoW
fork which fails again. This time, we toss the write.
I've recently been working on extending reflink to the realtime device.
When the realtime extent size is larger than a single block, we have to
force the page cache to CoW the entire rt extent if a write (or
fallocate) are not aligned with the rt extent size. The strategy I've
chosen to deal with this is derived from Dave's blocksize > pagesize
series: dirtying around the write range, and ensuring that writeback
always starts mapping on an rt extent boundary. This has brought this
race front and center, since generic/522 blows up immediately.
However, I'm pretty sure this is a bug outright, independent of that.
Fixes: 7588cbeec6 ("xfs: retry COW fork delalloc conversion when no extent was found")
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
iomap writeback mapping failure only calls into ->discard_page() if
the current page has not been added to the ioend. Accordingly, the
XFS callback assumes a full page discard and invalidation. This is
problematic for sub-page block size filesystems where some portion
of a page might have been mapped successfully before a failure to
map a delalloc block occurs. ->discard_page() is not called in that
error scenario and the bio is explicitly failed by iomap via the
error return from ->prepare_ioend(). As a result, the filesystem
leaks delalloc blocks and corrupts the filesystem block counters.
Since XFS is the only user of ->discard_page(), tweak the semantics
to invoke the callback unconditionally on mapping errors and provide
the file offset that failed to map. Update xfs_discard_page() to
discard the corresponding portion of the file and pass the range
along to iomap_invalidatepage(). The latter already properly handles
both full and sub-page scenarios by not changing any iomap or page
state on sub-page invalidations.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
It is possible to expose non-zeroed post-EOF data in XFS if the new
EOF page is dirty, backed by an unwritten block and the truncate
happens to race with writeback. iomap_truncate_page() will not zero
the post-EOF portion of the page if the underlying block is
unwritten. The subsequent call to truncate_setsize() will, but
doesn't dirty the page. Therefore, if writeback happens to complete
after iomap_truncate_page() (so it still sees the unwritten block)
but before truncate_setsize(), the cached page becomes inconsistent
with the on-disk block. A mapped read after the associated page is
reclaimed or invalidated exposes non-zero post-EOF data.
For example, consider the following sequence when run on a kernel
modified to explicitly flush the new EOF page within the race
window:
$ xfs_io -fc "falloc 0 4k" -c fsync /mnt/file
$ xfs_io -c "pwrite 0 4k" -c "truncate 1k" /mnt/file
...
$ xfs_io -c "mmap 0 4k" -c "mread -v 1k 8" /mnt/file
00000400: 00 00 00 00 00 00 00 00 ........
$ umount /mnt/; mount <dev> /mnt/
$ xfs_io -c "mmap 0 4k" -c "mread -v 1k 8" /mnt/file
00000400: cd cd cd cd cd cd cd cd ........
Update xfs_setattr_size() to explicitly flush the new EOF page prior
to the page truncate to ensure iomap has the latest state of the
underlying block.
Fixes: 68a9f5e700 ("xfs: implement iomap based buffered write path")
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Make sure that we actually initialize xefi_discard when we're scheduling
a deferred free of an AGFL block. This was (eventually) found by the
UBSAN while I was banging on realtime rmap problems, but it exists in
the upstream codebase. While we're at it, rearrange the structure to
reduce the struct size from 64 to 56 bytes.
Fixes: fcb762f5de ("xfs: add bmapi nodiscard flag")
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Use a more generic form for __section that requires quotes to avoid
complications with clang and gcc differences.
Remove the quote operator # from compiler_attributes.h __section macro.
Convert all unquoted __section(foo) uses to quoted __section("foo").
Also convert __attribute__((section("foo"))) uses to __section("foo")
even if the __attribute__ has multiple list entry forms.
Conversion done using the script at:
https://lore.kernel.org/lkml/75393e5ddc272dc7403de74d645e6c6e0f4e70eb.camel@perches.com/2-convert_section.pl
Signed-off-by: Joe Perches <joe@perches.com>
Reviewed-by: Nick Desaulniers <ndesaulniers@gooogle.com>
Reviewed-by: Miguel Ojeda <ojeda@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull misc vfs updates from Al Viro:
"Assorted stuff all over the place (the largest group here is
Christoph's stat cleanups)"
* 'work.misc' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
fs: remove KSTAT_QUERY_FLAGS
fs: remove vfs_stat_set_lookup_flags
fs: move vfs_fstatat out of line
fs: implement vfs_stat and vfs_lstat in terms of vfs_fstatat
fs: remove vfs_statx_fd
fs: omfs: use kmemdup() rather than kmalloc+memcpy
[PATCH] reduce boilerplate in fsid handling
fs: Remove duplicated flag O_NDELAY occurring twice in VALID_OPEN_FLAGS
selftests: mount: add nosymfollow tests
Add a "nosymfollow" mount option.
- Make fallocate check the alignment of its arguments against the
fundamental allocation unit of the volume the file lives on, so that we
don't trigger the fs' alignment checks.
- Cancel unprocessed log intents immediately when log recovery fails, to
avoid a log deadlock.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEUzaAxoMeQq6m2jMV+H93GTRKtOsFAl+QxEoACgkQ+H93GTRK
tOsBPBAAijxKkGCQ259L3clZ944dXWzsYlbtX5ojekSls1tCVBcViB4E/I78o65i
21ZMN+/Ax0wrrQ4Z9qLc/rFD4mChNRlcPToHL+5EJpHcocaH8ty/IQENVp+wg1Za
4572K8tjaZ8sm2ND92oHklHxdQxgiuCDuoYmCK8JG0xBdd0kN0nsMxd8RKZxZ+ka
omcPTaBQuYiAi3mbhaWmCmh8L4Zclrr/TY7wA8F1qnb7jwSstaAu3Vk7u1e3TR8H
GET5BrOsIp8QOqGXc/dxy4D0pbNHzs1IOxIIRnGnWgsy0Khm2V/C3XqRJind+mvj
8v20NtMas6Suf4UN89ZaVQhQN7yuevBBUiM4aGkkR7McGIxZmF9Vicdle0hPDMn6
ILMU9ixsEuBtlCyONscR31ItL1+hWoZxabY+eiUTV6ZhDZsOspi2ygxnMKVUtdBD
oX7h05FCSaxv0fwXIozyjfXQ4QJQweQDYSRU7TAPWKLjCwDe7q4EuyBgRHv4KuIf
1/Ii5aTQOtsI4VkfOqOpm+PfkSW90yeaMImysgWHituPa7pftU4q+6st3x9T5YTi
Qdu1tNxYNjSrN7fA+oPiwL7DJ+HvgCORpZc9C35Vtq7ZAno3AcMuoG2TOyvfhVdp
Z8hWE0yfWs5VJCQaF+U8GoohNdanHc6pAat/Md5/xP9w3kRsh14=
=Bipc
-----END PGP SIGNATURE-----
Merge tag 'xfs-5.10-merge-7' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
Pull xfs fixes from Darrick Wong:
"Two bug fixes that trickled in during the merge window:
- Make fallocate check the alignment of its arguments against the
fundamental allocation unit of the volume the file lives on, so
that we don't trigger the fs' alignment checks.
- Cancel unprocessed log intents immediately when log recovery fails,
to avoid a log deadlock"
* tag 'xfs-5.10-merge-7' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux:
xfs: cancel intents immediately if process_intents fails
xfs: fix fallocate functions when rtextsize is larger than 1
If processing recovered log intent items fails, we need to cancel all
the unprocessed recovered items immediately so that a subsequent AIL
push in the bail out path won't get wedged on the pinned intent items
that didn't get processed.
This can happen if the log contains (1) an intent that gets and releases
an inode, (2) an intent that cannot be recovered successfully, and (3)
some third intent item. When recovery of (2) fails, we leave (3) pinned
in memory. Inode reclamation is called in the error-out path of
xfs_mountfs before xfs_log_cancel_mount. Reclamation calls
xfs_ail_push_all_sync, which gets stuck waiting for (3).
Therefore, call xlog_recover_cancel_intents if _process_intents fails.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
In commit fe341eb151, I forgot that xfs_free_file_space isn't strictly
a "remove mapped blocks" function. It is actually a function to zero
file space by punching out the middle and writing zeroes to the
unaligned ends of the specified range. Therefore, putting a rtextsize
alignment check in that function is wrong because that breaks unaligned
ZERO_RANGE on the realtime volume.
Furthermore, xfs_file_fallocate already has alignment checks for the
functions require the file range to be aligned to the size of a
fundamental allocation unit (which is 1 FSB on the data volume and 1 rt
extent on the realtime volume). Create a new helper to check fallocate
arguments against the realtiem allocation unit size, fix the fallocate
frontend to use it, fix free_file_space to delete the correct range, and
remove a now redundant check from insert_file_space.
NOTE: The realtime extent size is not required to be a power of two!
Fixes: fe341eb151 ("xfs: ensure that fpunch, fcollapse, and finsert operations are aligned to rt extent size")
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
- New feature: Widen inode timestamps and quota grace expiration
timestamps to support dates through the year 2486.
- New feature: storing inode btree counts in the AGI to speed up certain
mount time per-AG block reservation operatoins and add a little more
metadata redundancy.
For the second round of new code for 5.10:
- Deprecate the V4 filesystem format, some disused mount options, and some
legacy sysctl knobs now that we can support dates into the 25th century.
Note that removal of V4 support will not happen until the early 2030s.
- Fix some probles with inode realtime flag propagation.
- Fix some buffer handling issues when growing a rt filesystem.
- Fix a problem where a BMAP_REMAP unmap call would free rt extents even
though the purpose of BMAP_REMAP is to avoid freeing the blocks.
- Strengthen the dabtree online scrubber to check hash values on child
dabtree blocks.
- Actually log new intent items created as part of recovering log intent
items.
- Fix a bug where quotas weren't attached to an inode undergoing bmap
intent item recovery.
- Fix a buffer overrun problem with specially crafted log buffer
headers.
- Various cleanups to type usage and slightly inaccurate comments.
- More cleanups to the xattr, log, and quota code.
- Don't run the (slower) shared-rmap operations on attr fork mappings.
- Fix a bug where we failed to check the LSN of finobt blocks during
replay and could therefore overwrite newer data with older data.
- Clean up the ugly nested transaction mess that log recovery uses to
stage intent item recovery in the correct order by creating a proper
data structure to capture recovered chains.
- Use the capture structure to resume intent item chains with the
same log space and block reservations as when they were captured.
- Fix a UAF bug in bmap intent item recovery where we failed to maintain
our reference to the incore inode if the bmap operation needed to
relog itself to continue.
- Rearrange the defer ops mechanism to finish newly created subtasks
of a parent task before moving on to the next parent task.
- Automatically relog intent items in deferred ops chains if doing so
would help us avoid pinning the log tail. This will help fix some
log scaling problems now and will facilitate atomic file updates later.
- Fix a deadlock in the GETFSMAP implementation by using an internal
memory buffer to reduce indirect calls and copies to userspace,
thereby improving its performance by ~20%.
- Fix various problems when calling growfs on a realtime volume would
not fully update the filesystem metadata.
- Fix broken Kconfig asking about deprecated XFS when XFS is disabled.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEUzaAxoMeQq6m2jMV+H93GTRKtOsFAl+KRuUACgkQ+H93GTRK
tOtqsBAAm+AZ92DRjOD7/TbU3vJALRKBBUCc6weEYUJKaZUkdYpx7Fn8Si3K8Nu0
Pxo8qLO8WtP3ECyd+CZgkQgZAhHrjRG+FnCOuNyj1yMguX9CDu4cK0dOh/M64+pM
BvWPqLfd99mzr7HkQ0SuLIyDMeio3leU4lySAIVpADO3V7WF5ZgHCfEETpOh5Di1
oIzhYlxHyfK+32u4sXSWsPnogQZwjyn4CyQ+6humK0d089pVB1wbjHaTym7exjSa
cFhMqS1XDbpMuoF4BXMcx31UTOb+8/S6TKCVsRl61j3XKGzbYKSrLmrSb/r6gFWn
wyXJGmLok0I2UDnX1ZArIWstJHcgPlTelWrssG8wAnopLSJoU10f8o88m43d0krF
fCUCac1rKPcisg7CS5njgUkOBknSLeBCeztl59N/8acnkaETPQr0tReDpB4wGGaW
aGEWBrCbz1QZyfDBttNPQLcreROGukZ8R8MMRl4GiAQwZz5UrTUFeoK6thplHVvp
ANhpYGdJy4jJ79wt4MNVYUF8U8IRWdn0ddsRx08pLWchC1PH8HH944qrUXAVPYZ+
MohSQqKtjvaKwZLP86SvCJFs20wEEUxzCSQbz4LTO5aBz3uDfo0LQSOYzPBU+OKp
E33SNds13nsjeH8HBLtXH3lr3absywLcV2ZMaIGsQSLpE2p8AHA=
=LuWg
-----END PGP SIGNATURE-----
Merge tag 'xfs-5.10-merge-5' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
Pull more xfs updates from Darrick Wong:
"The second large pile of new stuff for 5.10, with changes even more
monumental than last week!
We are formally announcing the deprecation of the V4 filesystem format
in 2030. All users must upgrade to the V5 format, which contains
design improvements that greatly strengthen metadata validation,
supports reflink and online fsck, and is the intended vehicle for
handling timestamps past 2038. We're also deprecating the old Irix
behavioral tweaks in September 2025.
Coming along for the ride are two design changes to the deferred
metadata ops subsystem. One of the improvements is to retain correct
logical ordering of tasks and subtasks, which is a more logical design
for upper layers of XFS and will become necessary when we add atomic
file range swaps and commits. The second improvement to deferred ops
improves the scalability of the log by helping the log tail to move
forward during long-running operations. This reduces log contention
when there are a large number of threads trying to run transactions.
In addition to that, this fixes numerous small bugs in log recovery;
refactors logical intent log item recovery to remove the last
remaining place in XFS where we could have nested transactions; fixes
a couple of ways that intent log item recovery could fail in ways that
wouldn't have happened in the regular commit paths; fixes a deadlock
vector in the GETFSMAP implementation (which improves its performance
by 20%); and fixes serious bugs in the realtime growfs, fallocate, and
bitmap handling code.
Summary:
- Deprecate the V4 filesystem format, some disused mount options, and
some legacy sysctl knobs now that we can support dates into the
25th century. Note that removal of V4 support will not happen until
the early 2030s.
- Fix some probles with inode realtime flag propagation.
- Fix some buffer handling issues when growing a rt filesystem.
- Fix a problem where a BMAP_REMAP unmap call would free rt extents
even though the purpose of BMAP_REMAP is to avoid freeing the
blocks.
- Strengthen the dabtree online scrubber to check hash values on
child dabtree blocks.
- Actually log new intent items created as part of recovering log
intent items.
- Fix a bug where quotas weren't attached to an inode undergoing bmap
intent item recovery.
- Fix a buffer overrun problem with specially crafted log buffer
headers.
- Various cleanups to type usage and slightly inaccurate comments.
- More cleanups to the xattr, log, and quota code.
- Don't run the (slower) shared-rmap operations on attr fork
mappings.
- Fix a bug where we failed to check the LSN of finobt blocks during
replay and could therefore overwrite newer data with older data.
- Clean up the ugly nested transaction mess that log recovery uses to
stage intent item recovery in the correct order by creating a
proper data structure to capture recovered chains.
- Use the capture structure to resume intent item chains with the
same log space and block reservations as when they were captured.
- Fix a UAF bug in bmap intent item recovery where we failed to
maintain our reference to the incore inode if the bmap operation
needed to relog itself to continue.
- Rearrange the defer ops mechanism to finish newly created subtasks
of a parent task before moving on to the next parent task.
- Automatically relog intent items in deferred ops chains if doing so
would help us avoid pinning the log tail. This will help fix some
log scaling problems now and will facilitate atomic file updates
later.
- Fix a deadlock in the GETFSMAP implementation by using an internal
memory buffer to reduce indirect calls and copies to userspace,
thereby improving its performance by ~20%.
- Fix various problems when calling growfs on a realtime volume would
not fully update the filesystem metadata.
- Fix broken Kconfig asking about deprecated XFS when XFS is
disabled"
* tag 'xfs-5.10-merge-5' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux: (48 commits)
xfs: fix Kconfig asking about XFS_SUPPORT_V4 when XFS_FS=n
xfs: fix high key handling in the rt allocator's query_range function
xfs: annotate grabbing the realtime bitmap/summary locks in growfs
xfs: make xfs_growfs_rt update secondary superblocks
xfs: fix realtime bitmap/summary file truncation when growing rt volume
xfs: fix the indent in xfs_trans_mod_dquot
xfs: do the ASSERT for the arguments O_{u,g,p}dqpp
xfs: fix deadlock and streamline xfs_getfsmap performance
xfs: limit entries returned when counting fsmap records
xfs: only relog deferred intent items if free space in the log gets low
xfs: expose the log push threshold
xfs: periodically relog deferred intent items
xfs: change the order in which child and parent defer ops are finished
xfs: fix an incore inode UAF in xfs_bui_recover
xfs: clean up xfs_bui_item_recover iget/trans_alloc/ilock ordering
xfs: clean up bmap intent item recovery checking
xfs: xfs_defer_capture should absorb remaining transaction reservation
xfs: xfs_defer_capture should absorb remaining block reservations
xfs: proper replay of deferred ops queued during log recovery
xfs: remove XFS_LI_RECOVERED
...
Pavel Machek complained that the question about supporting deprecated
XFS v4 comes up even when XFS is disabled. This clearly makes no sense,
so fix Kconfig.
Reported-by: Pavel Machek <pavel@ucw.cz>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Fix some off-by-one errors in xfs_rtalloc_query_range. The highest key
in the realtime bitmap is always one less than the number of rt extents,
which means that the key clamp at the start of the function is wrong.
The 4th argument to xfs_rtfind_forw is the highest rt extent that we
want to probe, which means that passing 1 less than the high key is
wrong. Finally, drop the rem variable that controls the loop because we
can compare the iteration point (rtstart) against the high key directly.
The sordid history of this function is that the original commit (fb3c3)
incorrectly passed (high_rec->ar_startblock - 1) as the 'limit' parameter
to xfs_rtfind_forw. This was wrong because the "high key" is supposed
to be the largest key for which the caller wants result rows, not the
key for the first row that could possibly be outside the range that the
caller wants to see.
A subsequent attempt (8ad56) to strengthen the parameter checking added
incorrect clamping of the parameters to the number of rt blocks in the
system (despite the bitmap functions all taking units of rt extents) to
avoid querying ranges past the end of rt bitmap file but failed to fix
the incorrect _rtfind_forw parameter. The original _rtfind_forw
parameter error then survived the conversion of the startblock and
blockcount fields to rt extents (a0e5c), and the most recent off-by-one
fix (a3a37) thought it was patching a problem when the end of the rt
volume is not in use, but none of these fixes actually solved the
original problem that the author was confused about the "limit" argument
to xfs_rtfind_forw.
Sadly, all four of these patches were written by this author and even
his own usage of this function and rt testing were inadequate to get
this fixed quickly.
Original-problem: fb3c3de2f6 ("xfs: add a couple of queries to iterate free extents in the rtbitmap")
Not-fixed-by: 8ad560d256 ("xfs: strengthen rtalloc query range checks")
Not-fixed-by: a0e5c435ba ("xfs: fix xfs_rtalloc_rec units")
Fixes: a3a374bf18 ("xfs: fix off-by-one error in xfs_rtalloc_query_range")
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
- Clean up the buffer ioend calling path so that the retry strategy
isn't quite so scattered everywhere.
- Clean up m_sb_bp handling.
- New feature: storing inode btree counts in the AGI to speed up certain
mount time per-AG block reservation operatoins and add a little more
metadata redundancy.
- New feature: Widen inode timestamps and quota grace expiration
timestamps to support dates through the year 2486.
- Get rid of more of our custom buffer allocation API wrappers.
- Use a proper VLA for shortform xattr structure namevals.
- Force the log after reflinking or deduping into a file that is opened
with O_SYNC or O_DSYNC.
- Fix some math errors in the realtime allocator.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEUzaAxoMeQq6m2jMV+H93GTRKtOsFAl9iOCEACgkQ+H93GTRK
tOvn8Q//VYzuMUIxoc9pVfyd0L3ThROKEO2cwzbGEauXXIginmMqfITVCMWtLg9/
siDnXGFDetqF9g+1DjyzLucVGAleEd0QSCrWqTxNjHUeUu6AtNrv716jQ09BTZD+
SoD9oZhG0k9seGWrVkQRSfyVyARxw/OEGbnGe5xCR3VTXG/xMTRFOJMsbCM6trhL
1nHJDhsoWSDeSYi59GEm/nscZ3yuZOcnnkTMpQrdWX+Y2BHzlUqrXuSf1ZxWmfQm
2RPVxdRRt8Mt0n28oo7eGQ1tC7nYHDqVRlZcM8IuBGIu3kDrPhNVWOIkjzaaBYf9
goZG67RZ/Rm3GDtlaWtz0KRDpJUKOWV+SuSh3MtpqZSb91llAN2tVbiHKYHW72zG
Bi+9RCadHKpuU1iyLGP+eaMPkVGV0H2co1DuENJYPy9wQTdRg2LD3qGJuNr7YwMR
Rs9QBDntjFO0WbC9UiGkIxSryYdgUctLLv3/eT0LpwvoygabFjNQ69hguFRHhfP0
d1AxS8o2qzyf1v+0NVqM9FAPhiqSY1SBd+seawF5tlQL4OY2BMUgAwdtVqRJapyU
BoLSih507nbw+R0FqayKpcUraU7OFrY5SZ21hOsHKt9AR3XW+ntU9ySZMM4EdAXx
DunsgaAk6hvZy99y10O1f1Wo30jZKjgnEGHi/IgjG7FKD3iSIvw=
=99iy
-----END PGP SIGNATURE-----
Merge tag 'xfs-5.10-merge-2' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
Pull xfs updates from Darrick Wong:
"The biggest changes are two new features for the ondisk metadata: one
to record the sizes of the inode btrees in the AG to increase
redundancy checks and to improve mount times; and a second new feature
to support timestamps until the year 2486.
We also fixed a problem where reflinking into a file that requires
synchronous writes wouldn't actually flush the updates to disk; clean
up a fair amount of cruft; and started fixing some bugs in the
realtime volume code.
Summary:
- Clean up the buffer ioend calling path so that the retry strategy
isn't quite so scattered everywhere.
- Clean up m_sb_bp handling.
- New feature: storing inode btree counts in the AGI to speed up
certain mount time per-AG block reservation operatoins and add a
little more metadata redundancy.
- New feature: Widen inode timestamps and quota grace expiration
timestamps to support dates through the year 2486.
- Get rid of more of our custom buffer allocation API wrappers.
- Use a proper VLA for shortform xattr structure namevals.
- Force the log after reflinking or deduping into a file that is
opened with O_SYNC or O_DSYNC.
- Fix some math errors in the realtime allocator"
* tag 'xfs-5.10-merge-2' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux: (42 commits)
xfs: ensure that fpunch, fcollapse, and finsert operations are aligned to rt extent size
xfs: make sure the rt allocator doesn't run off the end
xfs: Remove unneeded semicolon
xfs: force the log after remapping a synchronous-writes file
xfs: Convert xfs_attr_sf macros to inline functions
xfs: Use variable-size array for nameval in xfs_attr_sf_entry
xfs: Remove typedef xfs_attr_shortform_t
xfs: remove typedef xfs_attr_sf_entry_t
xfs: Remove kmem_zalloc_large()
xfs: enable big timestamps
xfs: trace timestamp limits
xfs: widen ondisk quota expiration timestamps to handle y2038+
xfs: widen ondisk inode timestamps to deal with y2038+
xfs: redefine xfs_ictimestamp_t
xfs: redefine xfs_timestamp_t
xfs: move xfs_log_dinode_to_disk to the log recovery code
xfs: refactor quota timestamp coding
xfs: refactor default quota grace period setting code
xfs: refactor quota expiration timer modification
xfs: explicitly define inode timestamp range
...
Use XFS_ILOCK_RT{BITMAP,SUM} to annotate grabbing the rt bitmap and
summary locks when we grow the realtime volume, just like we do most
everywhere else. This shuts up lockdep warnings about grabbing the
ILOCK class of locks recursively:
============================================
WARNING: possible recursive locking detected
5.9.0-rc4-djw #rc4 Tainted: G O
--------------------------------------------
xfs_growfs/4841 is trying to acquire lock:
ffff888035acc230 (&xfs_nondir_ilock_class){++++}-{3:3}, at: xfs_ilock+0xac/0x1a0 [xfs]
but task is already holding lock:
ffff888035acedb0 (&xfs_nondir_ilock_class){++++}-{3:3}, at: xfs_ilock+0xac/0x1a0 [xfs]
other info that might help us debug this:
Possible unsafe locking scenario:
CPU0
----
lock(&xfs_nondir_ilock_class);
lock(&xfs_nondir_ilock_class);
*** DEADLOCK ***
May be due to missing lock nesting notation
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
When we call growfs on the data device, we update the secondary
superblocks to reflect the updated filesystem geometry. We need to do
this for growfs on the realtime volume too, because a future xfs_repair
run could try to fix the filesystem using a backup superblock.
This was observed by the online superblock scrubbers while running
xfs/233. One can also trigger this by growing an rt volume, cycling the
mount, and creating new rt files.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
The realtime bitmap and summary files are regular files that are hidden
away from the directory tree. Since they're regular files, inode
inactivation will try to purge what it thinks are speculative
preallocations beyond the incore size of the file. Unfortunately,
xfs_growfs_rt forgets to update the incore size when it resizes the
inodes, with the result that inactivating the rt inodes at unmount time
will cause their contents to be truncated.
Fix this by updating the incore size when we change the ondisk size as
part of updating the superblock. Note that we don't do this when we're
allocating blocks to the rt inodes because we actually want those blocks
to get purged if the growfs fails.
This fixes corruption complaints from the online rtsummary checker when
running xfs/233. Since that test requires rmap, one can also trigger
this by growing an rt volume, cycling the mount, and creating rt files.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
The formatting is strange in xfs_trans_mod_dquot, so do a reindent.
Signed-off-by: Kaixu Xia <kaixuxia@tencent.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
If we pass in XFS_QMOPT_{U,G,P}QUOTA flags and different uid/gid/prid
than them currently associated with the inode, the arguments
O_{u,g,p}dqpp shouldn't be NULL, so add the ASSERT for them.
Signed-off-by: Kaixu Xia <kaixuxia@tencent.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Refactor xfs_getfsmap to improve its performance: instead of indirectly
calling a function that copies one record to userspace at a time, create
a shadow buffer in the kernel and copy the whole array once at the end.
On the author's computer, this reduces the runtime on his /home by ~20%.
This also eliminates a deadlock when running GETFSMAP against the
realtime device. The current code locks the rtbitmap to create
fsmappings and copies them into userspace, having not released the
rtbitmap lock. If the userspace buffer is an mmap of a sparse file that
itself resides on the realtime device, the write page fault will recurse
into the fs for allocation, which will deadlock on the rtbitmap lock.
Fixes: 4c934c7dd6 ("xfs: report realtime space information via the rtbitmap")
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
If userspace asked fsmap to count the number of entries, we cannot
return more than UINT_MAX entries because fmh_entries is u32.
Therefore, stop counting if we hit this limit or else we will waste time
to return truncated results.
Fixes: e89c041338 ("xfs: implement the GETFSMAP ioctl")
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Now that we have the ability to ask the log how far the tail needs to be
pushed to maintain its free space targets, augment the decision to relog
an intent item so that we only do it if the log has hit the 75% full
threshold. There's no point in relogging an intent into the same
checkpoint, and there's no need to relog if there's plenty of free space
in the log.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Separate the computation of the log push threshold and the push logic in
xlog_grant_push_ail. This enables higher level code to determine (for
example) that it is holding on to a logged intent item and the log is so
busy that it is more than 75% full. In that case, it would be desirable
to move the log item towards the head to release the tail, which we will
cover in the next patch.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
There's a subtle design flaw in the deferred log item code that can lead
to pinning the log tail. Taking up the defer ops chain examples from
the previous commit, we can get trapped in sequences like this:
Caller hands us a transaction t0 with D0-D3 attached. The defer ops
chain will look like the following if the transaction rolls succeed:
t1: D0(t0), D1(t0), D2(t0), D3(t0)
t2: d4(t1), d5(t1), D1(t0), D2(t0), D3(t0)
t3: d5(t1), D1(t0), D2(t0), D3(t0)
...
t9: d9(t7), D3(t0)
t10: D3(t0)
t11: d10(t10), d11(t10)
t12: d11(t10)
In transaction 9, we finish d9 and try to roll to t10 while holding onto
an intent item for D3 that we logged in t0.
The previous commit changed the order in which we place new defer ops in
the defer ops processing chain to reduce the maximum chain length. Now
make xfs_defer_finish_noroll capable of relogging the entire chain
periodically so that we can always move the log tail forward. Most
chains will never get relogged, except for operations that generate very
long chains (large extents containing many blocks with different sharing
levels) or are on filesystems with small logs and a lot of ongoing
metadata updates.
Callers are now required to ensure that the transaction reservation is
large enough to handle logging done items and new intent items for the
maximum possible chain length. Most callers are careful to keep the
chain lengths low, so the overhead should be minimal.
The decision to relog an intent item is made based on whether the intent
was logged in a previous checkpoint, since there's no point in relogging
an intent into the same checkpoint.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
The defer ops code has been finishing items in the wrong order -- if a
top level defer op creates items A and B, and finishing item A creates
more defer ops A1 and A2, we'll put the new items on the end of the
chain and process them in the order A B A1 A2. This is kind of weird,
since it's convenient for programmers to be able to think of A and B as
an ordered sequence where all the sub-tasks for A must finish before we
move on to B, e.g. A A1 A2 D.
Right now, our log intent items are not so complex that this matters,
but this will become important for the atomic extent swapping patchset.
In order to maintain correct reference counting of extents, we have to
unmap and remap extents in that order, and we want to complete that work
before moving on to the next range that the user wants to swap. This
patch fixes defer ops to satsify that requirement.
The primary symptom of the incorrect order was noticed in an early
performance analysis of the atomic extent swap code. An astonishingly
large number of deferred work items accumulated when userspace requested
an atomic update of two very fragmented files. The cause of this was
traced to the same ordering bug in the inner loop of
xfs_defer_finish_noroll.
If the ->finish_item method of a deferred operation queues new deferred
operations, those new deferred ops are appended to the tail of the
pending work list. To illustrate, say that a caller creates a
transaction t0 with four deferred operations D0-D3. The first thing
defer ops does is roll the transaction to t1, leaving us with:
t1: D0(t0), D1(t0), D2(t0), D3(t0)
Let's say that finishing each of D0-D3 will create two new deferred ops.
After finish D0 and roll, we'll have the following chain:
t2: D1(t0), D2(t0), D3(t0), d4(t1), d5(t1)
d4 and d5 were logged to t1. Notice that while we're about to start
work on D1, we haven't actually completed all the work implied by D0
being finished. So far we've been careful (or lucky) to structure the
dfops callers such that D1 doesn't depend on d4 or d5 being finished,
but this is a potential logic bomb.
There's a second problem lurking. Let's see what happens as we finish
D1-D3:
t3: D2(t0), D3(t0), d4(t1), d5(t1), d6(t2), d7(t2)
t4: D3(t0), d4(t1), d5(t1), d6(t2), d7(t2), d8(t3), d9(t3)
t5: d4(t1), d5(t1), d6(t2), d7(t2), d8(t3), d9(t3), d10(t4), d11(t4)
Let's say that d4-d11 are simple work items that don't queue any other
operations, which means that we can complete each d4 and roll to t6:
t6: d5(t1), d6(t2), d7(t2), d8(t3), d9(t3), d10(t4), d11(t4)
t7: d6(t2), d7(t2), d8(t3), d9(t3), d10(t4), d11(t4)
...
t11: d10(t4), d11(t4)
t12: d11(t4)
<done>
When we try to roll to transaction #12, we're holding defer op d11,
which we logged way back in t4. This means that the tail of the log is
pinned at t4. If the log is very small or there are a lot of other
threads updating metadata, this means that we might have wrapped the log
and cannot get roll to t11 because there isn't enough space left before
we'd run into t4.
Let's shift back to the original failure. I mentioned before that I
discovered this flaw while developing the atomic file update code. In
that scenario, we have a defer op (D0) that finds a range of file blocks
to remap, creates a handful of new defer ops to do that, and then asks
to be continued with however much work remains.
So, D0 is the original swapext deferred op. The first thing defer ops
does is rolls to t1:
t1: D0(t0)
We try to finish D0, logging d1 and d2 in the process, but can't get all
the work done. We log a done item and a new intent item for the work
that D0 still has to do, and roll to t2:
t2: D0'(t1), d1(t1), d2(t1)
We roll and try to finish D0', but still can't get all the work done, so
we log a done item and a new intent item for it, requeue D0 a second
time, and roll to t3:
t3: D0''(t2), d1(t1), d2(t1), d3(t2), d4(t2)
If it takes 48 more rolls to complete D0, then we'll finally dispense
with D0 in t50:
t50: D<fifty primes>(t49), d1(t1), ..., d102(t50)
We then try to roll again to get a chain like this:
t51: d1(t1), d2(t1), ..., d101(t50), d102(t50)
...
t152: d102(t50)
<done>
Notice that in rolling to transaction #51, we're holding on to a log
intent item for d1 that was logged in transaction #1. This means that
the tail of the log is pinned at t1. If the log is very small or there
are a lot of other threads updating metadata, this means that we might
have wrapped the log and cannot roll to t51 because there isn't enough
space left before we'd run into t1. This is of course problem #2 again.
But notice the third problem with this scenario: we have 102 defer ops
tied to this transaction! Each of these items are backed by pinned
kernel memory, which means that we risk OOM if the chains get too long.
Yikes. Problem #1 is a subtle logic bomb that could hit someone in the
future; problem #2 applies (rarely) to the current upstream, and problem
#3 applies to work under development.
This is not how incremental deferred operations were supposed to work.
The dfops design of logging in the same transaction an intent-done item
and a new intent item for the work remaining was to make it so that we
only have to juggle enough deferred work items to finish that one small
piece of work. Deferred log item recovery will find that first
unfinished work item and restart it, no matter how many other intent
items might follow it in the log. Therefore, it's ok to put the new
intents at the start of the dfops chain.
For the first example, the chains look like this:
t2: d4(t1), d5(t1), D1(t0), D2(t0), D3(t0)
t3: d5(t1), D1(t0), D2(t0), D3(t0)
...
t9: d9(t7), D3(t0)
t10: D3(t0)
t11: d10(t10), d11(t10)
t12: d11(t10)
For the second example, the chains look like this:
t1: D0(t0)
t2: d1(t1), d2(t1), D0'(t1)
t3: d2(t1), D0'(t1)
t4: D0'(t1)
t5: d1(t4), d2(t4), D0''(t4)
...
t148: D0<50 primes>(t147)
t149: d101(t148), d102(t148)
t150: d102(t148)
<done>
This actually sucks more for pinning the log tail (we try to roll to t10
while holding an intent item that was logged in t1) but we've solved
problem #1. We've also reduced the maximum chain length from:
sum(all the new items) + nr_original_items
to:
max(new items that each original item creates) + nr_original_items
This solves problem #3 by sharply reducing the number of defer ops that
can be attached to a transaction at any given time. The change makes
the problem of log tail pinning worse, but is improvement we need to
solve problem #2. Actually solving #2, however, is left to the next
patch.
Note that a subsequent analysis of some hard-to-trigger reflink and COW
livelocks on extremely fragmented filesystems (or systems running a lot
of IO threads) showed the same symptoms -- uncomfortably large numbers
of incore deferred work items and occasional stalls in the transaction
grant code while waiting for log reservations. I think this patch and
the next one will also solve these problems.
As originally written, the code used list_splice_tail_init instead of
list_splice_init, so change that, and leave a short comment explaining
our actions.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
In xfs_bui_item_recover, there exists a use-after-free bug with regards
to the inode that is involved in the bmap replay operation. If the
mapping operation does not complete, we call xfs_bmap_unmap_extent to
create a deferred op to finish the unmapping work, and we retain a
pointer to the incore inode.
Unfortunately, the very next thing we do is commit the transaction and
drop the inode. If reclaim tears down the inode before we try to finish
the defer ops, we dereference garbage and blow up. Therefore, create a
way to join inodes to the defer ops freezer so that we can maintain the
xfs_inode reference until we're done with the inode.
Note: This imposes the requirement that there be enough memory to keep
every incore inode in memory throughout recovery.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
In most places in XFS, we have a specific order in which we gather
resources: grab the inode, allocate a transaction, then lock the inode.
xfs_bui_item_recover doesn't do it in that order, so fix it to be more
consistent. This also makes the error bailout code a bit less weird.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
The bmap intent item checking code in xfs_bui_item_recover is spread all
over the function. We should check the recovered log item at the top
before we allocate any resources or do anything else, so do that.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
When xfs_defer_capture extracts the deferred ops and transaction state
from a transaction, it should record the transaction reservation type
from the old transaction so that when we continue the dfops chain, we
still use the same reservation parameters.
Doing this means that the log item recovery functions get to determine
the transaction reservation instead of abusing tr_itruncate in yet
another part of xfs.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
When xfs_defer_capture extracts the deferred ops and transaction state
from a transaction, it should record the remaining block reservations so
that when we continue the dfops chain, we can reserve the same number of
blocks to use. We capture the reservations for both data and realtime
volumes.
This adds the requirement that every log intent item recovery function
must be careful to reserve enough blocks to handle both itself and all
defer ops that it can queue. On the other hand, this enables us to do
away with the handwaving block estimation nonsense that was going on in
xlog_finish_defer_ops.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
When we replay unfinished intent items that have been recovered from the
log, it's possible that the replay will cause the creation of more
deferred work items. As outlined in commit 509955823c ("xfs: log
recovery should replay deferred ops in order"), later work items have an
implicit ordering dependency on earlier work items. Therefore, recovery
must replay the items (both recovered and created) in the same order
that they would have been during normal operation.
For log recovery, we enforce this ordering by using an empty transaction
to collect deferred ops that get created in the process of recovering a
log intent item to prevent them from being committed before the rest of
the recovered intent items. After we finish committing all the
recovered log items, we allocate a transaction with an enormous block
reservation, splice our huge list of created deferred ops into that
transaction, and commit it, thereby finishing all those ops.
This is /really/ hokey -- it's the one place in XFS where we allow
nested transactions; the splicing of the defer ops list is is inelegant
and has to be done twice per recovery function; and the broken way we
handle inode pointers and block reservations cause subtle use-after-free
and allocator problems that will be fixed by this patch and the two
patches after it.
Therefore, replace the hokey empty transaction with a structure designed
to capture each chain of deferred ops that are created as part of
recovering a single unfinished log intent. Finally, refactor the loop
that replays those chains to do so using one transaction per chain.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
The ->iop_recover method of a log intent item removes the recovered
intent item from the AIL by logging an intent done item and committing
the transaction, so it's superfluous to have this flag check. Nothing
else uses it, so get rid of the flag entirely.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Remove this one-line helper since the assert is trivially true in one
call site and the rest obscures a bitmask operation.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Nathan popped up on #xfs and pointed out that we fail to handle
finobt btree blocks in xlog_recover_get_buf_lsn(). This means they
always fall through the entire magic number matching code to "recover
immediately". Whilst most of the time this is the correct behaviour,
occasionally it will be incorrect and could potentially overwrite
more recent metadata because we don't check the LSN in the on disk
metadata at all.
This bug has been present since the finobt was first introduced, and
is a potential cause of the occasional xfs_iget_check_free_state()
failures we see that indicate that the inode btree state does not
match the on disk inode state.
Fixes: aafc3c2465 ("xfs: support the XFS_BTNUM_FINOBT free inode btree type")
Reported-by: Nathan Scott <nathans@redhat.com>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
These optionr were for Irix compatibility, probably for clustered XFS
clients in a heterogenous cluster which contained both Irix & Linux
machines, so that behavior would be consistent. That doesn't exist anymore
and it's no longer needed.
Signed-off-by: Pavel Reichl <preichl@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
[darrick: actually state when the sysctls go away]
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
ikeep/noikeep was a workaround for old DMAPI code which is no longer
relevant.
attr2/noattr2 - is for controlling upgrade behaviour from fixed attribute
fork sizes in the inode (attr1) and dynamic attribute fork sizes (attr2).
mkfs has defaulted to setting attr2 since 2007, hence just about every
XFS filesystem out there in production right now uses attr2.
Signed-off-by: Pavel Reichl <preichl@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
[darrick: fix minor typos]
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
The current create and mkdir handlers both call the xfs_vn_mknod()
which is a wrapper routine around xfs_generic_create() function.
Actually the create and mkdir handlers can directly call
xfs_generic_create() function and reduce the call chain.
Signed-off-by: Kaixu Xia <kaixuxia@tencent.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
During code review, I noticed that the rmap code uses the (slower)
shared mappings rmap functions for any extent of a reflinked file, even
if those extents are for the attr fork, which doesn't support sharing.
We can speed up rmap a tiny bit by optimizing out this case.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Since commit 1c1c6ebcf5 ("xfs: Replace per-ag array with a radix
tree"), there is no m_peraglock anymore, so it's hard to understand
the described situation since per-ag is no longer an array and no
need to reallocate, call xfs_filestream_flush() in growfs.
In addition, the race condition for shrink feature is quite confusing
to me currently as well. Get rid of it instead.
Signed-off-by: Gao Xiang <hsiangkao@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cleanup the typedef usage, the unnecessary parentheses, the unnecessary
backslash and use the open-coded round_up call in
xfs_attr_leaf_entsize_{remote,local}.
Signed-off-by: Kaixu Xia <kaixuxia@tencent.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
We should do the assert for all the log intent-done items if they appear
here. This patch detect intent-done items by the fact that their item ops
don't have iop_unpin and iop_push methods and also move the helper
xlog_item_is_intent to xfs_trans.h.
Signed-off-by: Kaixu Xia <kaixuxia@tencent.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Since we never use the second parameter id, so remove it from
xfs_qm_dqattach_one() function.
Signed-off-by: Kaixu Xia <kaixuxia@tencent.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
We already check whether the crc feature is enabled before calling
xfs_attr3_rmt_verify(), so remove the redundant feature check in that
function.
Signed-off-by: Kaixu Xia <kaixuxia@tencent.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Fix the comments to help people understand the code.
Signed-off-by: Kaixu Xia <kaixuxia@tencent.com>
[darrick: fix the indenting problems too]
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Since the type prid_t and xfs_dqid_t both are uint32_t, seems the
type cast is unnecessary, so remove it.
Signed-off-by: Kaixu Xia <kaixuxia@tencent.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
We have already defined the project ID type prid_t, so maybe should
use it here.
Signed-off-by: Kaixu Xia <kaixuxia@tencent.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
There are no callers of the SYNCHRONIZE() macro, so remove it.
Signed-off-by: Kaixu Xia <kaixuxia@tencent.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Let's use DIV_ROUND_UP() to calculate log record header
blocks as what did in xlog_get_iclog_buffer_size() and
wrap up a common helper for log recovery.
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Gao Xiang <hsiangkao@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Currently, crafted h_len has been blocked for the log
header of the tail block in commit a70f9fe52d ("xfs:
detect and handle invalid iclog size set by mkfs").
However, each log record could still have crafted h_len
and cause log record buffer overrun. So let's check
h_len vs buffer size for each log record as well.
Signed-off-by: Gao Xiang <hsiangkao@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Nowadays, log recovery will call ->release on the recovered intent items
if recovery fails. Therefore, it's redundant to release them from
inside the ->recover functions when they're about to return an error.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
In the bmap intent item recovery code, we must be careful to attach the
inode to its dquots (if quotas are enabled) so that a change in the
shape of the bmap btree doesn't cause the quota counters to be
incorrect.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
During a code inspection, I found a serious bug in the log intent item
recovery code when an intent item cannot complete all the work and
decides to requeue itself to get that done. When this happens, the
item recovery creates a new incore deferred op representing the
remaining work and attaches it to the transaction that it allocated. At
the end of _item_recover, it moves the entire chain of deferred ops to
the dummy parent_tp that xlog_recover_process_intents passed to it, but
fail to log a new intent item for the remaining work before committing
the transaction for the single unit of work.
xlog_finish_defer_ops logs those new intent items once recovery has
finished dealing with the intent items that it recovered, but this isn't
sufficient. If the log is forced to disk after a recovered log item
decides to requeue itself and the system goes down before we call
xlog_finish_defer_ops, the second log recovery will never see the new
intent item and therefore has no idea that there was more work to do.
It will finish recovery leaving the filesystem in a corrupted state.
The same logic applies to /any/ deferred ops added during intent item
recovery, not just the one handling the remaining work.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
When xchk_da_btree_block is loading a non-root dabtree block, we know
that the parent block had to have a (hashval, address) pointer to the
block that we just loaded. Check that the hashval in the parent matches
the block we just loaded.
This was found by fuzzing nbtree[3].hashval = ones in xfs/394.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
When callers pass XFS_BMAPI_REMAP into xfs_bunmapi, they want the extent
to be unmapped from the given file fork without the extent being freed.
We do this for non-rt files, but we forgot to do this for realtime
files. So far this isn't a big deal since nobody makes a bunmapi call
to a rt file with the REMAP flag set, but don't leave a logic bomb.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>