The spinning region rwsem_spin_on_owner() should not be preempted,
however the rwsem_down_write_slowpath() invokes it and don't disable
preemption. Fix it by adding a pair of preempt_disable/enable().
Signed-off-by: Yanfei Xu <yanfei.xu@windriver.com>
[peterz: Fix CONFIG_RWSEM_SPIN_ON_OWNER=n build]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Waiman Long <longman@redhat.com>
Link: https://lore.kernel.org/r/20211013134154.1085649-3-yanfei.xu@windriver.com
Since the futex code was restructured, there's no futex.c file anymore
and the implementation is split in various files. Point kernel-doc
references to the new files.
Signed-off-by: André Almeida <andrealmeid@collabora.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20211012135549.14451-1-andrealmeid@collabora.com
Mike reported that rcuwait went walk-about and is causing failures on
the PREEMPT_RT builds, restore it.
Reported-by: Mike Galbraith <efault@gmx.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Test if futex_waitv() returns -EWOULDBLOCK correctly when the expected
value is different from the actual value for a waiter.
Signed-off-by: André Almeida <andrealmeid@collabora.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20210923171111.300673-22-andrealmeid@collabora.com
Create a new file to test the waitv mechanism. Test both private and
shared futexes. Wake the last futex in the array, and check if the
return value from futex_waitv() is the right index.
Signed-off-by: André Almeida <andrealmeid@collabora.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20210923171111.300673-20-andrealmeid@collabora.com
Add support to wait on multiple futexes. This is the interface
implemented by this syscall:
futex_waitv(struct futex_waitv *waiters, unsigned int nr_futexes,
unsigned int flags, struct timespec *timeout, clockid_t clockid)
struct futex_waitv {
__u64 val;
__u64 uaddr;
__u32 flags;
__u32 __reserved;
};
Given an array of struct futex_waitv, wait on each uaddr. The thread
wakes if a futex_wake() is performed at any uaddr. The syscall returns
immediately if any waiter has *uaddr != val. *timeout is an optional
absolute timeout value for the operation. This syscall supports only
64bit sized timeout structs. The flags argument of the syscall should be
empty, but it can be used for future extensions. Flags for shared
futexes, sizes, etc. should be used on the individual flags of each
waiter.
__reserved is used for explicit padding and should be 0, but it might be
used for future extensions. If the userspace uses 32-bit pointers, it
should make sure to explicitly cast it when assigning to waitv::uaddr.
Returns the array index of one of the woken futexes. There’s no given
information of how many were woken, or any particular attribute of it
(if it’s the first woken, if it is of the smaller index...).
Signed-off-by: André Almeida <andrealmeid@collabora.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20210923171111.300673-17-andrealmeid@collabora.com
We need to make sure that all requeue operations take the hash bucket
locks in the same order to avoid deadlock. Simplify the current
double_lock_hb implementation by making sure hb1 is always the
"smallest" bucket to avoid extra checks.
[André: Add commit description]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: André Almeida <andrealmeid@collabora.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: André Almeida <andrealmeid@collabora.com>
Link: https://lore.kernel.org/r/20210923171111.300673-16-andrealmeid@collabora.com
Move the wait/wake bits into their own file.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: André Almeida <andrealmeid@collabora.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: André Almeida <andrealmeid@collabora.com>
Link: https://lore.kernel.org/r/20210923171111.300673-15-andrealmeid@collabora.com
Move all the requeue bits into their own file.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: André Almeida <andrealmeid@collabora.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: André Almeida <andrealmeid@collabora.com>
Link: https://lore.kernel.org/r/20210923171111.300673-14-andrealmeid@collabora.com
In order to prepare introducing these symbols into the global
namespace; rename:
s/mark_wake_futex/futex_wake_mark/g
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: André Almeida <andrealmeid@collabora.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: André Almeida <andrealmeid@collabora.com>
Link: https://lore.kernel.org/r/20210923171111.300673-13-andrealmeid@collabora.com
In order to prepare introducing these symbols into the global
namespace; rename:
s/match_futex/futex_match/g
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: André Almeida <andrealmeid@collabora.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: André Almeida <andrealmeid@collabora.com>
Link: https://lore.kernel.org/r/20210923171111.300673-12-andrealmeid@collabora.com
In order to prepare introducing these symbols into the global
namespace; rename them:
s/hb_waiters_/futex_&/g
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: André Almeida <andrealmeid@collabora.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: André Almeida <andrealmeid@collabora.com>
Link: https://lore.kernel.org/r/20210923171111.300673-11-andrealmeid@collabora.com
Move the PI futex implementation into it's own file.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: André Almeida <andrealmeid@collabora.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: André Almeida <andrealmeid@collabora.com>
Link: https://lore.kernel.org/r/20210923171111.300673-10-andrealmeid@collabora.com
In order to prepare introducing these symbols into the global
namespace; rename them:
s/\<\([^_ ]*\)_futex_value_locked/futex_\1_value_locked/g
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: André Almeida <andrealmeid@collabora.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: André Almeida <andrealmeid@collabora.com>
Link: https://lore.kernel.org/r/20210923171111.300673-9-andrealmeid@collabora.com
In order to prepare introducing these symbols into the global
namespace; rename:
s/hash_futex/futex_hash/g
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: André Almeida <andrealmeid@collabora.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: André Almeida <andrealmeid@collabora.com>
Link: https://lore.kernel.org/r/20210923171111.300673-8-andrealmeid@collabora.com
In order to prepare introducing these symbols into the global
namespace; rename:
s/__unqueue_futex/__futex_unqueue/g
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: André Almeida <andrealmeid@collabora.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: André Almeida <andrealmeid@collabora.com>
Link: https://lore.kernel.org/r/20210923171111.300673-7-andrealmeid@collabora.com
In order to prepare introducing these symbols into the global
namespace; rename them:
s/queue_\(un\)*lock/futex_q_\1lock/g
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: André Almeida <andrealmeid@collabora.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: André Almeida <andrealmeid@collabora.com>
Link: https://lore.kernel.org/r/20210923171111.300673-6-andrealmeid@collabora.com
In order to prepare introducing these symbols into the global
namespace; rename them:
s/futex_wait_queue_me/futex_wait_queue/g
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: André Almeida <andrealmeid@collabora.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: André Almeida <andrealmeid@collabora.com>
Link: https://lore.kernel.org/r/20210923171111.300673-5-andrealmeid@collabora.com
In order to prepare introducing these symbols into the global
namespace; rename them:
s/\<\(__\)*\(un\)*queue_me/\1futex_\2queue/g
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: André Almeida <andrealmeid@collabora.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: André Almeida <andrealmeid@collabora.com>
Link: https://lore.kernel.org/r/20210923171111.300673-4-andrealmeid@collabora.com
Put the syscalls in their own little file.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: André Almeida <andrealmeid@collabora.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: André Almeida <andrealmeid@collabora.com>
Link: https://lore.kernel.org/r/20210923171111.300673-3-andrealmeid@collabora.com
In preparation for splitup..
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: André Almeida <andrealmeid@collabora.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: André Almeida <andrealmeid@collabora.com>
Link: https://lore.kernel.org/r/20210923171111.300673-2-andrealmeid@collabora.com
Instead of a full barrier around the Rmw insn, micro-optimize
for weakly ordered archs such that we only provide the required
ACQUIRE semantics when taking the read lock.
Signed-off-by: Davidlohr Bueso <dbueso@suse.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Waiman Long <longman@redhat.com>
Link: https://lkml.kernel.org/r/20210920052031.54220-2-dave@stgolabs.net
The rw_semaphore and rwlock_t implementation both wake the waiter while
holding the rt_mutex_base::wait_lock acquired.
This can be optimized by waking the waiter lockless outside of the
locked section to avoid a needless contention on the
rt_mutex_base::wait_lock lock.
Extend rt_mutex_wake_q_add() to also accept task and state and use it in
__rwbase_read_unlock().
Suggested-by: Davidlohr Bueso <dave@stgolabs.net>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210928150006.597310-3-bigeasy@linutronix.de
rt_mutex_wake_q_add() needs to need to distiguish between sleeping
locks (TASK_RTLOCK_WAIT) and normal locks which use TASK_NORMAL to use
the proper wake mechanism.
Instead of checking for != TASK_NORMAL make it more robust and check
explicit for TASK_RTLOCK_WAIT which is the reason why a different wake
mechanism is used.
No functional change.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210928150006.597310-2-bigeasy@linutronix.de
The general rule that rcu_read_lock() held sections cannot voluntary sleep
does apply even on RT kernels. Though the substitution of spin/rw locks on
RT enabled kernels has to be exempt from that rule. On !RT a spin_lock()
can obviously nest inside a RCU read side critical section as the lock
acquisition is not going to block, but on RT this is not longer the case
due to the 'sleeping' spinlock substitution.
The RT patches contained a cheap hack to ignore the RCU nesting depth in
might_sleep() checks, which was a pragmatic but incorrect workaround.
Instead of generally ignoring the RCU nesting depth in __might_sleep() and
__might_resched() checks, pass the rcu_preempt_depth() via the offsets
argument to __might_resched() from spin/read/write_lock() which makes the
checks work correctly even in RCU read side critical sections.
The actual blocking on such a substituted lock within a RCU read side
critical section is already handled correctly in __schedule() by treating
it as a "preemption" of the RCU read side critical section.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210923165358.368305497@linutronix.de
The __might_resched() checks in the cond_resched_lock() variants use
PREEMPT_LOCK_OFFSET for preempt count offset checking which takes the
preemption disable by the spin_lock() which is still held at that point
into account.
On PREEMPT_RT enabled kernels spin/rw_lock held sections stay preemptible
which means PREEMPT_LOCK_OFFSET is 0, but that still triggers the
__might_resched() check because that takes RCU read side nesting into
account.
On RT enabled kernels spin/read/write_lock() issue rcu_read_lock() to
resemble the !RT semantics, which means in cond_resched_lock() the might
resched check will see preempt_count() == 0 and rcu_preempt_depth() == 1.
Introduce PREEMPT_LOCK_SCHED_OFFSET for those might resched checks and map
them depending on CONFIG_PREEMPT_RT.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210923165358.305969211@linutronix.de
For !RT kernels RCU nest depth in __might_resched() is always expected to
be 0, but on RT kernels it can be non zero while the preempt count is
expected to be always 0.
Instead of playing magic games in interpreting the 'preempt_offset'
argument, rename it to 'offsets' and use the lower 8 bits for the expected
preempt count, allow to hand in the expected RCU nest depth in the upper
bits and adopt the __might_resched() code and related checks and printks.
The affected call sites are updated in subsequent steps.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210923165358.243232823@linutronix.de
might_sleep() output is pretty informative, but can be confusing at times
especially with PREEMPT_RCU when the check triggers due to a voluntary
sleep inside a RCU read side critical section:
BUG: sleeping function called from invalid context at kernel/test.c:110
in_atomic(): 0, irqs_disabled(): 0, non_block: 0, pid: 415, name: kworker/u112:52
Preemption disabled at: migrate_disable+0x33/0xa0
in_atomic() is 0, but it still tells that preemption was disabled at
migrate_disable(), which is completely useless because preemption is not
disabled. But the interesting information to decode the above, i.e. the RCU
nesting depth, is not printed.
That becomes even more confusing when might_sleep() is invoked from
cond_resched_lock() within a RCU read side critical section. Here the
expected preemption count is 1 and not 0.
BUG: sleeping function called from invalid context at kernel/test.c:131
in_atomic(): 1, irqs_disabled(): 0, non_block: 0, pid: 415, name: kworker/u112:52
Preemption disabled at: test_cond_lock+0xf3/0x1c0
So in_atomic() is set, which is expected as the caller holds a spinlock,
but it's unclear why this is broken and the preempt disable IP is just
pointing at the correct place, i.e. spin_lock(), which is obviously not
helpful either.
Make that more useful in general:
- Print preempt_count() and the expected value
and for the CONFIG_PREEMPT_RCU case:
- Print the RCU read side critical section nesting depth
- Print the preempt disable IP only when preempt count
does not have the expected value.
So the might_sleep() dump from a within a preemptible RCU read side
critical section becomes:
BUG: sleeping function called from invalid context at kernel/test.c:110
in_atomic(): 0, irqs_disabled(): 0, non_block: 0, pid: 415, name: kworker/u112:52
preempt_count: 0, expected: 0
RCU nest depth: 1, expected: 0
and the cond_resched_lock() case becomes:
BUG: sleeping function called from invalid context at kernel/test.c:141
in_atomic(): 1, irqs_disabled(): 0, non_block: 0, pid: 415, name: kworker/u112:52
preempt_count: 1, expected: 1
RCU nest depth: 1, expected: 0
which makes is pretty obvious what's going on. For all other cases the
preempt disable IP is still printed as before:
BUG: sleeping function called from invalid context at kernel/test.c: 156
in_atomic(): 1, irqs_disabled(): 0, non_block: 0, pid: 1, name: swapper/0
preempt_count: 1, expected: 0
RCU nest depth: 0, expected: 0
Preemption disabled at:
[<ffffffff82b48326>] test_might_sleep+0xbe/0xf8
BUG: sleeping function called from invalid context at kernel/test.c: 163
in_atomic(): 1, irqs_disabled(): 0, non_block: 0, pid: 1, name: swapper/0
preempt_count: 1, expected: 0
RCU nest depth: 1, expected: 0
Preemption disabled at:
[<ffffffff82b48326>] test_might_sleep+0x1e4/0x280
This also prepares to provide a better debugging output for RT enabled
kernels and their spinlock substitutions.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210923165358.181022656@linutronix.de
Commit 3427445afd ("sched: Exclude cond_resched() from nested sleep
test") removed the task state check of __might_sleep() for
cond_resched_lock() because cond_resched_lock() is not a voluntary
scheduling point which blocks. It's a preemption point which requires the
lock holder to release the spin lock.
The same rationale applies to cond_resched_rwlock_read/write(), but those
were not touched.
Make it consistent and use the non-state checking __might_resched() there
as well.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210923165357.991262778@linutronix.de
__might_sleep() vs. ___might_sleep() is hard to distinguish. Aside of that
the three underscore variant is exposed to provide a checkpoint for
rescheduling points which are distinct from blocking points.
They are semantically a preemption point which means that scheduling is
state preserving. A real blocking operation, e.g. mutex_lock(), wait*(),
which cannot preserve a task state which is not equal to RUNNING.
While technically blocking on a "sleeping" spinlock in RT enabled kernels
falls into the voluntary scheduling category because it has to wait until
the contended spin/rw lock becomes available, the RT lock substitution code
can semantically be mapped to a voluntary preemption because the RT lock
substitution code and the scheduler are providing mechanisms to preserve
the task state and to take regular non-lock related wakeups into account.
Rename ___might_sleep() to __might_resched() to make the distinction of
these functions clear.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210923165357.928693482@linutronix.de
Clang warns:
kernel/locking/test-ww_mutex.c:138:7: error: variable 'ret' is used uninitialized whenever 'if' condition is true [-Werror,-Wsometimes-uninitialized]
if (!ww_mutex_trylock(&mutex, &ctx)) {
^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
kernel/locking/test-ww_mutex.c:172:9: note: uninitialized use occurs here
return ret;
^~~
kernel/locking/test-ww_mutex.c:138:3: note: remove the 'if' if its condition is always false
if (!ww_mutex_trylock(&mutex, &ctx)) {
^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
kernel/locking/test-ww_mutex.c:125:9: note: initialize the variable 'ret' to silence this warning
int ret;
^
= 0
1 error generated.
Assign !ww_mutex_trylock(...) to ret so that it is always initialized.
Fixes: 12235da8c8 ("kernel/locking: Add context to ww_mutex_trylock()")
Reported-by: "kernelci.org bot" <bot@kernelci.org>
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Nathan Chancellor <nathan@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Waiman Long <longman@redhat.com>
Link: https://lore.kernel.org/r/20210922145822.3935141-1-nathan@kernel.org
Comments in wait-type checks be improved by mentioning the
PREEPT_RT kernel configure option.
Signed-off-by: Zhouyi Zhou <zhouzhouyi@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Paul E. McKenney <paulmck@kernel.org>
Link: https://lkml.kernel.org/r/20210811025920.20751-1-zhouzhouyi@gmail.com
lock_is_held_type(, 1) detects acquired read locks. It only recognized
locks acquired with lock_acquire_shared(). Read locks acquired with
lock_acquire_shared_recursive() are not recognized because a `2' is
stored as the read value.
Rework the check to additionally recognise lock's read value one and two
as a read held lock.
Fixes: e918188611 ("locking: More accurate annotations for read_lock()")
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Boqun Feng <boqun.feng@gmail.com>
Acked-by: Waiman Long <longman@redhat.com>
Link: https://lkml.kernel.org/r/20210903084001.lblecrvz4esl4mrr@linutronix.de
i915 will soon gain an eviction path that trylock a whole lot of locks
for eviction, getting dmesg failures like below:
BUG: MAX_LOCK_DEPTH too low!
turning off the locking correctness validator.
depth: 48 max: 48!
48 locks held by i915_selftest/5776:
#0: ffff888101a79240 (&dev->mutex){....}-{3:3}, at: __driver_attach+0x88/0x160
#1: ffffc900009778c0 (reservation_ww_class_acquire){+.+.}-{0:0}, at: i915_vma_pin.constprop.63+0x39/0x1b0 [i915]
#2: ffff88800cf74de8 (reservation_ww_class_mutex){+.+.}-{3:3}, at: i915_vma_pin.constprop.63+0x5f/0x1b0 [i915]
#3: ffff88810c7f9e38 (&vm->mutex/1){+.+.}-{3:3}, at: i915_vma_pin_ww+0x1c4/0x9d0 [i915]
#4: ffff88810bad5768 (reservation_ww_class_mutex){+.+.}-{3:3}, at: i915_gem_evict_something+0x110/0x860 [i915]
#5: ffff88810bad60e8 (reservation_ww_class_mutex){+.+.}-{3:3}, at: i915_gem_evict_something+0x110/0x860 [i915]
...
#46: ffff88811964d768 (reservation_ww_class_mutex){+.+.}-{3:3}, at: i915_gem_evict_something+0x110/0x860 [i915]
#47: ffff88811964e0e8 (reservation_ww_class_mutex){+.+.}-{3:3}, at: i915_gem_evict_something+0x110/0x860 [i915]
INFO: lockdep is turned off.
Fixing eviction to nest into ww_class_acquire is a high priority, but
it requires a rework of the entire driver, which can only be done one
step at a time.
As an intermediate solution, add an acquire context to
ww_mutex_trylock, which allows us to do proper nesting annotations on
the trylocks, making the above lockdep splat disappear.
This is also useful in regulator_lock_nested, which may avoid dropping
regulator_nesting_mutex in the uncontended path, so use it there.
TTM may be another user for this, where we could lock a buffer in a
fastpath with list locks held, without dropping all locks we hold.
[peterz: rework actual ww_mutex_trylock() implementations]
Signed-off-by: Maarten Lankhorst <maarten.lankhorst@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/YUBGPdDDjKlxAuXJ@hirez.programming.kicks-ass.net
Readers of rwbase can lock and unlock without taking any inner lock, if
that happens, we need the ordering provided by atomic operations to
satisfy the ordering semantics of lock/unlock. Without that, considering
the follow case:
{ X = 0 initially }
CPU 0 CPU 1
===== =====
rt_write_lock();
X = 1
rt_write_unlock():
atomic_add(READER_BIAS - WRITER_BIAS, ->readers);
// ->readers is READER_BIAS.
rt_read_lock():
if ((r = atomic_read(->readers)) < 0) // True
atomic_try_cmpxchg(->readers, r, r + 1); // succeed.
<acquire the read lock via fast path>
r1 = X; // r1 may be 0, because nothing prevent the reordering
// of "X=1" and atomic_add() on CPU 1.
Therefore audit every usage of atomic operations that may happen in a
fast path, and add necessary barriers.
Signed-off-by: Boqun Feng <boqun.feng@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20210909110203.953991276@infradead.org
The code in rwbase_write_lock() is a little non-obvious vs the
read+set 'trylock', extract the sequence into a helper function to
clarify the code.
This also provides a single site to fix fast-path ordering.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/YUCq3L+u44NDieEJ@hirez.programming.kicks-ass.net
Noticed while looking at the readers race.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Will Deacon <will@kernel.org>
Link: https://lkml.kernel.org/r/20210909110203.828203010@infradead.org
- Add missing fields and remove some duplicate fields when printing a perf_event_attr.
- Fix hybrid config terms list corruption.
- Update kernel header copies, some resulted in new kernel features being
automagically added to 'perf trace' syscall/tracepoint argument id->string translators.
- Add a file generated during the documentation build to .gitignore.
- Add an option to build without libbfd, as some distros, like Debian consider
its ABI unstable.
- Add support to print a textual representation of IBS raw sample data in 'perf report'.
- Fix bpf 'perf test' sample mismatch reporting
- Fix passing arguments to stackcollapse report in a 'perf script' python script.
- Allow build-id with trailing zeros.
- Look for ImageBase in PE file to compute .text offset.
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQR2GiIUctdOfX2qHhGyPKLppCJ+JwUCYT0+hwAKCRCyPKLppCJ+
JxcPAQDO+iCKK/sF3TVN8f0T8xkFD6y8krBXPAtQHCAhVBeiqAD9F4R0VMX6nwy3
8rJnsNd2ODjywgFBO4uPy0N2fxBWjwo=
=/hH1
-----END PGP SIGNATURE-----
Merge tag 'perf-tools-for-v5.15-2021-09-11' of git://git.kernel.org/pub/scm/linux/kernel/git/acme/linux
Pull more perf tools updates from Arnaldo Carvalho de Melo:
- Add missing fields and remove some duplicate fields when printing a
perf_event_attr.
- Fix hybrid config terms list corruption.
- Update kernel header copies, some resulted in new kernel features
being automagically added to 'perf trace' syscall/tracepoint argument
id->string translators.
- Add a file generated during the documentation build to .gitignore.
- Add an option to build without libbfd, as some distros, like Debian
consider its ABI unstable.
- Add support to print a textual representation of IBS raw sample data
in 'perf report'.
- Fix bpf 'perf test' sample mismatch reporting
- Fix passing arguments to stackcollapse report in a 'perf script'
python script.
- Allow build-id with trailing zeros.
- Look for ImageBase in PE file to compute .text offset.
* tag 'perf-tools-for-v5.15-2021-09-11' of git://git.kernel.org/pub/scm/linux/kernel/git/acme/linux: (25 commits)
tools headers UAPI: Update tools's copy of drm.h headers
tools headers UAPI: Sync drm/i915_drm.h with the kernel sources
tools headers UAPI: Sync linux/fs.h with the kernel sources
tools headers UAPI: Sync linux/in.h copy with the kernel sources
perf tools: Add an option to build without libbfd
perf tools: Allow build-id with trailing zeros
perf tools: Fix hybrid config terms list corruption
perf tools: Factor out copy_config_terms() and free_config_terms()
perf tools: Fix perf_event_attr__fprintf() missing/dupl. fields
perf tools: Ignore Documentation dependency file
perf bpf: Provide a weak btf__load_from_kernel_by_id() for older libbpf versions
tools include UAPI: Update linux/mount.h copy
perf beauty: Cover more flags in the move_mount syscall argument beautifier
tools headers UAPI: Sync linux/prctl.h with the kernel sources
tools include UAPI: Sync sound/asound.h copy with the kernel sources
tools headers UAPI: Sync linux/kvm.h with the kernel sources
tools headers UAPI: Sync x86's asm/kvm.h with the kernel sources
perf report: Add support to print a textual representation of IBS raw sample data
perf report: Add tools/arch/x86/include/asm/amd-ibs.h
perf env: Add perf_env__cpuid, perf_env__{nr_}pmu_mappings
...
- Remove DEFINE_SMP_CALL_CACHE_FUNCTION() which is a left over of the
original hotplug code and now causing trouble with the ARM64 cache
topology setup due to the pointless SMP function call. It's not longer
required as the hotplug callbacks are guaranteed to be invoked on the
upcoming CPU.
- Remove the deprecated and now unused CPU hotplug functions
- Rewrite the CPU hotplug API documentation
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmE+VhMTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoUZmD/9Q7XO8EgfitIh3sMO53spOv6ql1aWK
1bHZmnFZL/txdIJiEgouf7wV4YgPgadJtZcK6//V/wGhYj5dB+z6otj+LwdrjjQT
dgaXN6a27My0kvoyNCP2V3Xc9g6Q6XXAUadw+d7aWGqZvg5yAr+AdRgGmK3Ct2a1
AsNjiG1HJsBMWv6eKnweOwfE6FbQpwFH4vXlldQi59QaMIOteMUwx9f64ZNyZWSe
FNqVF2EVmLEmjMzhWSBzYqVdZBEUuEsPM2Y2UYqGAs7Wtwttoupredvplzsf2uJ/
sCrDQspdgZsiD1EnjaSogLFUSfdRFd+9KvvChhuR8FSjPMNU+cWf62SAjVlUGIpI
QI2G6S7707LPbun8KSlbqsXD2zKmZ9U+SkTdwJFpRhkket73uVYtuuR0PjSxUrxt
BaULcpjKjf2joMji7BMvY7AR5bwnbDS+NUtqZpqhaUYHCjOZrPglGeUlLqth5epw
SMP21BQq8Ys9M5/6dA3ATUYaE1vJb2ES7jn6sULVJ9e9RuupdCl3KfdGCaH9fiWg
dfcowI9ACI+ZZ4OPJVvR/nlEVnK3GREYS5w3S/Ay1kLYpAfvGH2l3idzclfHMvWT
ywB2uyRKowAT/Ig7mL7t3Y7ZOMLTzG8KxPfl8ar8Ja+oqDbEL5VOnIQXev3gxBgC
1f4K8WUVGl+xXQ==
=uAYt
-----END PGP SIGNATURE-----
Merge tag 'smp-urgent-2021-09-12' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull CPU hotplug updates from Thomas Gleixner:
"Updates for the SMP and CPU hotplug:
- Remove DEFINE_SMP_CALL_CACHE_FUNCTION() which is a left over of the
original hotplug code and now causing trouble with the ARM64 cache
topology setup due to the pointless SMP function call.
It's not longer required as the hotplug callbacks are guaranteed to
be invoked on the upcoming CPU.
- Remove the deprecated and now unused CPU hotplug functions
- Rewrite the CPU hotplug API documentation"
* tag 'smp-urgent-2021-09-12' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
Documentation: core-api/cpuhotplug: Rewrite the API section
cpu/hotplug: Remove deprecated CPU-hotplug functions.
thermal: Replace deprecated CPU-hotplug functions.
drivers: base: cacheinfo: Get rid of DEFINE_SMP_CALL_CACHE_FUNCTION()