One fix for a boot hang on some Freescale machines when PREEMPT is enabled.
Two CVE fixes for bugs in our handling of FP registers and transactional memory,
both of which can result in corrupted FP state, or FP state leaking between
processes.
Thanks to:
Chris Packham, Christophe Leroy, Gustavo Romero, Michael Neuling.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCAAxFiEEJFGtCPCthwEv2Y/bUevqPMjhpYAFAl1x06oTHG1wZUBlbGxl
cm1hbi5pZC5hdQAKCRBR6+o8yOGlgCZzD/90EyaWJVS8WPZopoIdnuOfB/F7EZFY
Lhgd640S1p4o8BUZaQ1T19JOzp6HlO38myOptBufY0BsIJW0M2GwngnBPzSPW8r7
ImTTf5cU0CDe2m3OJdfBrVpnGmUsmoWxwrsFJZ9wbsXhCwbbUzOUuxD/B9wBIGi/
sPpTlaYZBhu3cKs9EWPKAODJhtEf55Q1c62gftfj8Y5u8uxQGinYInCghAUr+3Zv
uCw1CSxOV7yGxfgc1sbOptidOiG4Pljw4EDCUFLpjWTYgPVERASbPHs3C4xuAHGq
IYuNDUJbwrxMU9BKLFzvL4MKWa5XtzLE34oY8SuyyVAbIQTszgCn2rIwlJXH88PO
UtId9accmS+dy2lRI+90dC0qeTgUUIZXS1NF0cl5YNRN0TlMyjHL2/sRxCZF2svF
EaGNjTQLAsfX0ccO9xQr8+KBSfFURMEkO8QQAR0lzJmIgbvSuzfjlZpbcYd2Nqfe
EiYU4GeAQSn14vi0ZMdRWxc1rki9pPhGkrUwToDALsiEedRB03olM955uecf7fra
S8MzHFBYh8Apd/lsAj53uAbL2rIHDJ5+6/eezYp7bRbo6FlvWDs9kmYTX3p3ixq1
Q4gDHfbwnWxxhjUBri5QNZF9YHgkyGPURGpIbdXk9R4Hc7ihQWwDBcSrueca51Ug
m97SLF5/+yWx0A==
=C+wa
-----END PGP SIGNATURE-----
Merge tag 'powerpc-5.3-5' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc fixes from Michael Ellerman:
"One fix for a boot hang on some Freescale machines when PREEMPT is
enabled.
Two CVE fixes for bugs in our handling of FP registers and
transactional memory, both of which can result in corrupted FP state,
or FP state leaking between processes.
Thanks to: Chris Packham, Christophe Leroy, Gustavo Romero, Michael
Neuling"
* tag 'powerpc-5.3-5' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux:
powerpc/tm: Fix restoring FP/VMX facility incorrectly on interrupts
powerpc/tm: Fix FP/VMX unavailable exceptions inside a transaction
powerpc/64e: Drop stale call to smp_processor_id() which hangs SMP startup
Commit 2874c5fd28 ("treewide: Replace GPLv2 boilerplate/reference with
SPDX - rule 152") left an empty comment in machdep.h, as the boilerplate
was the only text in the comment. Remove the empty comment.
Signed-off-by: Jordan Niethe <jniethe5@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190813051212.6387-1-jniethe5@gmail.com
Commit <684d984038aa> ('powerpc/powernv: Add debugfs interface for
imc-mode and imc') added debugfs interface for the nest imc pmu
devices to support changing of different ucode modes. Primarily adding
this capability for debug. But when doing so, the code did not
consider the case of cpu-less nodes. So when reading the _cmd_ or
_mode_ file of a cpu-less node will create this crash.
Faulting instruction address: 0xc0000000000d0d58
Oops: Kernel access of bad area, sig: 11 [#1]
...
CPU: 67 PID: 5301 Comm: cat Not tainted 5.2.0-rc6-next-20190627+ #19
NIP: c0000000000d0d58 LR: c00000000049aa18 CTR:c0000000000d0d50
REGS: c00020194548f9e0 TRAP: 0300 Not tainted (5.2.0-rc6-next-20190627+)
MSR: 9000000000009033 <SF,HV,EE,ME,IR,DR,RI,LE> CR:28022822 XER: 00000000
CFAR: c00000000049aa14 DAR: 000000000003fc08 DSISR:40000000 IRQMASK: 0
...
NIP imc_mem_get+0x8/0x20
LR simple_attr_read+0x118/0x170
Call Trace:
simple_attr_read+0x70/0x170 (unreliable)
debugfs_attr_read+0x6c/0xb0
__vfs_read+0x3c/0x70
vfs_read+0xbc/0x1a0
ksys_read+0x7c/0x140
system_call+0x5c/0x70
Patch fixes the issue with a more robust check for vbase to NULL.
Before patch, ls output for the debugfs imc directory
# ls /sys/kernel/debug/powerpc/imc/
imc_cmd_0 imc_cmd_251 imc_cmd_253 imc_cmd_255 imc_mode_0 imc_mode_251 imc_mode_253 imc_mode_255
imc_cmd_250 imc_cmd_252 imc_cmd_254 imc_cmd_8 imc_mode_250 imc_mode_252 imc_mode_254 imc_mode_8
After patch, ls output for the debugfs imc directory
# ls /sys/kernel/debug/powerpc/imc/
imc_cmd_0 imc_cmd_8 imc_mode_0 imc_mode_8
Actual bug here is that, we have two loops with potentially different
loop counts. That is, in imc_get_mem_addr_nest(), loop count is
obtained from the dt entries. But in case of export_imc_mode_and_cmd(),
loop was based on for_each_nid() count. Patch fixes the loop count in
latter based on the struct mem_info. Ideally it would be better to
have array size in struct imc_pmu.
Fixes: 684d984038 ('powerpc/powernv: Add debugfs interface for imc-mode and imc')
Reported-by: Qian Cai <cai@lca.pw>
Suggested-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Madhavan Srinivasan <maddy@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190827101635.6942-1-maddy@linux.vnet.ibm.com
Introduce two options to control the use of the tlbie instruction. A
boot time option which completely disables the kernel using the
instruction, this is currently incompatible with HASH MMU, KVM, and
coherent accelerators.
And a debugfs option can be switched at runtime and avoids using tlbie
for invalidating CPU TLBs for normal process and kernel address
mappings. Coherent accelerators are still managed with tlbie, as will
KVM partition scope translations.
Cross-CPU TLB flushing is implemented with IPIs and tlbiel. This is a
basic implementation which does not attempt to make any optimisation
beyond the tlbie implementation.
This is useful for performance testing among other things. For example
in certain situations on large systems, using IPIs may be faster than
tlbie as they can be directed rather than broadcast. Later we may also
take advantage of the IPIs to do more interesting things such as trim
the mm cpumask more aggressively.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190902152931.17840-7-npiggin@gmail.com
The various translation structure invalidations performed in early boot
when the MMU is off are not required, because everything is invalidated
immediately before a CPU first enables its MMU (see early_init_mmu
and early_init_mmu_secondary).
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190902152931.17840-6-npiggin@gmail.com
Radix guests are responsible for managing their own translation caches,
so make them match bare metal radix and hash, and make each CPU flush
all its translations right before enabling its MMU.
Radix guests may not flush partition scope translations, so in
tlbiel_all, make these flushes conditional on CPU_FTR_HVMODE. Process
scope translations are the only type visible to the guest.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190902152931.17840-5-npiggin@gmail.com
There should be no functional changes.
- Use calls to existing radix_tlb.c functions in flush_partition.
- Rename radix__flush_tlb_lpid to radix__flush_all_lpid and similar,
because they flush everything, matching flush_all_mm rather than
flush_tlb_mm for the lpid.
- Remove some unused radix_tlb.c flush primitives.
Signed-off: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190902152931.17840-3-npiggin@gmail.com
This callback is only required because the partition table init comes
before process table allocation on powernv (aka bare metal aka native).
Change the order to allocate the process table first, and remove the
callback.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190902152931.17840-2-npiggin@gmail.com
Add an interface to debugfs for generating an EEH event on a given device.
This works by disabling memory accesses to and from the device by setting
the PCI_COMMAND register (or the VF Memory Space Enable on the parent PF).
This is a somewhat portable alternative to using the platform specific
error injection mechanisms since those tend to be either hard to use, or
straight up broken. For pseries the interfaces also requires the use of
/dev/mem which is probably going to go away in a post-LOCKDOWN world
(and it's a horrific hack to begin with) so moving to a kernel-provided
interface makes sense and provides a sane, cross-platform interface for
userspace so we can write more generic testing scripts.
Signed-off-by: Oliver O'Halloran <oohall@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190903101605.2890-14-oohall@gmail.com
Detecting an frozen EEH PE usually occurs when an MMIO load returns a 0xFFs
response. When performing EEH testing using the EEH error injection feature
available on some platforms there is no simple way to kick-off the kernel's
recovery process since any accesses from userspace (usually /dev/mem) will
bypass the MMIO helpers in the kernel which check if a 0xFF response is due
to an EEH freeze or not.
If a device contains a 0xFF byte in it's config space it's possible to
trigger the recovery process via config space read from userspace, but this
is not a reliable method. If a driver is bound to the device an in use it
will frequently trigger the MMIO check, but this is also inconsistent.
To solve these problems this patch adds a debugfs file called
"eeh_dev_check" which accepts a <domain>:<bus>:<dev>.<fn> string and runs
eeh_dev_check_failure() on it. This is the same check that's done when the
kernel gets a 0xFF result from an config or MMIO read with the added
benifit that it can be reliably triggered from userspace.
Signed-off-by: Oliver O'Halloran <oohall@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190903101605.2890-13-oohall@gmail.com
I am the RAS team. Hear me roar.
Roar.
On a more serious note, being able to locate failed devices can be helpful.
Set the attention indicator if the slot supports it once we've determined
the device is present and only clear it if the device is fully recovered.
Signed-off-by: Oliver O'Halloran <oohall@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190903101605.2890-12-oohall@gmail.com
Currently we check that an IODA2 compatible PHB is upstream of this slot.
This is mainly to avoid pnv_php creating slots for the various "virtual
PHBs" that we create for NVLink. There's no real need for this restriction
so allow it on IODA3.
Signed-off-by: Oliver O'Halloran <oohall@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190903101605.2890-10-oohall@gmail.com
When we reset PCI devices managed by a hotplug driver the reset may
generate spurious hotplug events that cause the PCI device we're resetting
to be torn down accidently. This is a problem for EEH (when the driver is
EEH aware) since we want to leave the OS PCI device state intact so that
the device can be re-set without losing any resources (network, disks,
etc) provided by the driver.
Generic PCI code provides the pci_bus_error_reset() function to handle
resetting a PCI Device (or bus) by using the reset method provided by the
hotplug slot driver. We can use this function if the EEH core has
requested a hot reset (common case) without tripping over the hotplug
driver.
Signed-off-by: Oliver O'Halloran <oohall@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190903101605.2890-8-oohall@gmail.com
Support for switching CAPI cards into and out of CAPI mode was removed a
while ago. Drop the comment since it's no longer relevant.
Signed-off-by: Oliver O'Halloran <oohall@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190903101605.2890-7-oohall@gmail.com
Currently we print a stack trace in the event handler to help with
debugging EEH issues. In the case of suprise hot-unplug this is unneeded,
so we want to prevent printing the stack trace unless we know it's due to
an actual device error. To accomplish this, we can save a stack trace at
the point of detection and only print it once the EEH recovery handler has
determined the freeze was due to an actual error.
Since the whole point of this is to prevent spurious EEH output we also
move a few prints out of the detection thread, or mark them as pr_debug
so anyone interested can get output from the eeh_check_dev_failure()
if they want.
Signed-off-by: Oliver O'Halloran <oohall@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190903101605.2890-6-oohall@gmail.com
When a device is surprise removed while undergoing IO we will probably
get an EEH PE freeze due to MMIO timeouts and other errors. When a freeze
is detected we send a recovery event to the EEH worker thread which will
notify drivers, and perform recovery as needed.
In the event of a hot-remove we don't want recovery to occur since there
isn't a device to recover. The recovery process is fairly long due to
the number of wait states (required by PCIe) which causes problems when
devices are removed and replaced (e.g. hot swapping of U.2 NVMe drives).
To determine if we need to skip the recovery process we can use the
get_adapter_state() operation of the hotplug_slot to determine if the
slot contains a device or not, and if the slot is empty we can skip
recovery entirely.
One thing to note is that the slot being EEH frozen does not prevent the
hotplug driver from working. We don't have the EEH recovery thread
remove any of the devices since it's assumed that the hotplug driver
will handle tearing down the slot state.
Signed-off-by: Oliver O'Halloran <oohall@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190903101605.2890-5-oohall@gmail.com
If a device is torn down by a hotplug slot driver it's marked as removed
and marked as permaantly failed. There's no point in trying to recover a
permernantly failed device so it should be considered un-actionable.
Signed-off-by: Oliver O'Halloran <oohall@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190903101605.2890-4-oohall@gmail.com
When hot-adding devices we rely on the hotplug driver to create pci_dn's
for the devices under the hotplug slot. Converse, when hot-removing the
driver will remove the pci_dn's that it created. This is a problem because
the pci_dev is still live until it's refcount drops to zero. This can
happen if the driver is slow to tear down it's internal state. Ideally, the
driver would not attempt to perform any config accesses to the device once
it's been marked as removed, but sometimes it happens. As a result, we
might attempt to access the pci_dn for a device that has been torn down and
the kernel may crash as a result.
To fix this, don't free the pci_dn unless the corresponding pci_dev has
been released. If the pci_dev is still live, then we mark the pci_dn with
a flag that indicates the pci_dev's release function should free it.
Signed-off-by: Oliver O'Halloran <oohall@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190903101605.2890-3-oohall@gmail.com
When the last device in an eeh_pe is removed the eeh_pe structure itself
(and any empty parents) are freed since they are no longer needed. This
results in a crash when a hotplug driver is involved since the following
may occur:
1. Device is suprise removed.
2. Driver performs an MMIO, which fails and queues and eeh_event.
3. Hotplug driver receives a hotplug interrupt and removes any
pci_devs that were under the slot.
4. pci_dev is torn down and the eeh_pe is freed.
5. The EEH event handler thread processes the eeh_event and crashes
since the eeh_pe pointer in the eeh_event structure is no
longer valid.
Crashing is generally considered poor form. Instead of doing that use
the fact PEs are marked as EEH_PE_INVALID to keep them around until the
end of the recovery cycle, at which point we can safely prune any empty
PEs.
Signed-off-by: Oliver O'Halloran <oohall@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190903101605.2890-2-oohall@gmail.com
CONFIG_SHELL falls back to sh when bash is not installed on the system,
but nobody is testing such a case since bash is usually installed.
So, shell scripts invoked by CONFIG_SHELL are only tested with bash.
It makes it difficult to test whether the hashbang #!/bin/sh is real.
For example, #!/bin/sh in arch/powerpc/kernel/prom_init_check.sh is
false. (I fixed it up)
Besides, some shell scripts invoked by CONFIG_SHELL use bash-extension
and #!/bin/bash is specified as the hashbang, while CONFIG_SHELL may
not always be set to bash.
Probably, the right thing to do is to introduce BASH, which is bash by
default, and always set CONFIG_SHELL to sh. Replace $(CONFIG_SHELL)
with $(BASH) for bash scripts.
If somebody tries to add bash-extension to a #!/bin/sh script, it will
be caught in testing because /bin/sh is a symlink to dash on some major
distributions.
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
When in userspace and MSR FP=0 the hardware FP state is unrelated to
the current process. This is extended for transactions where if tbegin
is run with FP=0, the hardware checkpoint FP state will also be
unrelated to the current process. Due to this, we need to ensure this
hardware checkpoint is updated with the correct state before we enable
FP for this process.
Unfortunately we get this wrong when returning to a process from a
hardware interrupt. A process that starts a transaction with FP=0 can
take an interrupt. When the kernel returns back to that process, we
change to FP=1 but with hardware checkpoint FP state not updated. If
this transaction is then rolled back, the FP registers now contain the
wrong state.
The process looks like this:
Userspace: Kernel
Start userspace
with MSR FP=0 TM=1
< -----
...
tbegin
bne
Hardware interrupt
---- >
<do_IRQ...>
....
ret_from_except
restore_math()
/* sees FP=0 */
restore_fp()
tm_active_with_fp()
/* sees FP=1 (Incorrect) */
load_fp_state()
FP = 0 -> 1
< -----
Return to userspace
with MSR TM=1 FP=1
with junk in the FP TM checkpoint
TM rollback
reads FP junk
When returning from the hardware exception, tm_active_with_fp() is
incorrectly making restore_fp() call load_fp_state() which is setting
FP=1.
The fix is to remove tm_active_with_fp().
tm_active_with_fp() is attempting to handle the case where FP state
has been changed inside a transaction. In this case the checkpointed
and transactional FP state is different and hence we must restore the
FP state (ie. we can't do lazy FP restore inside a transaction that's
used FP). It's safe to remove tm_active_with_fp() as this case is
handled by restore_tm_state(). restore_tm_state() detects if FP has
been using inside a transaction and will set load_fp and call
restore_math() to ensure the FP state (checkpoint and transaction) is
restored.
This is a data integrity problem for the current process as the FP
registers are corrupted. It's also a security problem as the FP
registers from one process may be leaked to another.
Similarly for VMX.
A simple testcase to replicate this will be posted to
tools/testing/selftests/powerpc/tm/tm-poison.c
This fixes CVE-2019-15031.
Fixes: a7771176b4 ("powerpc: Don't enable FP/Altivec if not checkpointed")
Cc: stable@vger.kernel.org # 4.15+
Signed-off-by: Gustavo Romero <gromero@linux.ibm.com>
Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190904045529.23002-2-gromero@linux.vnet.ibm.com
When we take an FP unavailable exception in a transaction we have to
account for the hardware FP TM checkpointed registers being
incorrect. In this case for this process we know the current and
checkpointed FP registers must be the same (since FP wasn't used
inside the transaction) hence in the thread_struct we copy the current
FP registers to the checkpointed ones.
This copy is done in tm_reclaim_thread(). We use thread->ckpt_regs.msr
to determine if FP was on when in userspace. thread->ckpt_regs.msr
represents the state of the MSR when exiting userspace. This is setup
by check_if_tm_restore_required().
Unfortunatley there is an optimisation in giveup_all() which returns
early if tsk->thread.regs->msr (via local variable `usermsr`) has
FP=VEC=VSX=SPE=0. This optimisation means that
check_if_tm_restore_required() is not called and hence
thread->ckpt_regs.msr is not updated and will contain an old value.
This can happen if due to load_fp=255 we start a userspace process
with MSR FP=1 and then we are context switched out. In this case
thread->ckpt_regs.msr will contain FP=1. If that same process is then
context switched in and load_fp overflows, MSR will have FP=0. If that
process now enters a transaction and does an FP instruction, the FP
unavailable will not update thread->ckpt_regs.msr (the bug) and MSR
FP=1 will be retained in thread->ckpt_regs.msr. tm_reclaim_thread()
will then not perform the required memcpy and the checkpointed FP regs
in the thread struct will contain the wrong values.
The code path for this happening is:
Userspace: Kernel
Start userspace
with MSR FP/VEC/VSX/SPE=0 TM=1
< -----
...
tbegin
bne
fp instruction
FP unavailable
---- >
fp_unavailable_tm()
tm_reclaim_current()
tm_reclaim_thread()
giveup_all()
return early since FP/VMX/VSX=0
/* ckpt MSR not updated (Incorrect) */
tm_reclaim()
/* thread_struct ckpt FP regs contain junk (OK) */
/* Sees ckpt MSR FP=1 (Incorrect) */
no memcpy() performed
/* thread_struct ckpt FP regs not fixed (Incorrect) */
tm_recheckpoint()
/* Put junk in hardware checkpoint FP regs */
....
< -----
Return to userspace
with MSR TM=1 FP=1
with junk in the FP TM checkpoint
TM rollback
reads FP junk
This is a data integrity problem for the current process as the FP
registers are corrupted. It's also a security problem as the FP
registers from one process may be leaked to another.
This patch moves up check_if_tm_restore_required() in giveup_all() to
ensure thread->ckpt_regs.msr is updated correctly.
A simple testcase to replicate this will be posted to
tools/testing/selftests/powerpc/tm/tm-poison.c
Similarly for VMX.
This fixes CVE-2019-15030.
Fixes: f48e91e87e ("powerpc/tm: Fix FP and VMX register corruption")
Cc: stable@vger.kernel.org # 4.12+
Signed-off-by: Gustavo Romero <gromero@linux.vnet.ibm.com>
Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190904045529.23002-1-gromero@linux.vnet.ibm.com
Most dma_map_ops instances are IOMMUs that work perfectly fine in 32-bits
of IOVA space, and the generic direct mapping code already provides its
own routines that is intelligent based on the amount of memory actually
present. Wire up the dma-direct routine for the ARM direct mapping code
as well, and otherwise default to the constant 32-bit mask. This way
we only need to override it for the occasional odd IOMMU that requires
64-bit IOVA support, or IOMMU drivers that are more efficient if they
can fall back to the direct mapping.
Signed-off-by: Christoph Hellwig <hch@lst.de>
While the default ->mmap and ->get_sgtable implementations work for the
majority of our dma_map_ops impementations they are inherently safe
for others that don't use the page allocator or CMA and/or use their
own way of remapping not covered by the common code. So remove the
defaults if these methods are not wired up, but instead wire up the
default implementations for all safe instances.
Fixes: e1c7e32453 ("dma-mapping: always provide the dma_map_ops based implementation")
Signed-off-by: Christoph Hellwig <hch@lst.de>
* for-next/52-bit-kva: (25 commits)
Support for 52-bit virtual addressing in kernel space
* for-next/cpu-topology: (9 commits)
Move CPU topology parsing into core code and add support for ACPI 6.3
* for-next/error-injection: (2 commits)
Support for function error injection via kprobes
* for-next/perf: (8 commits)
Support for i.MX8 DDR PMU and proper SMMUv3 group validation
* for-next/psci-cpuidle: (7 commits)
Move PSCI idle code into a new CPUidle driver
* for-next/rng: (4 commits)
Support for 'rng-seed' property being passed in the devicetree
* for-next/smpboot: (3 commits)
Reduce fragility of secondary CPU bringup in debug configurations
* for-next/tbi: (10 commits)
Introduce new syscall ABI with relaxed requirements for pointer tags
* for-next/tlbi: (6 commits)
Handle spurious page faults arising from kernel space
This avoids 3 loads in the radix page fault case, 1 load in the
hash fault case, and 2 loads in the hash miss page fault case.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190802105709.27696-37-npiggin@gmail.com
It is clever, but the small code saving is not worth the spaghetti of
jumping to a label in an expanded macro, particularly when the label
is just a number rather than a descriptive name.
So expand the INT_COMMON macro twice, once for the stack and no stack
cases, and branch to those. The slight code size increase is worth
the improved clarity of branches for this non-performance critical
code.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190802105709.27696-35-npiggin@gmail.com
This better reflects the order in which the code is executed.
No generated code change except BUG line number constants.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190802105709.27696-34-npiggin@gmail.com
Move DAR and DSISR saving to pt_regs into INT_COMMON. Also add an
option to expand RECONCILE_IRQ_STATE.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190802105709.27696-33-npiggin@gmail.com
Merge EXCEPTION_PROLOG_COMMON_3 into EXCEPTION_PROLOG_COMMON_2.
No generated code change except BUG line number constants.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190802105709.27696-29-npiggin@gmail.com
Replace the 4 variants of cpp macros with one gas macro.
No generated code change except BUG line number constants.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190802105709.27696-27-npiggin@gmail.com
All other virt handlers have the prolog code in the virt vector rather
than branch to the real vector. Follow this pattern in the denorm virt
handler.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190802105709.27696-25-npiggin@gmail.com
EXCEPTION_PROLOG_0 and _1 have only a single caller, so expand them
into it.
Rename EXCEPTION_PROLOG_2_REAL to INT_SAVE_SRR_AND_JUMP and
EXCEPTION_PROLOG_2_VIRT to INT_VIRT_SAVE_SRR_AND_JUMP, which are
more descriptive.
No generated code change except BUG line number constants.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190802105709.27696-24-npiggin@gmail.com
This creates a single macro that generates the exception prolog code,
with variants specified by arguments, rather than assorted nested
macros for different variants.
The increasing length of macro argument list is not nice to read or
modify, but this is a temporary condition that will be improved in
later changes.
No generated code change except BUG line number constants and label
names.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190802105709.27696-23-npiggin@gmail.com
This vector is not used by any supported processor, and has been
implemented as an unknown exception going back to 2.6. There is
nothing special about 0xb00, so remove it like other unused
vectors.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190802105709.27696-22-npiggin@gmail.com
The perf virt handler uses EXCEPTION_PROLOG_2_REAL rather than _VIRT.
In practice this is okay because the _REAL variant is usable by virt
mode interrupts, but should be fixed (and is a performance win).
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190802105709.27696-21-npiggin@gmail.com
Add EXC_HV_OR_STD and use it to consolidate the 0x500 external
interrupt.
Executed code is unchanged.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190802105709.27696-20-npiggin@gmail.com
The head-64.h code should deal only with the head code sections
and offset calculations.
No generated code change except BUG line number constants.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190802105709.27696-19-npiggin@gmail.com
This buglet goes back to before the 64/32 arch merge, but it does not
seem to have had practical consequences because bad_page_fault does
not use the 2nd argument, but rather regs->dar/nip.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190802105709.27696-18-npiggin@gmail.com
Short forward and backward branches can be given number labels,
but larger significant divergences in code path a more readable
if they're given descriptive names.
Also adjusts a comment to account for guest delivery.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190802105709.27696-17-npiggin@gmail.com
machine_check_early_common now branches to machine_check_handle_early
which is its only caller.
Move interleaving code out of the way, and remove the branch.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190802105709.27696-16-npiggin@gmail.com
Similarly to the previous change, all callers of the unrecoverable
handler run relocated so can reach it with a direct branch. This makes
it easy to move out of line, which makes the "normal" path less
cluttered and easier to follow.
MSR[ME] manipulation still requires the rfi, so that is moved out of
line to its own function.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190802105709.27696-15-npiggin@gmail.com
machine_check_handle_early_common can reach machine_check_handle_early
directly now that it runs at the relocated address, so just branch
directly.
The rfi sequence is required to enable MSR[ME] but that step is moved
into a helper function, making the code easier to follow.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190802105709.27696-14-npiggin@gmail.com
Following convention, move the tramp code (unrelocated) above the
common handlers (relocated).
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190802105709.27696-13-npiggin@gmail.com
Follow the pattern of sreset and HMI handlers more closely: use
EXCEPTION_PROLOG_COMMON_1 rather than open-coding it, and run the
handler at the relocated location.
This helps later simplification and code sharing.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190802105709.27696-12-npiggin@gmail.com
The powernv machine check handler copes with taking a MCE from one of
three contexts, guest, kernel, and user. In each case the early
handler runs first on a special stack, then:
- The guest case branches to the KVM interrupt handler (via standard
interrupt macros).
- The user case will run the "late" handler which is like a normal
interrupt that runs in virtual mode and uses the regular kernel
stack.
- The kernel case queues the event and schedules it for processing
with irq work.
The last case is important, it must not enable virtual memory because
the MMU state may not be set up to deal with that (e.g., SLB might be
clear), it must not use the regular kernel stack for similar reasons
(e.g., might be in OPAL with OPAL stack in r1), and the kernel does
not expect anything to touch its stack if interrupts are disabled.
The pseries handler does not do this queueing, but instead it always
runs the late handler for host MCEs, which has some of the same
problems.
Now that pseries is using machine_check_events, change it to do the
same as powernv and queue events for kernel MCEs.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190802105709.27696-11-npiggin@gmail.com
The common machine_check_event data structures and queues are mostly
platform independent, with powernv decoding SRR1/DSISR/etc., into
machine_check_event objects.
This patch converts pseries to use this infrastructure by decoding
fwnmi/rtas data into machine_check_event objects.
This allows queueing to be used by a subsequent change to delay the
virtual mode handling of machine checks that occur in kernel space
where it is unsafe to switch immediately to virtual mode, similarly
to powernv.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
[mpe: Fix implicit fallthrough warnings in mce_handle_error()]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190802105709.27696-10-npiggin@gmail.com
Re-use the code introduced in pseries to save and dump the contents
of the SLB in the case of an SLB involved machine check exception.
This patch also avoids allocating the SLB save array on pseries radix.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190802105709.27696-9-npiggin@gmail.com
Bare metal machine checks run an "early" handler in real mode before
running the main handler which reports the event.
The main handler runs exactly as a normal interrupt handler, after the
"windup" which sets registers back as they were at interrupt entry.
CFAR does not get restored by the windup code, so that will be wrong
when the handler is run.
Restore the CFAR to the saved value before running the late handler.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190802105709.27696-8-npiggin@gmail.com
This label has only one caller, so unwind the branch and move it
inline. The location of the comment is adjusted to match similar
one in system reset.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190802105709.27696-7-npiggin@gmail.com
Now that pseries with fwnmi registered runs the early machine check
handler, there is no good reason to special case the non-fwnmi case
and skip the early handler. Reducing the code and number of paths is
a top priority for asm code, it's better to handle this in C where
possible (and the pseries early handler is a no-op if fwnmi is not
registered).
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190802105709.27696-6-npiggin@gmail.com
The host kernel delivery case for powernv does RFI_TO_USER_OR_KERNEL,
but should just use RFI_TO_KERNEL which makes it clear this is not a
user case.
This is not a bug because RFI_TO_USER_OR_KERNEL deals with kernel
returns just fine.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190802105709.27696-5-npiggin@gmail.com
The machine_check_handle_early hypervisor guest test is skipped if
!HVMODE or MSR[HV]=0, which is wrong for PR or nested hypervisors
that could be running a guest in this state.
Test HSTATE_IN_GUEST up front and use that to branch out to the KVM
handler, then MSR[PR] alone can test for this kernel's userspace.
This matches all other interrupt handling.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190802105709.27696-4-npiggin@gmail.com
Enables running as a secure guest in platforms with an Ultravisor.
Signed-off-by: Ryan Grimm <grimm@linux.vnet.ibm.com>
Signed-off-by: Ram Pai <linuxram@us.ibm.com>
Signed-off-by: Thiago Jung Bauermann <bauerman@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190820021326.6884-17-bauerman@linux.ibm.com
SWIOTLB checks range of incoming CPU addresses to be bounced and sees if
the device can access it through its DMA window without requiring bouncing.
In such cases it just chooses to skip bouncing. But for cases like secure
guests on powerpc platform all addresses need to be bounced into the shared
pool of memory because the host cannot access it otherwise. Hence the need
to do the bouncing is not related to device's DMA window and use of bounce
buffers is forced by setting swiotlb_force.
Also, connect the shared memory conversion functions into the
ARCH_HAS_MEM_ENCRYPT hooks and call swiotlb_update_mem_attributes() to
convert SWIOTLB's memory pool to shared memory.
Signed-off-by: Anshuman Khandual <khandual@linux.vnet.ibm.com>
[ bauerman: Use ARCH_HAS_MEM_ENCRYPT hooks to share swiotlb memory pool. ]
Signed-off-by: Thiago Jung Bauermann <bauerman@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190820021326.6884-15-bauerman@linux.ibm.com
Secure guest memory is inacessible to devices so regular DMA isn't
possible.
In that case set devices' dma_map_ops to NULL so that the generic
DMA code path will use SWIOTLB to bounce buffers for DMA.
Signed-off-by: Thiago Jung Bauermann <bauerman@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190820021326.6884-14-bauerman@linux.ibm.com
Normally, the HV emulates some instructions like MSGSNDP, MSGCLRP
from a KVM guest. To emulate the instructions, it must first read
the instruction from the guest's memory and decode its parameters.
However for a secure guest (aka SVM), the page containing the
instruction is in secure memory and the HV cannot access directly.
It would need the Ultravisor (UV) to facilitate accessing the
instruction and parameters but the UV currently does not have
the support for such accesses.
Until the UV has such support, disable doorbells in SVMs. This might
incur a performance hit but that is yet to be quantified.
With this patch applied (needed only in SVMs not needed for HV) we
are able to launch SVM guests with multi-core support. Eg:
qemu -smp sockets=2,cores=2,threads=2.
Fix suggested by Benjamin Herrenschmidt. Thanks to input from
Paul Mackerras, Ram Pai and Michael Anderson.
Signed-off-by: Sukadev Bhattiprolu <sukadev@linux.ibm.com>
Signed-off-by: Thiago Jung Bauermann <bauerman@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190820021326.6884-13-bauerman@linux.ibm.com
User space might want to know it's running in a secure VM. It can't do
a mfmsr because mfmsr is a privileged instruction.
The solution here is to create a cpu attribute:
/sys/devices/system/cpu/svm
which will read 0 or 1 based on the S bit of the current CPU.
Signed-off-by: Ryan Grimm <grimm@linux.vnet.ibm.com>
Signed-off-by: Thiago Jung Bauermann <bauerman@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190820021326.6884-12-bauerman@linux.ibm.com
A new kernel deserves a clean slate. Any pages shared with the hypervisor
is unshared before invoking the new kernel. However there are exceptions.
If the new kernel is invoked to dump the current kernel, or if there is a
explicit request to preserve the state of the current kernel, unsharing
of pages is skipped.
NOTE: While testing crashkernel, make sure at least 256M is reserved for
crashkernel. Otherwise SWIOTLB allocation will fail and crash kernel will
fail to boot.
Signed-off-by: Ram Pai <linuxram@us.ibm.com>
Signed-off-by: Thiago Jung Bauermann <bauerman@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190820021326.6884-11-bauerman@linux.ibm.com
Secure guests need to share the DTL buffers with the hypervisor. To that
end, use a kmem_cache constructor which converts the underlying buddy
allocated SLUB cache pages into shared memory.
Signed-off-by: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Signed-off-by: Thiago Jung Bauermann <bauerman@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190820021326.6884-10-bauerman@linux.ibm.com
LPPACA structures need to be shared with the host. Hence they need to be in
shared memory. Instead of allocating individual chunks of memory for a
given structure from memblock, a contiguous chunk of memory is allocated
and then converted into shared memory. Subsequent allocation requests will
come from the contiguous chunk which will be always shared memory for all
structures.
While we are able to use a kmem_cache constructor for the Debug Trace Log,
LPPACAs are allocated very early in the boot process (before SLUB is
available) so we need to use a simpler scheme here.
Introduce helper is_svm_platform() which uses the S bit of the MSR to tell
whether we're running as a secure guest.
Signed-off-by: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Signed-off-by: Thiago Jung Bauermann <bauerman@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190820021326.6884-9-bauerman@linux.ibm.com
Helps document what the hard-coded number means.
Also take the opportunity to fix an #endif comment.
Suggested-by: Alexey Kardashevskiy <aik@linux.ibm.com>
Signed-off-by: Thiago Jung Bauermann <bauerman@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190820021326.6884-8-bauerman@linux.ibm.com
Protected Execution Facility (PEF) is an architectural change for
POWER 9 that enables Secure Virtual Machines (SVMs). When enabled,
PEF adds a new higher privileged mode, called Ultravisor mode, to
POWER architecture.
The hardware changes include the following:
* There is a new bit in the MSR that determines whether the current
process is running in secure mode, MSR(S) bit 41. MSR(S)=1, process
is in secure mode, MSR(s)=0 process is in normal mode.
* The MSR(S) bit can only be set by the Ultravisor.
* HRFID cannot be used to set the MSR(S) bit. If the hypervisor needs
to return to a SVM it must use an ultracall. It can determine if
the VM it is returning to is secure.
* The privilege of a process is now determined by three MSR bits,
MSR(S, HV, PR). In each of the tables below the modes are listed
from least privilege to highest privilege. The higher privilege
modes can access all the resources of the lower privilege modes.
**Secure Mode MSR Settings**
+---+---+---+---------------+
| S | HV| PR|Privilege |
+===+===+===+===============+
| 1 | 0 | 1 | Problem |
+---+---+---+---------------+
| 1 | 0 | 0 | Privileged(OS)|
+---+---+---+---------------+
| 1 | 1 | 0 | Ultravisor |
+---+---+---+---------------+
| 1 | 1 | 1 | Reserved |
+---+---+---+---------------+
**Normal Mode MSR Settings**
+---+---+---+---------------+
| S | HV| PR|Privilege |
+===+===+===+===============+
| 0 | 0 | 1 | Problem |
+---+---+---+---------------+
| 0 | 0 | 0 | Privileged(OS)|
+---+---+---+---------------+
| 0 | 1 | 0 | Hypervisor |
+---+---+---+---------------+
| 0 | 1 | 1 | Problem (HV) |
+---+---+---+---------------+
Signed-off-by: Sukadev Bhattiprolu <sukadev@linux.vnet.ibm.com>
Signed-off-by: Ram Pai <linuxram@us.ibm.com>
[ cclaudio: Update the commit message ]
Signed-off-by: Claudio Carvalho <cclaudio@linux.ibm.com>
Signed-off-by: Thiago Jung Bauermann <bauerman@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190820021326.6884-7-bauerman@linux.ibm.com
These functions are used when the guest wants to grant the hypervisor
access to certain pages.
Signed-off-by: Ram Pai <linuxram@us.ibm.com>
Signed-off-by: Thiago Jung Bauermann <bauerman@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190820021326.6884-6-bauerman@linux.ibm.com
Make the Enter-Secure-Mode (ESM) ultravisor call to switch the VM to secure
mode. Pass kernel base address and FDT address so that the Ultravisor is
able to verify the integrity of the VM using information from the ESM blob.
Add "svm=" command line option to turn on switching to secure mode.
Signed-off-by: Ram Pai <linuxram@us.ibm.com>
[ andmike: Generate an RTAS os-term hcall when the ESM ucall fails. ]
Signed-off-by: Michael Anderson <andmike@linux.ibm.com>
[ bauerman: Cleaned up the code a bit. ]
Signed-off-by: Thiago Jung Bauermann <bauerman@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190820021326.6884-5-bauerman@linux.ibm.com
For secure VMs, the signing tool will create a ticket called the "ESM blob"
for the Enter Secure Mode ultravisor call with the signatures of the kernel
and initrd among other things.
This adds support to the wrapper script for adding that blob via the "-e"
option to the zImage.pseries.
It also adds code to the zImage wrapper itself to retrieve and if necessary
relocate the blob, and pass its address to Linux via the device-tree, to be
later consumed by prom_init.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
[ bauerman: Minor adjustments to some comments. ]
Signed-off-by: Thiago Jung Bauermann <bauerman@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190820021326.6884-4-bauerman@linux.ibm.com
Introduce CONFIG_PPC_SVM to control support for secure guests and include
Ultravisor-related helpers when it is selected
Signed-off-by: Thiago Jung Bauermann <bauerman@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190820021326.6884-3-bauerman@linux.ibm.com
The ultravisor (UV) provides an in-memory console which follows the
OPAL in-memory console structure.
This patch extends the OPAL msglog code to initialize the UV memory
console and provide the "/sys/firmware/ultravisor/msglog" interface
for userspace to view the UV message log.
Signed-off-by: Claudio Carvalho <cclaudio@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Tested-by: Claudio Carvalho <cclaudio@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190828130521.26764-2-mpe@ellerman.id.au
This patch refactors the code in opal-msglog that operates on the OPAL
memory console in order to make it cleaner and also allow the reuse of
the new memcons_* functions.
Signed-off-by: Claudio Carvalho <cclaudio@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Tested-by: Claudio Carvalho <cclaudio@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190828130521.26764-1-mpe@ellerman.id.au
When an SVM makes an hypercall or incurs some other exception, the
Ultravisor usually forwards (a.k.a. reflects) the exceptions to the
Hypervisor. After processing the exception, Hypervisor uses the
UV_RETURN ultracall to return control back to the SVM.
The expected register state on entry to this ultracall is:
* Non-volatile registers are restored to their original values.
* If returning from an hypercall, register R0 contains the return value
(unlike other ultracalls) and, registers R4 through R12 contain any
output values of the hypercall.
* R3 contains the ultracall number, i.e UV_RETURN.
* If returning with a synthesized interrupt, R2 contains the
synthesized interrupt number.
Thanks to input from Paul Mackerras, Ram Pai and Mike Anderson.
Signed-off-by: Sukadev Bhattiprolu <sukadev@linux.vnet.ibm.com>
Signed-off-by: Claudio Carvalho <cclaudio@linux.ibm.com>
Acked-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190822034838.27876-8-cclaudio@linux.ibm.com
LDBAR is a per-thread SPR populated and used by the thread-imc pmu
driver to dump the data counter into memory. It contains memory along
with few other configuration bits. LDBAR is populated and enabled only
when any of the thread imc pmu events are monitored.
In ultravisor enabled systems, LDBAR becomes ultravisor privileged and
an attempt to write to it will cause a Hypervisor Emulation Assistance
interrupt.
In ultravisor enabled systems, the ultravisor is responsible to maintain
the LDBAR (e.g. save and restore it).
This restricts LDBAR access to only when ultravisor is disabled.
Signed-off-by: Claudio Carvalho <cclaudio@linux.ibm.com>
Reviewed-by: Ram Pai <linuxram@us.ibm.com>
Reviewed-by: Ryan Grimm <grimm@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190822034838.27876-7-cclaudio@linux.ibm.com
In ultravisor enabled systems, PTCR becomes ultravisor privileged only
for writing and an attempt to write to it will cause a Hypervisor
Emulation Assitance interrupt.
This patch uses the set_ptcr_when_no_uv() function to restrict PTCR
writing to only when ultravisor is disabled.
Signed-off-by: Claudio Carvalho <cclaudio@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190822034838.27876-6-cclaudio@linux.ibm.com
When Ultravisor (UV) is enabled, the partition table is stored in secure
memory and can only be accessed via the UV. The Hypervisor (HV) however
maintains a copy of the partition table in normal memory to allow Nest MMU
translations to occur (for normal VMs). The HV copy includes partition
table entries (PATE)s for secure VMs which would currently be unused
(Nest MMU translations cannot access secure memory) but they would be
needed as we add functionality.
This patch adds the UV_WRITE_PATE ucall which is used to update the PATE
for a VM (both normal and secure) when Ultravisor is enabled.
Signed-off-by: Michael Anderson <andmike@linux.ibm.com>
Signed-off-by: Madhavan Srinivasan <maddy@linux.vnet.ibm.com>
Signed-off-by: Ram Pai <linuxram@us.ibm.com>
[ cclaudio: Write the PATE in HV's table before doing that in UV's ]
Signed-off-by: Claudio Carvalho <cclaudio@linux.ibm.com>
Reviewed-by: Ryan Grimm <grimm@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190822034838.27876-5-cclaudio@linux.ibm.com
In PEF enabled systems, some of the resources which were previously
hypervisor privileged are now ultravisor privileged and controlled by
the ultravisor firmware.
This adds FW_FEATURE_ULTRAVISOR to indicate if PEF is enabled.
The host kernel can use FW_FEATURE_ULTRAVISOR, for instance, to skip
accessing resources (e.g. PTCR and LDBAR) in case PEF is enabled.
Signed-off-by: Claudio Carvalho <cclaudio@linux.ibm.com>
[ andmike: Device node name to "ibm,ultravisor" ]
Signed-off-by: Michael Anderson <andmike@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190822034838.27876-4-cclaudio@linux.ibm.com
The ultracalls (ucalls for short) allow the Secure Virtual Machines
(SVM)s and hypervisor to request services from the ultravisor such as
accessing a register or memory region that can only be accessed when
running in ultravisor-privileged mode.
This patch adds the ucall_norets() ultravisor call handler.
The specific service needed from an ucall is specified in register
R3 (the first parameter to the ucall). Other parameters to the
ucall, if any, are specified in registers R4 through R12.
Return value of all ucalls is in register R3. Other output values
from the ucall, if any, are returned in registers R4 through R12.
Each ucall returns specific error codes, applicable in the context
of the ucall. However, like with the PowerPC Architecture Platform
Reference (PAPR), if no specific error code is defined for a particular
situation, then the ucall will fallback to an erroneous
parameter-position based code. i.e U_PARAMETER, U_P2, U_P3 etc depending
on the ucall parameter that may have caused the error.
Every host kernel (powernv) needs to be able to do ucalls in case it
ends up being run in a machine with ultravisor enabled. Otherwise, the
kernel may crash early in boot trying to access ultravisor resources,
for instance, trying to set the partition table entry 0. Secure guests
also need to be able to do ucalls and its kernel may not have
CONFIG_PPC_POWERNV=y. For that reason, the ucall.S file is placed under
arch/powerpc/kernel.
If ultravisor is not enabled, the ucalls will be redirected to the
hypervisor which must handle/fail the call.
Thanks to inputs from Ram Pai and Michael Anderson.
Signed-off-by: Claudio Carvalho <cclaudio@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190822034838.27876-3-cclaudio@linux.ibm.com
Add the PowerPC name and the PPC_ELFNOTE_CAPABILITIES type in the
kernel binary ELF note. This type is a bitmap that can be used to
advertise kernel capabilities to userland.
This patch also defines PPCCAP_ULTRAVISOR_BIT as being the bit zero.
Suggested-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Claudio Carvalho <cclaudio@linux.ibm.com>
[ maxiwell: Define the 'PowerPC' type in the elfnote.h ]
Signed-off-by: Maxiwell S. Garcia <maxiwell@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190829155021.2915-2-maxiwell@linux.ibm.com
As now we have xchg_no_kill/tce_kill, these are not used anymore so
remove them.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190829085252.72370-6-aik@ozlabs.ru
This is the last implementation of iommu_table_ops::exchange() which
we are about to remove.
This implements xchg_no_kill() for pseries. Since it is paravirtual
platform, the hypervisor does TCE invalidations and we do not have
to deal with it here, hence no tce_kill() hook.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190829085252.72370-5-aik@ozlabs.ru
Invalidating a TCE cache entry for each updated TCE is quite expensive.
This makes use of the new iommu_table_ops::xchg_no_kill()/tce_kill()
callbacks to bring down the time spent in mapping a huge guest DMA window;
roughly 20s to 10s for each guest's 100GB of DMA space.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Acked-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190829085252.72370-3-aik@ozlabs.ru
At the moment updates in a TCE table are made by iommu_table_ops::exchange
which update one TCE and invalidates an entry in the PHB/NPU TCE cache
via set of registers called "TCE Kill" (hence the naming).
Writing a TCE is a simple xchg() but invalidating the TCE cache is
a relatively expensive OPAL call. Mapping a 100GB guest with PCI+NPU
passed through devices takes about 20s.
Thankfully we can do better. Since such big mappings happen at the boot
time and when memory is plugged/onlined (i.e. not often), these requests
come in 512 pages so we call call OPAL 512 times less which brings 20s
from the above to less than 10s. Also, since TCE caches can be flushed
entirely, calling OPAL for 512 TCEs helps skiboot [1] to decide whether
to flush the entire cache or not.
This implements 2 new iommu_table_ops callbacks:
- xchg_no_kill() to update a single TCE with no TCE invalidation;
- tce_kill() to invalidate multiple TCEs.
This uses the same xchg_no_kill() callback for IODA1/2.
This implements 2 new wrappers on top of the new callbacks similar to
the existing iommu_tce_xchg().
This does not use the new callbacks yet, the next patches will;
so this should not cause any behavioral change.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190829085252.72370-2-aik@ozlabs.ru
H_PUT_TCE_INDIRECT handlers receive a page with up to 512 TCEs from
a guest. Although we verify correctness of TCEs before we do anything
with the existing tables, there is a small window when a check in
kvmppc_tce_validate might pass and right after that the guest alters
the page with TCEs which can cause early exit from the handler and
leave srcu_read_lock(&vcpu->kvm->srcu) (virtual mode) or lock_rmap(rmap)
(real mode) locked.
This fixes the bug by jumping to the common exit code with an appropriate
unlock.
Fixes: 121f80ba68 ("KVM: PPC: VFIO: Add in-kernel acceleration for VFIO")
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190826045520.92153-1-aik@ozlabs.ru
The existing code uses bunch of hardcoded values from the PCI Bus
Binding to IEEE Std 1275 spec; and it does so in quite non-obvious
way.
This defines fields from the cell#0 of the "reg" property of a PCI
device and uses them for parsing.
This should cause no behavioral change.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
[mpe: Unsplit some 80/81 char lines, space the code with some newlines]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190829084417.71873-1-aik@ozlabs.ru
This switches to using common code for the DMA allocations, including
potential use of the CMA allocator if configured.
Switching to the generic code enables DMA allocations from atomic
context, which is required by the DMA API documentation, and also
adds various other minor features drivers start relying upon. It
also makes sure we have on tested code base for all architectures
that require uncached pte bits for coherent DMA allocations.
Another advantage is that consistent memory allocations now share
the general vmalloc pool instead of needing an explicit careout
from it.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Tested-by: Christophe Leroy <christophe.leroy@c-s.fr> # tested on 8xx
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190814132230.31874-2-hch@lst.de
There is support for the kernel to execute the 'sc 0' instruction and
make a system call to itself. This is a relic that is unused in the
tree, therefore untested. It's also highly questionable for modules to
be doing this.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190827033010.28090-3-npiggin@gmail.com
Commit 3033f14ab7 ("clone: support passing tls argument via C rather
than pt_regs magic") introduced the HAVE_COPY_THREAD_TLS option. Use it
to avoid a subtle assumption about the argument ordering of clone type
syscalls.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190827033010.28090-2-npiggin@gmail.com
Powerpc 601 is rather old powerpc which as some important
limitations compared to other book3s/32 powerpcs:
- No Timebase.
- Common BATs for instruction and data.
- No execution protection in segment registers.
- No RI bit in MSR
- ...
It is starting to be difficult and cumbersome to maintain
kernels that are compatible both with 601 and other 6xx cores.
Create a compiletime option to exclusively select either powerpc 601
or other 6xx.
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/d644eaf7dff8cc149260066802af230bdf34fded.1566834712.git.christophe.leroy@c-s.fr
The code which fixups the DAR on TLB errors for dbcX instructions
has a self-modifying code alternative that has never been used.
Drop it.
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Reviewed-by: Joakim Tjernlund <joakim.tjernlund@infinera.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/b095e12c82fcba1ac4c09fc3b85d969f36614746.1566417610.git.christophe.leroy@c-s.fr
Prior to commit 1bd98d7fbaf5 ("ppc64: Update BUG handling based on
ppc32"), BUG() family was using BUG_ILLEGAL_INSTRUCTION which
was an invalid instruction opcode to trap into program check
exception.
That commit converted them to using standard trap instructions,
but prom/prom_init and their PROM_BUG() macro were left over.
head_64.S and exception-64s.S were left aside as well.
Convert them to using the standard BUG infrastructure.
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/cdaf4bbbb64c288a077845846f04b12683f8875a.1566817807.git.christophe.leroy@c-s.fr
Booting w/ppc64le_defconfig + CONFIG_PREEMPT on bare metal results in
the oops below due to calling into __spin_yield() when not running in
an SPLPAR, which means lppaca pointers are NULL.
We fixed a similar case previously in commit a6201da34f ("powerpc:
Fix oops due to bad access of lppaca on bare metal"), by adding SPLPAR
checks in lppaca_shared_proc(). However when PREEMPT is enabled we can
call __spin_yield() directly from arch_spin_yield().
To fix it add spin_yield() and rw_yield() which check that
shared-processor LPAR is enabled before calling the SPLPAR-only
implementation of each.
BUG: Kernel NULL pointer dereference at 0x00000100
Faulting instruction address: 0xc000000000097f88
Oops: Kernel access of bad area, sig: 7 [#1]
LE PAGE_SIZE=64K MMU=Radix MMU=Hash PREEMPT SMP NR_CPUS=2048 NUMA PowerNV
Modules linked in:
CPU: 0 PID: 2 Comm: kthreadd Not tainted 5.2.0-rc6-00491-g249155c20f9b #28
NIP: c000000000097f88 LR: c000000000c07a88 CTR: c00000000015ca10
REGS: c0000000727079f0 TRAP: 0300 Not tainted (5.2.0-rc6-00491-g249155c20f9b)
MSR: 9000000002009033 <SF,HV,VEC,EE,ME,IR,DR,RI,LE> CR: 84000424 XER: 20040000
CFAR: c000000000c07a84 DAR: 0000000000000100 DSISR: 00080000 IRQMASK: 1
GPR00: c000000000c07a88 c000000072707c80 c000000001546300 c00000007be38a80
GPR04: c0000000726f0c00 0000000000000002 c00000007279c980 0000000000000100
GPR08: c000000001581b78 0000000080000001 0000000000000008 c00000007279c9b0
GPR12: 0000000000000000 c000000001730000 c000000000142558 0000000000000000
GPR16: 0000000000000000 0000000000000000 0000000000000000 0000000000000000
GPR20: 0000000000000000 0000000000000000 0000000000000000 0000000000000000
GPR24: c00000007be38a80 c000000000c002f4 0000000000000000 0000000000000000
GPR28: c000000072221a00 c0000000726c2600 c00000007be38a80 c00000007be38a80
NIP [c000000000097f88] __spin_yield+0x48/0xa0
LR [c000000000c07a88] __raw_spin_lock+0xb8/0xc0
Call Trace:
[c000000072707c80] [c000000072221a00] 0xc000000072221a00 (unreliable)
[c000000072707cb0] [c000000000bffb0c] __schedule+0xbc/0x850
[c000000072707d70] [c000000000c002f4] schedule+0x54/0x130
[c000000072707da0] [c0000000001427dc] kthreadd+0x28c/0x2b0
[c000000072707e20] [c00000000000c1cc] ret_from_kernel_thread+0x5c/0x70
Instruction dump:
4d9e0020 552a043e 210a07ff 79080fe0 0b080000 3d020004 3908b878 794a1f24
e8e80000 7ce7502a e8e70000 38e70100 <7ca03c2c> 70a70001 78a50020 4d820020
---[ end trace 474d6b2b8fc5cb7e ]---
Fixes: 499dcd4137 ("powerpc/64s: Allocate LPPACAs individually")
Signed-off-by: Christopher M. Riedl <cmr@informatik.wtf>
[mpe: Reword change log a bit]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190813031314.1828-4-cmr@informatik.wtf
On POWER9, when userspace reads the value of the DPDES register on a
vCPU, it is possible for 0 to be returned although there is a doorbell
interrupt pending for the vCPU. This can lead to a doorbell interrupt
being lost across migration. If the guest kernel uses doorbell
interrupts for IPIs, then it could malfunction because of the lost
interrupt.
This happens because a newly-generated doorbell interrupt is signalled
by setting vcpu->arch.doorbell_request to 1; the DPDES value in
vcpu->arch.vcore->dpdes is not updated, because it can only be updated
when holding the vcpu mutex, in order to avoid races.
To fix this, we OR in vcpu->arch.doorbell_request when reading the
DPDES value.
Cc: stable@vger.kernel.org # v4.13+
Fixes: 579006944e ("KVM: PPC: Book3S HV: Virtualize doorbell facility on POWER9")
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Tested-by: Alexey Kardashevskiy <aik@ozlabs.ru>
When we are running multiple vcores on the same physical core, they
could be from different VMs and so it is possible that one of the
VMs could have its arch.mmu_ready flag cleared (for example by a
concurrent HPT resize) when we go to run it on a physical core.
We currently check the arch.mmu_ready flag for the primary vcore
but not the flags for the other vcores that will be run alongside
it. This adds that check, and also a check when we select the
secondary vcores from the preempted vcores list.
Cc: stable@vger.kernel.org # v4.14+
Fixes: 38c53af853 ("KVM: PPC: Book3S HV: Fix exclusion between HPT resizing and other HPT updates")
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
The __rw_yield and __spin_yield locks only pertain to SPLPAR mode.
Rename them to make this relationship obvious.
Signed-off-by: Christopher M. Riedl <cmr@informatik.wtf>
Reviewed-by: Andrew Donnellan <ajd@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190813031314.1828-3-cmr@informatik.wtf
Determining if a processor is in shared processor mode is not a constant
so don't hide it behind a #define.
Signed-off-by: Christopher M. Riedl <cmr@informatik.wtf>
Reviewed-by: Andrew Donnellan <ajd@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190813031314.1828-2-cmr@informatik.wtf
Today LOAD_REG_IMMEDIATE() is a basic #define which loads all
parts on a value into a register, including the parts that are NUL.
This means always 2 instructions on PPC32 and always 5 instructions
on PPC64. And those instructions cannot run in parallele as they are
updating the same register.
Ex: LOAD_REG_IMMEDIATE(r1,THREAD_SIZE) in head_64.S results in:
3c 20 00 00 lis r1,0
60 21 00 00 ori r1,r1,0
78 21 07 c6 rldicr r1,r1,32,31
64 21 00 00 oris r1,r1,0
60 21 40 00 ori r1,r1,16384
Rewrite LOAD_REG_IMMEDIATE() with GAS macro in order to skip
the parts that are NUL.
Rename existing LOAD_REG_IMMEDIATE() as LOAD_REG_IMMEDIATE_SYM()
and use that one for loading value of symbols which are not known
at compile time.
Now LOAD_REG_IMMEDIATE(r1,THREAD_SIZE) in head_64.S results in:
38 20 40 00 li r1,16384
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/d60ce8dd3a383c7adbfc322bf1d53d81724a6000.1566311636.git.christophe.leroy@c-s.fr
PPC32 and PPC64 are doing the same once SLAB is available.
Create a do_ioremap() function that calls get_vm_area and
do the mapping.
For PPC64, we add the 4K PFN hack sanity check to __ioremap_caller()
in order to avoid using __ioremap_at(). Other checks in __ioremap_at()
are irrelevant for __ioremap_caller().
On PPC64, VM area is allocated in the range [ioremap_bot ; IOREMAP_END]
On PPC32, VM area is allocated in the range [VMALLOC_START ; VMALLOC_END]
Lets define IOREMAP_START is ioremap_bot for PPC64, and alias
IOREMAP_START/END to VMALLOC_START/END on PPC32
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/42e7e36ad32e0fdf76692426cc642799c9f689b8.1566309263.git.christophe.leroy@c-s.fr
book3s64's ioremap_range() is almost same as fallback ioremap_range(),
except that it calls radix__ioremap_range() when radix is enabled.
radix__ioremap_range() is also very similar to the other ones, expect
that it calls ioremap_page_range when slab is available.
PPC32 __ioremap_caller() have a loop doing the same thing as
ioremap_range() so use it on PPC32 as well.
Lets keep only one version of ioremap_range() which calls
ioremap_page_range() on all platforms when slab is available.
At the same time, drop the nid parameter which is not used.
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/4b1dca7096b01823b101be7338983578641547f1.1566309263.git.christophe.leroy@c-s.fr
Create ioremap_32.c and ioremap_64.c and move respective ioremap
functions out of pgtable_32.c and pgtable_64.c
In the meantime, fix a few comments and changes a printk() to
pr_warn(). Also fix a few oversplitted lines.
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/b5c8b02ccefd4ede64c61b53cf64fb5dacb35740.1566309263.git.christophe.leroy@c-s.fr
Drop multiple definitions of ioremap_bot and make one common to
all subarches.
Only CONFIG_PPC_BOOK3E_64 had a global static init value for
ioremap_bot. Now ioremap_bot is set in early_init_mmu_global().
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/920eebfd9f36f14c79d1755847f5bf7c83703bdd.1566309262.git.christophe.leroy@c-s.fr
ppc_md.ioremap() is only used for I/O workaround on CELL platform,
so indirect function call can be avoided.
This patch reworks the io-workaround and ioremap() functions to
use the global 'io_workaround_inited' flag for the activation
of io-workaround.
When CONFIG_PPC_IO_WORKAROUNDS or CONFIG_PPC_INDIRECT_MMIO are not
selected, the I/O workaround ioremap() voids and the global flag is
not used.
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/5fa3ef069fbd0f152512afaae19e7a60161454cf.1566309262.git.christophe.leroy@c-s.fr
ppc_md.iounmap() is never set, drop it.
Once ppc_md.iounmap() is gone, iounmap() remains the only user of
__iounmap() and iounmap() does nothing else than calling __iounmap().
So drop iounmap() and make __iounmap() the new iounmap().
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/d73ba92bb7a387cc58cc34666d7f5158a45851b0.1566309262.git.christophe.leroy@c-s.fr
__ioremap() is similar to ioremap_prot() except that ioremap_prot()
does a few sanity changes in addition.
The flags used by PS3 are not impacted by those changes so for
PS3 both functions are equivalent.
At the same time, drop parts of the comment that have been invalid
since commit e58e87adc8 ("powerpc/mm: Update _PAGE_KERNEL_RO")
Suggested-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/36bff5d875ff562889c5e12dab63e5d7c5d1fbd8.1566309262.git.christophe.leroy@c-s.fr
Add support for disabling the kernel implemented spectre v2 mitigation
(count cache flush on context switch) via the nospectre_v2 and
mitigations=off cmdline options.
Suggested-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Christopher M. Riedl <cmr@informatik.wtf>
Reviewed-by: Andrew Donnellan <ajd@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190524024647.381-1-cmr@informatik.wtf
There are some POWER9 machines where the OPAL firmware does not support
the OPAL_XIVE_GET_QUEUE_STATE and OPAL_XIVE_SET_QUEUE_STATE calls.
The impact of this is that a guest using XIVE natively will not be able
to be migrated successfully. On the source side, the get_attr operation
on the KVM native device for the KVM_DEV_XIVE_GRP_EQ_CONFIG attribute
will fail; on the destination side, the set_attr operation for the same
attribute will fail.
This adds tests for the existence of the OPAL get/set queue state
functions, and if they are not supported, the XIVE-native KVM device
is not created and the KVM_CAP_PPC_IRQ_XIVE capability returns false.
Userspace can then either provide a software emulation of XIVE, or
else tell the guest that it does not have a XIVE controller available
to it.
Cc: stable@vger.kernel.org # v5.2+
Fixes: 3fab2d1058 ("KVM: PPC: Book3S HV: XIVE: Activate XIVE exploitation mode")
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
H_PUT_TCE_INDIRECT handlers receive a page with up to 512 TCEs from
a guest. Although we verify correctness of TCEs before we do anything
with the existing tables, there is a small window when a check in
kvmppc_tce_validate might pass and right after that the guest alters
the page of TCEs, causing an early exit from the handler and leaving
srcu_read_lock(&vcpu->kvm->srcu) (virtual mode) or lock_rmap(rmap)
(real mode) locked.
This fixes the bug by jumping to the common exit code with an appropriate
unlock.
Cc: stable@vger.kernel.org # v4.11+
Fixes: 121f80ba68 ("KVM: PPC: VFIO: Add in-kernel acceleration for VFIO")
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
The rmap array in the guest memslot is an array of size number of guest
pages, allocated at memslot creation time. Each rmap entry in this array
is used to store information about the guest page to which it
corresponds. For example for a hpt guest it is used to store a lock bit,
rc bits, a present bit and the index of a hpt entry in the guest hpt
which maps this page. For a radix guest which is running nested guests
it is used to store a pointer to a linked list of nested rmap entries
which store the nested guest physical address which maps this guest
address and for which there is a pte in the shadow page table.
As there are currently two uses for the rmap array, and the potential
for this to expand to more in the future, define a type field (being the
top 8 bits of the rmap entry) to be used to define the type of the rmap
entry which is currently present and define two values for this field
for the two current uses of the rmap array.
Since the nested case uses the rmap entry to store a pointer, define
this type as having the two high bits set as is expected for a pointer.
Define the hpt entry type as having bit 56 set (bit 7 IBM bit ordering).
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Fix the error below triggered by `-Wimplicit-fallthrough`, by tagging
it as an expected fall-through.
arch/powerpc/kvm/book3s_32_mmu.c: In function ‘kvmppc_mmu_book3s_32_xlate_pte’:
arch/powerpc/kvm/book3s_32_mmu.c:241:21: error: this statement may fall through [-Werror=implicit-fallthrough=]
pte->may_write = true;
~~~~~~~~~~~~~~~^~~~~~
arch/powerpc/kvm/book3s_32_mmu.c:242:5: note: here
case 3:
^~~~
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This merges in fixes for the XIVE interrupt controller which touch both
generic powerpc and PPC KVM code. To avoid merge conflicts, these
commits will go upstream via the powerpc tree as well as the KVM tree.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Pull RCU and LKMM changes from Paul E. McKenney:
- A few more RCU flavor consolidation cleanups.
- Miscellaneous fixes.
- Updates to RCU's list-traversal macros improving lockdep usability.
- Torture-test updates.
- Forward-progress improvements for no-CBs CPUs: Avoid ignoring
incoming callbacks during grace-period waits.
- Forward-progress improvements for no-CBs CPUs: Use ->cblist
structure to take advantage of others' grace periods.
- Also added a small commit that avoids needlessly inflicting
scheduler-clock ticks on callback-offloaded CPUs.
- Forward-progress improvements for no-CBs CPUs: Reduce contention
on ->nocb_lock guarding ->cblist.
- Forward-progress improvements for no-CBs CPUs: Add ->nocb_bypass
list to further reduce contention on ->nocb_lock guarding ->cblist.
- LKMM updates.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We still treat devices without a DMA mask as defaulting to 32-bits for
both mask, but a few releases ago we've started warning about such
cases, as they require special cases to work around this sloppyness.
Add a dma_mask field to struct platform_device so that we can initialize
the dma_mask pointer in struct device and initialize both masks to
32-bits by default, replacing similar functionality in m68k and
powerpc. The arch_setup_pdev_archdata hooks is now unused and removed.
Note that the code looks a little odd with the various conditionals
because we have to support platform_device structures that are
statically allocated.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Link: https://lore.kernel.org/r/20190816062435.881-7-hch@lst.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
While reviewing lockdown patches, I discovered that we still enable
/dev/port (CONFIG_DEVPORT) in skiroot.
/dev/port is used for old x86 style IO accesses. It's set up in
drivers/char/mem.c, and is only created if arch_has_dev_port() returns
true. Per arch/powerpc/include/asm/io.h, on PPC64 with PCI, this is
only true if there's a legacy ISA bridge.
Even if a system has a legacy ISA bridge installed, we have no
business accessing it in skiroot.
Deselect CONFIG_DEVPORT for skiroot.
Signed-off-by: Daniel Axtens <dja@axtens.net>
[mpe: Incorporate emailed comments into the change log]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190627053008.29315-1-dja@axtens.net
If a PCI device is removed during eeh_pe_report_edev(), between the
calls to device_lock() and device_unlock(), edev->pdev will change and
cause a crash as the wrong mutex is released.
To correct this, hold the PCI rescan/remove lock while taking a copy
of edev->pdev and performing a get_device() on it. Use this value to
release the mutex, but also pass it through to the device driver's EEH
handlers so that they always see the same device.
Signed-off-by: Sam Bobroff <sbobroff@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/3c590579a0faa24d20c826dcd26c739eb4d454e6.1565930772.git.sbobroff@linux.ibm.com
Convert existing messages, where appropriate, to use the eeh_edev_*
logging macros.
The only effect should be minor adjustments to the log messages, apart
from:
- A new message in pseries_eeh_probe() "Probing device" to match the
powernv case.
- The "Probing device" message in pnv_eeh_probe() is now generated
slightly later, which will mean that it is no longer emitted for
devices that aren't probed due to the initial checks.
Signed-off-by: Sam Bobroff <sbobroff@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/ce505a0a7a4a5b0367f0f40f8b26e7c0a9cf4cb7.1565930772.git.sbobroff@linux.ibm.com
Now that struct eeh_dev includes the BDFN of it's PCI device, make use
of it to replace eeh_edev_info() with a set of dev_dbg()-style macros
that only need a struct edev.
With the BDFN available without the struct pci_dev, eeh_pci_name() is
now unnecessary, so remove it.
While only the "info" level function is used here, the others will be
used in followup work.
Signed-off-by: Sam Bobroff <sbobroff@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/f90ae9a53d762be7b0ccbad79e62b5a1b4f4996e.1565930772.git.sbobroff@linux.ibm.com
Preparation for removing pci_dn from the powernv EEH code. The only
thing we really use pci_dn for is to get the bdfn of the device for
config space accesses, so adding that information to eeh_dev reduces
the need to carry around the pci_dn.
Signed-off-by: Oliver O'Halloran <oohall@gmail.com>
[SB: Re-wrapped commit message, fixed whitespace damage.]
Signed-off-by: Sam Bobroff <sbobroff@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/e458eb69a1f591d8a120782f23a8506b15d3c654.1565930772.git.sbobroff@linux.ibm.com
Now that EEH support for all devices (on PowerNV and pSeries) is
provided by the pcibios bus add device hooks, eeh_probe_devices() and
eeh_addr_cache_build() are redundant and can be removed.
Move the EEH enabled message into it's own function so that it can be
called from multiple places.
Note that previously on pSeries, useless EEH sysfs files were created
for some devices that did not have EEH support and this change
prevents them from being created.
Signed-off-by: Sam Bobroff <sbobroff@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/33b0a6339d5ac88693de092d6fba984f2a5add66.1565930772.git.sbobroff@linux.ibm.com
On PowerNV and pSeries, devices currently acquire EEH support from
several different places: Boot-time devices from eeh_probe_devices()
and eeh_addr_cache_build(), Virtual Function devices from the pcibios
bus add device hooks and hot plugged devices from pci_hp_add_devices()
(with other platforms using other methods as well). Unfortunately,
pSeries machines currently discover hot plugged devices using
pci_rescan_bus(), not pci_hp_add_devices(), and so those devices do
not receive EEH support.
Rather than adding another case for pci_rescan_bus(), this change
widens the scope of the pcibios bus add device hooks so that they can
handle all devices. As a side effect this also supports devices
discovered after manually rescanning via /sys/bus/pci/rescan.
Note that on PowerNV, this change allows the EEH subsystem to become
enabled after boot as long as it has not been forced off, which was
not previously possible (it was already possible on pSeries).
Signed-off-by: Sam Bobroff <sbobroff@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/72ae8ae9c54097158894a52de23690448de38ea9.1565930772.git.sbobroff@linux.ibm.com
The EEH address cache is currently initialized and populated by a
single function: eeh_addr_cache_build(). While the initial population
of the cache can only be done once resources are allocated,
initialization (just setting up a spinlock) could be done much
earlier.
So move the initialization step into a separate function and call it
from a core_initcall (rather than a subsys initcall).
This will allow future work to make use of the cache during boot time
PCI scanning.
Signed-off-by: Sam Bobroff <sbobroff@linux.ibm.com>
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/0557206741bffee76cdfff042f65321f6f7a5b41.1565930772.git.sbobroff@linux.ibm.com
The EEH_DEV_NO_HANDLER flag is used by the EEH system to prevent the
use of driver callbacks in drivers that have been bound part way
through the recovery process. This is necessary to prevent later stage
handlers from being called when the earlier stage handlers haven't,
which can be confusing for drivers.
However, the flag is set for all devices that are added after boot
time and only cleared at the end of the EEH recovery process. This
results in hot plugged devices erroneously having the flag set during
the first recovery after they are added (causing their driver's
handlers to be incorrectly ignored).
To remedy this, clear the flag at the beginning of recovery
processing. The flag is still cleared at the end of recovery
processing, although it is no longer really necessary.
Also clear the flag during eeh_handle_special_event(), for the same
reasons.
Signed-off-by: Sam Bobroff <sbobroff@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/b8ca5629d27de74c957d4f4b250177d1b6fc4bbd.1565930772.git.sbobroff@linux.ibm.com
The pcibios_init() function for PowerPC 64 currently calls
pci_bus_add_devices() before pcibios_resource_survey(). This means
that at boot time, when the pcibios_bus_add_device() hooks are called
by pci_bus_add_devices(), device resources have not been allocated and
they are unable to perform EEH setup, so a separate pass is needed.
This patch adjusts that order so that it will become possible to
consolidate the EEH setup work into a single location.
The only functional change is to execute pcibios_resource_survey()
(excepting ppc_md.pcibios_fixup(), see below) before
pci_bus_add_devices() instead of after it.
Because pcibios_scan_phb() and pci_bus_add_devices() are called
together in a loop, this must be broken into one loop for each call.
Then the call to pcibios_resource_survey() is moved up in between
them. This changes the ordering but because pcibios_resource_survey()
also calls ppc_md.pcibios_fixup(), that call is extracted out into
pcibios_init() to where pcibios_resource_survey() was, so that it is
not moved.
The only other caller of pcibios_resource_survey() is the PowerPC 32
version of pcibios_init(), and therefore, that is modified to call
ppc_md.pcibios_fixup() right after pcibios_resource_survey() so that
there is no functional change there at all.
The re-arrangement will cause very few side-effects because at this
stage in the boot, pci_bus_add_devices() does very little:
- pci_create_sysfs_dev_files() does nothing (no sysfs yet)
- pci_proc_attach_device() does nothing (no proc yet)
- device_attach() does nothing (no drivers yet)
This leaves only the pci_final_fixup calls, D3 support, and marking
the device as added. Of those, only the pci_final_fixup calls have the
potential to be affected by resource allocation.
The only pci_final_fixup handlers that touch resources seem to be one
for x86 (pci_amd_enable_64bit_bar()), and a PowerPC 32 platform driver
(quirk_final_uli1575()), neither of which use this pcibios_init()
function. Even if they did, it would almost certainly be a bug, under
the current ordering, to rely on or make changes to resources before
they were allocated.
Signed-off-by: Sam Bobroff <sbobroff@linux.ibm.com>
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/4506b0489eabd0921a3587d90bd44c7683f3472d.1565930772.git.sbobroff@linux.ibm.com
The KBUILD_ARFLAGS addition in arch/powerpc/Makefile has never worked
in a useful way because it is always overridden by the following code
in the top Makefile:
# use the deterministic mode of AR if available
KBUILD_ARFLAGS := $(call ar-option,D)
The code in the top Makefile was added in 2011, by commit 40df759e2b
("kbuild: Fix build with binutils <= 2.19").
The KBUILD_ARFLAGS addition for ppc has always been dead code from the
beginning.
Nobody has reported a problem since 43c9127d94 ("powerpc: Add option
to use thin archives"), so this code was unneeded.
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190713032106.8509-1-yamada.masahiro@socionext.com