2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-10 14:43:54 +08:00
Commit Graph

5 Commits

Author SHA1 Message Date
Daniel Borkmann
6b7a21140f tools: add smp_* barrier variants to include infrastructure
Add the definition for smp_rmb(), smp_wmb(), and smp_mb() to the
tools include infrastructure: this patch adds the implementation
for x86-64 and arm64, and have it fall back as currently is for
other archs which do not have it implemented at this point. The
x86-64 one uses lock + add combination for smp_mb() with address
below red zone.

This is on top of 09d62154f6 ("tools, perf: add and use optimized
ring_buffer_{read_head, write_tail} helpers"), which didn't touch
smp_* barrier implementations. Magnus recently rightfully reported
however that the latter on x86-64 still wrongly falls back to sfence,
lfence and mfence respectively, thus fix that for applications under
tools making use of these to avoid such ugly surprises. The main
header under tools (include/asm/barrier.h) will in that case not
select the fallback implementation.

Reported-by: Magnus Karlsson <magnus.karlsson@intel.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-04-11 14:45:50 -07:00
Will Deacon
51f5fd2e46 tools headers barrier: Fix arm64 tools build failure wrt smp_load_{acquire,release}
Cheers for reporting this. I managed to reproduce the build failure with
gcc version 6.3.0 20170516 (Debian 6.3.0-18+deb9u1).

The code in question is the arm64 versions of smp_load_acquire() and
smp_store_release(). Unlike other architectures, these are not built
around READ_ONCE() and WRITE_ONCE() since we have instructions we can
use instead of fences. Bringing our macros up-to-date with those (i.e.
tweaking the union initialisation and using the special "uXX_alias_t"
types) appears to fix the issue for me.

Committer notes:

Testing it in the systems previously failing:

  # time dm android-ndk:r12b-arm \
         android-ndk:r15c-arm \
         debian:experimental-x-arm64 \
         ubuntu:14.04.4-x-linaro-arm64 \
         ubuntu:16.04-x-arm \
         ubuntu:16.04-x-arm64 \
         ubuntu:18.04-x-arm \
         ubuntu:18.04-x-arm64
    1 android-ndk:r12b-arm          : Ok   arm-linux-androideabi-gcc (GCC) 4.9.x 20150123 (prerelease)
    2 android-ndk:r15c-arm          : Ok   arm-linux-androideabi-gcc (GCC) 4.9.x 20150123 (prerelease)
    3 debian:experimental-x-arm64   : Ok   aarch64-linux-gnu-gcc (Debian 8.2.0-7) 8.2.0
    4 ubuntu:14.04.4-x-linaro-arm64 : Ok   aarch64-linux-gnu-gcc (Linaro GCC 5.5-2017.10) 5.5.0
    5 ubuntu:16.04-x-arm            : Ok   arm-linux-gnueabihf-gcc (Ubuntu/Linaro 5.4.0-6ubuntu1~16.04.9) 5.4.0 20160609
    6 ubuntu:16.04-x-arm64          : Ok   aarch64-linux-gnu-gcc (Ubuntu/Linaro 5.4.0-6ubuntu1~16.04.9) 5.4.0 20160609
    7 ubuntu:18.04-x-arm            : Ok   arm-linux-gnueabihf-gcc (Ubuntu/Linaro 7.3.0-27ubuntu1~18.04) 7.3.0
    8 ubuntu:18.04-x-arm64          : Ok   aarch64-linux-gnu-gcc (Ubuntu/Linaro 7.3.0-27ubuntu1~18.04) 7.3.0

Reported-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Tested-by: Daniel Borkmann <daniel@iogearbox.net>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20181031174408.GA27871@arm.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2018-11-01 10:07:43 -03:00
Daniel Borkmann
09d62154f6 tools, perf: add and use optimized ring_buffer_{read_head, write_tail} helpers
Currently, on x86-64, perf uses LFENCE and MFENCE (rmb() and mb(),
respectively) when processing events from the perf ring buffer which
is unnecessarily expensive as we can do more lightweight in particular
given this is critical fast-path in perf.

According to Peter rmb()/mb() were added back then via a94d342b9c
("tools/perf: Add required memory barriers") at a time where kernel
still supported chips that needed it, but nowadays support for these
has been ditched completely, therefore we can fix them up as well.

While for x86-64, replacing rmb() and mb() with smp_*() variants would
result in just a compiler barrier for the former and LOCK + ADD for
the latter (__sync_synchronize() uses slower MFENCE by the way), Peter
suggested we can use smp_{load_acquire,store_release}() instead for
architectures where its implementation doesn't resolve in slower smp_mb().
Thus, e.g. in x86-64 we would be able to avoid CPU barrier entirely due
to TSO. For architectures where the latter needs to use smp_mb() e.g.
on arm, we stick to cheaper smp_rmb() variant for fetching the head.

This work adds helpers ring_buffer_read_head() and ring_buffer_write_tail()
for tools infrastructure that either switches to smp_load_acquire() for
architectures where it is cheaper or uses READ_ONCE() + smp_rmb() barrier
for those where it's not in order to fetch the data_head from the perf
control page, and it uses smp_store_release() to write the data_tail.
Latter is smp_mb() + WRITE_ONCE() combination or a cheaper variant if
architecture allows for it. Those that rely on smp_rmb() and smp_mb() can
further improve performance in a follow up step by implementing the two
under tools/arch/*/include/asm/barrier.h such that they don't have to
fallback to rmb() and mb() in tools/include/asm/barrier.h.

Switch perf to use ring_buffer_read_head() and ring_buffer_write_tail()
so it can make use of the optimizations. Later, we convert libbpf as
well to use the same helpers.

Side note [0]: the topic has been raised of whether one could simply use
the C11 gcc builtins [1] for the smp_load_acquire() and smp_store_release()
instead:

  __atomic_load_n(ptr, __ATOMIC_ACQUIRE);
  __atomic_store_n(ptr, val, __ATOMIC_RELEASE);

Kernel and (presumably) tooling shipped along with the kernel has a
minimum requirement of being able to build with gcc-4.6 and the latter
does not have C11 builtins. While generally the C11 memory models don't
align with the kernel's, the C11 load-acquire and store-release alone
/could/ suffice, however. Issue is that this is implementation dependent
on how the load-acquire and store-release is done by the compiler and
the mapping of supported compilers must align to be compatible with the
kernel's implementation, and thus needs to be verified/tracked on a
case by case basis whether they match (unless an architecture uses them
also from kernel side). The implementations for smp_load_acquire() and
smp_store_release() in this patch have been adapted from the kernel side
ones to have a concrete and compatible mapping in place.

  [0] http://patchwork.ozlabs.org/patch/985422/
  [1] https://gcc.gnu.org/onlinedocs/gcc/_005f_005fatomic-Builtins.html

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2018-10-19 13:43:08 -07:00
Greg Kroah-Hartman
b24413180f License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.

By default all files without license information are under the default
license of the kernel, which is GPL version 2.

Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier.  The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.

This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.

How this work was done:

Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
 - file had no licensing information it it.
 - file was a */uapi/* one with no licensing information in it,
 - file was a */uapi/* one with existing licensing information,

Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.

The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne.  Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.

The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed.  Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.

Criteria used to select files for SPDX license identifier tagging was:
 - Files considered eligible had to be source code files.
 - Make and config files were included as candidates if they contained >5
   lines of source
 - File already had some variant of a license header in it (even if <5
   lines).

All documentation files were explicitly excluded.

The following heuristics were used to determine which SPDX license
identifiers to apply.

 - when both scanners couldn't find any license traces, file was
   considered to have no license information in it, and the top level
   COPYING file license applied.

   For non */uapi/* files that summary was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0                                              11139

   and resulted in the first patch in this series.

   If that file was a */uapi/* path one, it was "GPL-2.0 WITH
   Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0 WITH Linux-syscall-note                        930

   and resulted in the second patch in this series.

 - if a file had some form of licensing information in it, and was one
   of the */uapi/* ones, it was denoted with the Linux-syscall-note if
   any GPL family license was found in the file or had no licensing in
   it (per prior point).  Results summary:

   SPDX license identifier                            # files
   ---------------------------------------------------|------
   GPL-2.0 WITH Linux-syscall-note                       270
   GPL-2.0+ WITH Linux-syscall-note                      169
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
   LGPL-2.1+ WITH Linux-syscall-note                      15
   GPL-1.0+ WITH Linux-syscall-note                       14
   ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
   LGPL-2.0+ WITH Linux-syscall-note                       4
   LGPL-2.1 WITH Linux-syscall-note                        3
   ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
   ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1

   and that resulted in the third patch in this series.

 - when the two scanners agreed on the detected license(s), that became
   the concluded license(s).

 - when there was disagreement between the two scanners (one detected a
   license but the other didn't, or they both detected different
   licenses) a manual inspection of the file occurred.

 - In most cases a manual inspection of the information in the file
   resulted in a clear resolution of the license that should apply (and
   which scanner probably needed to revisit its heuristics).

 - When it was not immediately clear, the license identifier was
   confirmed with lawyers working with the Linux Foundation.

 - If there was any question as to the appropriate license identifier,
   the file was flagged for further research and to be revisited later
   in time.

In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.

Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights.  The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.

Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.

In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.

Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
 - a full scancode scan run, collecting the matched texts, detected
   license ids and scores
 - reviewing anything where there was a license detected (about 500+
   files) to ensure that the applied SPDX license was correct
 - reviewing anything where there was no detection but the patch license
   was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
   SPDX license was correct

This produced a worksheet with 20 files needing minor correction.  This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.

These .csv files were then reviewed by Greg.  Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected.  This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.)  Finally Greg ran the script using the .csv files to
generate the patches.

Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-02 11:10:55 +01:00
Arnaldo Carvalho de Melo
4f3db0746c perf tools: Move arm(64) barrier.h stuff to tools/arch/arm*/include/asm/barrier.h
We will need it for atomic.h, so move it from the ad-hoc tools/perf/
place to a tools/ subset of the kernel arch/ hierarchy.

Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: David Ahern <dsahern@gmail.com>
Cc: Don Zickus <dzickus@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Stephane Eranian <eranian@google.com>
Link: http://lkml.kernel.org/n/tip-cgfhreaejd7ohitdjccu9k2o@git.kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2015-05-08 16:05:06 -03:00