In many places we need the checksum size and it is inefficient to read
it from the raw superblock. Store the value into fs_info, actual use
will be in followup patches. The size is u32 as it allows to generate
better assembly than with u16.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We do a lot of calculations where we divide or multiply by sectorsize.
We also know and make sure that sectorsize is a power of two, so this
means all divisions can be turned to shifts and avoid eg. expensive
u64/u32 divisions.
The type is u32 as it's more register friendly on x86_64 compared to u8
and the resulting assembly is smaller (movzbl vs movl).
There's also superblock s_blocksize_bits but it's usually one more
pointer dereference farther than fs_info.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
All callers of btrfs_wq_submit_bio() pass struct inode as @private_data,
so there is no need for it to be (void *), replace it with "struct inode
*inode".
While we can extract fs_info from struct inode, also remove the @fs_info
parameter.
Since we're here, also replace all the (void *private_data) into (struct
inode *inode).
Reviewed-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The drop_level member is used directly unlike all the other int types in
root_item. Add the definition and use it everywhere. The type is u8 so
there's no conversion necessary and the helpers are properly inlined,
this is for consistency.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
For consistency use the available helpers to set flags and limit.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The names in btrfs_lockdep_keysets are generated from a simple pattern
using snprintf but we can generate them directly with some macro magic
and remove the helpers.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
BTRFS_MAX_LEVEL is 8 and the keyset table is supposed to have a key for
each level, but we'll never have more than 8 levels. The values passed
to btrfs_set_buffer_lockdep_class are always derived from a valid extent
buffer. Set the array sizes to the right value.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are cases where you can end up with bad data csums because of
misbehaving applications. This happens when an application modifies a
buffer in-flight when doing an O_DIRECT write. In order to recover the
file we need a way to turn off data checksums so you can copy the file
off, and then you can delete the file and restore it properly later.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In the face of extent root corruption, or any other core fs wide root
corruption we will fail to mount the file system. This makes recovery
kind of a pain, because you need to fall back to userspace tools to
scrape off data. Instead provide a mechanism to gracefully handle bad
roots, so we can at least mount read-only and possibly recover data from
the file system.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The standalone option usebackuproot was intended as one-time use and it
was not necessary to keep it in the option list. Now that we're going to
have more rescue options, it's desirable to keep them intact as it could
be confusing why the option disappears.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ remove the btrfs_clear_opt part from open_ctree ]
Signed-off-by: David Sterba <dsterba@suse.com>
If transaction_kthread is woken up before btrfs_fs_info::commit_interval
seconds have elapsed it will sleep for a fixed period of 5 seconds. This
is not a problem per-se but is not accurate. Instead the code should
sleep for an interval which guarantees on next wakeup commit_interval
would have passed. Since time tracking is not precise subtract 1 second
from delta to ensure the delay we end up waiting will be longer than
than the wake up period.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Rename 'now' to 'delta' and store there the delta between transaction
start time and current time. This is in preparation for optimising the
sleep logic in the next patch. No functional changes.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The value obtained from ktime_get_seconds() is guaranteed to be
monotonically increasing since it's taken from CLOCK_MONOTONIC. As
transaction_kthread obtains a reference to the currently running
transaction under holding btrfs_fs_info::trans_lock it's guaranteed to:
a) see an initialized 'cur', whose start_time is guaranteed to be smaller
than 'now'
or
b) not obtain a 'cur' and simply go to sleep.
Given this remove the unnecessary check, if it sees
now < cur->start_time this would imply there are far greater problems on
the machine.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The kernel provides easy to understand helpers to convert from human
understandable units to the kernel-friendly 'jiffies'. So let's use
those to make the code easier to understand. No functional changes.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAl+cNwcACgkQxWXV+ddt
WDth+g//esuxzGaUenIuMgnT8ofnte4I9Kst8ShBAl1Asglq1p1WBJfYtHbMMqeE
CmJ32hGs6JBoaB/Wdta41F840BxRbaOCyo10oB6jx5QV2rCh99PvPhwmsmaUGQHG
02umRPRJcILReB53LwJvLQTQMVfuUqfBV2TyyLHrY8R8pIGsG61p1d3cgg+NWtKQ
c3RC2eH/uIeQTDaZX0ZOpa6TBPOs+MNDiF5d3UxvpiBXWum3yijdXEfhpfiOom4A
eCH+lj+iQQ4EtoKjXi0q7ziU1eAKWkQ3A4rMo9fr7iQkQIVkvZc2d9WALsF+znXi
f2ochi3msemX19I5g0RQ1s5XExCKBSbr6v934BDlpAZ8Pc4IFz9rkLZwlMYp/SVJ
9aYZOG9Rm0P3DaiYPvKZBcxsTRvxXlXlVWfMCGUB4KKaGyawJgSZxnegxP8nWb2C
+VrvVw2NJsoioQTX+2OqUc2FCuDib7ehjH80q9IXLlozfoKA4Lfj1G6qCUEsuffI
NbW5Ndkaza/qw3mOTEn/sU9+kzr1P8CVtSFWcI/GJqp/kisTAYtyfU/GWD9JLi8s
uaHGAZXdCEVNJ2opgnLiW0ZPNMm4oSernn8JckhsUUGUJwJ4c1pGEHSzIHEF+d9E
HBmjQN6qcW4DDUb1rSQEBsFoKXeebp7P6usNNrUqau1wWKBworA=
=bR/o
-----END PGP SIGNATURE-----
Merge tag 'for-5.10-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
- lockdep fixes:
- drop path locks before manipulating sysfs objects or qgroups
- preliminary fixes before tree locks get switched to rwsem
- use annotated seqlock
- build warning fixes (printk format)
- fix relocation vs fallocate race
- tree checker properly validates number of stripes and parity
- readahead vs device replace fixes
- iomap dio fix for unnecessary buffered io fallback
* tag 'for-5.10-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: convert data_seqcount to seqcount_mutex_t
btrfs: don't fallback to buffered read if we don't need to
btrfs: add a helper to read the tree_root commit root for backref lookup
btrfs: drop the path before adding qgroup items when enabling qgroups
btrfs: fix readahead hang and use-after-free after removing a device
btrfs: fix use-after-free on readahead extent after failure to create it
btrfs: tree-checker: validate number of chunk stripes and parity
btrfs: tree-checker: fix incorrect printk format
btrfs: drop the path before adding block group sysfs files
btrfs: fix relocation failure due to race with fallocate
I got the following lockdep splat with tree locks converted to rwsem
patches on btrfs/104:
======================================================
WARNING: possible circular locking dependency detected
5.9.0+ #102 Not tainted
------------------------------------------------------
btrfs-cleaner/903 is trying to acquire lock:
ffff8e7fab6ffe30 (btrfs-root-00){++++}-{3:3}, at: __btrfs_tree_read_lock+0x32/0x170
but task is already holding lock:
ffff8e7fab628a88 (&fs_info->commit_root_sem){++++}-{3:3}, at: btrfs_find_all_roots+0x41/0x80
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #3 (&fs_info->commit_root_sem){++++}-{3:3}:
down_read+0x40/0x130
caching_thread+0x53/0x5a0
btrfs_work_helper+0xfa/0x520
process_one_work+0x238/0x540
worker_thread+0x55/0x3c0
kthread+0x13a/0x150
ret_from_fork+0x1f/0x30
-> #2 (&caching_ctl->mutex){+.+.}-{3:3}:
__mutex_lock+0x7e/0x7b0
btrfs_cache_block_group+0x1e0/0x510
find_free_extent+0xb6e/0x12f0
btrfs_reserve_extent+0xb3/0x1b0
btrfs_alloc_tree_block+0xb1/0x330
alloc_tree_block_no_bg_flush+0x4f/0x60
__btrfs_cow_block+0x11d/0x580
btrfs_cow_block+0x10c/0x220
commit_cowonly_roots+0x47/0x2e0
btrfs_commit_transaction+0x595/0xbd0
sync_filesystem+0x74/0x90
generic_shutdown_super+0x22/0x100
kill_anon_super+0x14/0x30
btrfs_kill_super+0x12/0x20
deactivate_locked_super+0x36/0xa0
cleanup_mnt+0x12d/0x190
task_work_run+0x5c/0xa0
exit_to_user_mode_prepare+0x1df/0x200
syscall_exit_to_user_mode+0x54/0x280
entry_SYSCALL_64_after_hwframe+0x44/0xa9
-> #1 (&space_info->groups_sem){++++}-{3:3}:
down_read+0x40/0x130
find_free_extent+0x2ed/0x12f0
btrfs_reserve_extent+0xb3/0x1b0
btrfs_alloc_tree_block+0xb1/0x330
alloc_tree_block_no_bg_flush+0x4f/0x60
__btrfs_cow_block+0x11d/0x580
btrfs_cow_block+0x10c/0x220
commit_cowonly_roots+0x47/0x2e0
btrfs_commit_transaction+0x595/0xbd0
sync_filesystem+0x74/0x90
generic_shutdown_super+0x22/0x100
kill_anon_super+0x14/0x30
btrfs_kill_super+0x12/0x20
deactivate_locked_super+0x36/0xa0
cleanup_mnt+0x12d/0x190
task_work_run+0x5c/0xa0
exit_to_user_mode_prepare+0x1df/0x200
syscall_exit_to_user_mode+0x54/0x280
entry_SYSCALL_64_after_hwframe+0x44/0xa9
-> #0 (btrfs-root-00){++++}-{3:3}:
__lock_acquire+0x1167/0x2150
lock_acquire+0xb9/0x3d0
down_read_nested+0x43/0x130
__btrfs_tree_read_lock+0x32/0x170
__btrfs_read_lock_root_node+0x3a/0x50
btrfs_search_slot+0x614/0x9d0
btrfs_find_root+0x35/0x1b0
btrfs_read_tree_root+0x61/0x120
btrfs_get_root_ref+0x14b/0x600
find_parent_nodes+0x3e6/0x1b30
btrfs_find_all_roots_safe+0xb4/0x130
btrfs_find_all_roots+0x60/0x80
btrfs_qgroup_trace_extent_post+0x27/0x40
btrfs_add_delayed_data_ref+0x3fd/0x460
btrfs_free_extent+0x42/0x100
__btrfs_mod_ref+0x1d7/0x2f0
walk_up_proc+0x11c/0x400
walk_up_tree+0xf0/0x180
btrfs_drop_snapshot+0x1c7/0x780
btrfs_clean_one_deleted_snapshot+0xfb/0x110
cleaner_kthread+0xd4/0x140
kthread+0x13a/0x150
ret_from_fork+0x1f/0x30
other info that might help us debug this:
Chain exists of:
btrfs-root-00 --> &caching_ctl->mutex --> &fs_info->commit_root_sem
Possible unsafe locking scenario:
CPU0 CPU1
---- ----
lock(&fs_info->commit_root_sem);
lock(&caching_ctl->mutex);
lock(&fs_info->commit_root_sem);
lock(btrfs-root-00);
*** DEADLOCK ***
3 locks held by btrfs-cleaner/903:
#0: ffff8e7fab628838 (&fs_info->cleaner_mutex){+.+.}-{3:3}, at: cleaner_kthread+0x6e/0x140
#1: ffff8e7faadac640 (sb_internal){.+.+}-{0:0}, at: start_transaction+0x40b/0x5c0
#2: ffff8e7fab628a88 (&fs_info->commit_root_sem){++++}-{3:3}, at: btrfs_find_all_roots+0x41/0x80
stack backtrace:
CPU: 0 PID: 903 Comm: btrfs-cleaner Not tainted 5.9.0+ #102
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-2.fc32 04/01/2014
Call Trace:
dump_stack+0x8b/0xb0
check_noncircular+0xcf/0xf0
__lock_acquire+0x1167/0x2150
? __bfs+0x42/0x210
lock_acquire+0xb9/0x3d0
? __btrfs_tree_read_lock+0x32/0x170
down_read_nested+0x43/0x130
? __btrfs_tree_read_lock+0x32/0x170
__btrfs_tree_read_lock+0x32/0x170
__btrfs_read_lock_root_node+0x3a/0x50
btrfs_search_slot+0x614/0x9d0
? find_held_lock+0x2b/0x80
btrfs_find_root+0x35/0x1b0
? do_raw_spin_unlock+0x4b/0xa0
btrfs_read_tree_root+0x61/0x120
btrfs_get_root_ref+0x14b/0x600
find_parent_nodes+0x3e6/0x1b30
btrfs_find_all_roots_safe+0xb4/0x130
btrfs_find_all_roots+0x60/0x80
btrfs_qgroup_trace_extent_post+0x27/0x40
btrfs_add_delayed_data_ref+0x3fd/0x460
btrfs_free_extent+0x42/0x100
__btrfs_mod_ref+0x1d7/0x2f0
walk_up_proc+0x11c/0x400
walk_up_tree+0xf0/0x180
btrfs_drop_snapshot+0x1c7/0x780
? btrfs_clean_one_deleted_snapshot+0x73/0x110
btrfs_clean_one_deleted_snapshot+0xfb/0x110
cleaner_kthread+0xd4/0x140
? btrfs_alloc_root+0x50/0x50
kthread+0x13a/0x150
? kthread_create_worker_on_cpu+0x40/0x40
ret_from_fork+0x1f/0x30
BTRFS info (device sdb): disk space caching is enabled
BTRFS info (device sdb): has skinny extents
This happens because qgroups does a backref lookup when we create a
delayed ref. From here it may have to look up a root from an indirect
ref, which does a normal lookup on the tree_root, which takes the read
lock on the tree_root nodes.
To fix this we need to add a variant for looking up roots that searches
the commit root of the tree_root. Then when we do the backref search
using the commit root we are sure to not take any locks on the tree_root
nodes. This gets rid of the lockdep splat when running btrfs/104.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAl+EWUgQHGF4Ym9lQGtl
cm5lbC5kawAKCRD301j7KXHgpnoxEADCVSNBRkpV0OVkOEC3wf8EGhXhk01Jnjtl
u5Mg2V55hcgJ0thQxBV/V28XyqmsEBrmAVi0Yf8Vr9Qbq4Ze08Wae4ChS4rEOyh1
jTcGYWx5aJB3ChLvV/HI0nWQ3bkj03mMrL3SW8rhhf5DTyKHsVeTenpx42Qu/FKf
fRzi09FSr3Pjd0B+EX6gunwJnlyXQC5Fa4AA0GhnXJzAznANXxHkkcXu8a6Yw75x
e28CfhIBliORsK8sRHLoUnPpeTe1vtxCBhBMsE+gJAj9ZUOWMzvNFIPP4FvfawDy
6cCQo2m1azJ/IdZZCDjFUWyjh+wxdKMp+NNryEcoV+VlqIoc3n98rFwrSL+GIq5Z
WVwEwq+AcwoMCsD29Lu1ytL2PQ/RVqcJP5UheMrbL4vzefNfJFumQVZLIcX0k943
8dFL2QHL+H/hM9Dx5y5rjeiWkAlq75v4xPKVjh/DHb4nehddCqn/+DD5HDhNANHf
c1kmmEuYhvLpIaC4DHjE6DwLh8TPKahJjwsGuBOTr7D93NUQD+OOWsIhX6mNISIl
FFhP8cd0/ZZVV//9j+q+5B4BaJsT+ZtwmrelKFnPdwPSnh+3iu8zPRRWO+8P8fRC
YvddxuJAmE6BLmsAYrdz6Xb/wqfyV44cEiyivF0oBQfnhbtnXwDnkDWSfJD1bvCm
ZwfpDh2+Tg==
=LzyE
-----END PGP SIGNATURE-----
Merge tag 'block-5.10-2020-10-12' of git://git.kernel.dk/linux-block
Pull block updates from Jens Axboe:
- Series of merge handling cleanups (Baolin, Christoph)
- Series of blk-throttle fixes and cleanups (Baolin)
- Series cleaning up BDI, seperating the block device from the
backing_dev_info (Christoph)
- Removal of bdget() as a generic API (Christoph)
- Removal of blkdev_get() as a generic API (Christoph)
- Cleanup of is-partition checks (Christoph)
- Series reworking disk revalidation (Christoph)
- Series cleaning up bio flags (Christoph)
- bio crypt fixes (Eric)
- IO stats inflight tweak (Gabriel)
- blk-mq tags fixes (Hannes)
- Buffer invalidation fixes (Jan)
- Allow soft limits for zone append (Johannes)
- Shared tag set improvements (John, Kashyap)
- Allow IOPRIO_CLASS_RT for CAP_SYS_NICE (Khazhismel)
- DM no-wait support (Mike, Konstantin)
- Request allocation improvements (Ming)
- Allow md/dm/bcache to use IO stat helpers (Song)
- Series improving blk-iocost (Tejun)
- Various cleanups (Geert, Damien, Danny, Julia, Tetsuo, Tian, Wang,
Xianting, Yang, Yufen, yangerkun)
* tag 'block-5.10-2020-10-12' of git://git.kernel.dk/linux-block: (191 commits)
block: fix uapi blkzoned.h comments
blk-mq: move cancel of hctx->run_work to the front of blk_exit_queue
blk-mq: get rid of the dead flush handle code path
block: get rid of unnecessary local variable
block: fix comment and add lockdep assert
blk-mq: use helper function to test hw stopped
block: use helper function to test queue register
block: remove redundant mq check
block: invoke blk_mq_exit_sched no matter whether have .exit_sched
percpu_ref: don't refer to ref->data if it isn't allocated
block: ratelimit handle_bad_sector() message
blk-throttle: Re-use the throtl_set_slice_end()
blk-throttle: Open code __throtl_de/enqueue_tg()
blk-throttle: Move service tree validation out of the throtl_rb_first()
blk-throttle: Move the list operation after list validation
blk-throttle: Fix IO hang for a corner case
blk-throttle: Avoid tracking latency if low limit is invalid
blk-throttle: Avoid getting the current time if tg->last_finish_time is 0
blk-throttle: Remove a meaningless parameter for throtl_downgrade_state()
block: Remove redundant 'return' statement
...
Many things can happen after the device is scanned and before the device
is mounted. One such thing is losing the BTRFS_MAGIC on the device.
If it happens we still won't free that device from the memory and cause
the userland confusion.
For example: As the BTRFS_IOC_DEV_INFO still carries the device path
which does not have the BTRFS_MAGIC, 'btrfs fi show' still lists
device which does not belong to the filesystem anymore:
$ mkfs.btrfs -fq -draid1 -mraid1 /dev/sda /dev/sdb
$ wipefs -a /dev/sdb
# /dev/sdb does not contain magic signature
$ mount -o degraded /dev/sda /btrfs
$ btrfs fi show -m
Label: none uuid: 470ec6fb-646b-4464-b3cb-df1b26c527bd
Total devices 2 FS bytes used 128.00KiB
devid 1 size 3.00GiB used 571.19MiB path /dev/sda
devid 2 size 3.00GiB used 571.19MiB path /dev/sdb
We need to distinguish the missing signature and invalid superblock, so
add a specific error code ENODATA for that. This also fixes failure of
fstest btrfs/198.
CC: stable@vger.kernel.org # 4.19+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
It's no longer used just remove the function and any related code which
was initialising it for inodes. No functional changes.
Removing 8 bytes from extent_io_tree in turn reduces size of other
structures where it is embedded, notably btrfs_inode where it reduces
size by 24 bytes.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
No need to go through a function pointer indirection simply call
submit_bio_hook directly by exporting and renaming the helper to
btrfs_submit_metadata_bio. This makes the code more readable and should
result in somewhat faster code due to no longer paying the price for
specualtive attack mitigations that come with indirect function calls.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
It's no longer used so let's remove it.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Don't call readpage_end_io_hook for the btree inode. Instead of relying
on indirect calls to implement metadata buffer validation simply check
if the inode whose page we are processing equals the btree inode. If it
does call the necessary function.
This is an improvement in 2 directions:
1. We aren't paying the penalty of indirect calls in a post-speculation
attacks world.
2. The function is now named more explicitly so it's obvious what's
going on
This is in preparation to removing struct extent_io_ops altogether.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Btree inode is special compared to all other inode extent io_trees,
although it has a btrfs inode, it doesn't have the track_uptodate bit at
all.
This means a lot of things like extent locking doesn't even need to be
applied to btree io tree.
Since it's so special, adds a new owner value for it to make debuging a
little easier.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The sole purpose of this function was to satisfy the requirements of
__do_readpage. Since that function is no longer used to read metadata
pages the need to keep btree_get_extent around has also disappeared.
Simply remove it.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There is no way for this function to be called as ->readpage() since
it's called from
generic_file_buffered_read/filemap_fault/do_read_cache_page/readhead
code. BTRFS doesn't utilize the first 3 for the btree inode and
implements it's owon readhead mechanism. So simply remove the function.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
I'm a actual human being so am incapable of converting u64 to s64 in my
head, so add a helper to get the pretty name of a root objectid and use
that helper to spit out the name for any special roots for leaked roots,
so I don't have to scratch my head and figure out which root I messed up
the refs for.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When we COW a block we are holding a lock on the original block, and
then we lock the new COW block. Because our lockdep maps are based on
root + level, this will make lockdep complain. We need a way to
indicate a subclass for locking the COW'ed block, so plumb through our
btrfs_lock_nesting from btrfs_cow_block down to the btrfs_init_buffer,
and then introduce BTRFS_NESTING_COW to be used for cow'ing blocks.
The reason I've added all this extra infrastructure is because there
will be need of different nesting classes in follow up patches.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
To avoid duplicating 3 lines of code the error detection logic in
init_tree_roots is somewhat quirky. It first checks for the presence of
any error condition, then checks for the specific condition to perform
any specific actions. That's spurious because directly checking for
each respective error condition and doing the necessary steps is more
obvious. While at it change the -EUCLEAN to -EIO in case the extent
buffer is not read correctly, this is in line with other sites which
return -EIO when the eb couldn't be read.
Additionally it results in smaller code and the code reads
more linearly:
add/remove: 0/0 grow/shrink: 0/1 up/down: 0/-95 (-95)
Function old new delta
open_ctree 17243 17148 -95
Total: Before=113104, After=113009, chg -0.08%
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
While this patch touches a bunch of files the conversion is
straighforward. Instead of using the implicit linked list anchored at
btrfs_fs_devices::seed the code is switched to using
list_for_each_entry.
Previous patches in the series already factored out code that processed
both main and seed devices so in those cases the factored out functions
are called on the main fs_devices and then on every seed dev inside
list_for_each_entry.
Using list api also allows to simplify deletion from the seed dev list
performed in btrfs_rm_device and btrfs_rm_dev_replace_free_srcdev by
substituting a while() loop with a simple list_del_init.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that we have the data ticketing stuff in place, move normal data
reservations to use an async reclaim helper to satisfy tickets. Before
we could have multiple tasks race in and both allocate chunks, resulting
in more data chunks than we would necessarily need. Serializing these
allocations and making a single thread responsible for flushing will
only allocate chunks as needed, as well as cut down on transaction
commits and other flush related activities.
Priority reservations will still work as they have before, simply
trying to allocate a chunk until they can make their reservation.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Tested-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Delete repeated words in fs/btrfs/.
{to, the, a, and old}
and change "into 2 part" to "into 2 parts".
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Just checking SB_I_CGROUPWB for cgroup writeback support is enough.
Either the file system allocates its own bdi (e.g. btrfs), in which case
it is known to support cgroup writeback, or the bdi comes from the block
layer, which always supports cgroup writeback.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Set up a readahead size by default, as very few users have a good
reason to change it. This means code, ecryptfs, and orangefs now
set up the values while they were previously missing it, while ubifs,
mtd and vboxsf manually set it to 0 to avoid readahead.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jan Kara <jack@suse.cz>
Acked-by: David Sterba <dsterba@suse.com> [btrfs]
Acked-by: Richard Weinberger <richard@nod.at> [ubifs, mtd]
Signed-off-by: Jens Axboe <axboe@kernel.dk>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAl9q8PUACgkQxWXV+ddt
WDsHZg//YF3Rfeo7/zaRsfUPvNoKDcM69TW+HROJXu4+rYlOukyuh5T+wboRU1Ft
7ymiR18idPYbtOczmH1Pqw+3wyOr39WafcvAnndoUguXJHsUrriBNqkthQICt0CG
hUUiofedaB+j+ti7AYGhF/tkqjd8LkCj8SGEz4cSUFCheIHR+ajFwFmx1Sw6NGJV
h9SdKfbBpIqIpoExFhprNFlxdaKN9rlhYY+zXZYeCBdU6r89CkuLqxZ79GzaU0N7
PG7FxuuJXvyHhta2a6p8hnEp7perOG22OTXJhzXd5JXiNCfZ/w4SfhH/aPO/3t5V
x42hO+FvloVSLS3woZqkBsCgCIe0a3QOT0YxZiM+1cwSgg8mVw4UBEB3PIgkfOVT
LawMbcgSh1evsSazru8gujm4f8RVxpSxxWfhhRwjXtyB8K89e22yBa9Lwfj04SH7
O5O7VrLDDnHsQWinsEf4Rl6byA13jUCgI5eUxZ5B7Au0Pm9uMexDh3lvgE0W0ucY
UvD8qAetu2NNZD68gZp597uHPrwu+Lr+VumIh4wF6doeShlIkbf/d+ntOgW9ey1S
WFSh7sUdKg5pVf6KJQ4yc3aBA6un5lv9LnvPJOwc9HyMUj/cYuxywxWf1YMr5umv
7/6CkufYjTAmEERQeqE1I6UIgUiWkS9nIisB8BLbYkrMR9Wi1bs=
=tFUE
-----END PGP SIGNATURE-----
Merge tag 'for-5.9-rc6-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
"syzkaller started to hit us with reports, here's a fix for one type
(stack overflow when printing checksums on read error).
The other patch is a fix for sysfs object, we have a test for that and
it leads to a crash."
* tag 'for-5.9-rc6-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: fix put of uninitialized kobject after seed device delete
btrfs: fix overflow when copying corrupt csums for a message
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAl9bj/UACgkQxWXV+ddt
WDs1HhAAgAvJVM2WJuMCjQhQiKljFjRT1a0Kbsp+9ayw5Q225t5S5kCMWrsA6mXF
/9bGRmmELm/Nr5pSH9hp5Bhbke0vNV+Y9XiRQXpegla4LLMF4MulVgADRIL3WoxO
ZAtNmZUokkjvB0CkzDuI7PqrF67TXLqV2hlctZo0p5SAFFgLaELyIYC6uAaO9Qo/
+EAAK+7oJyzWcUp44APu90wBbF79umwNVKEEkDfc6bwiA2Cut1JGzvPWgGvvQnta
fAd114LFViKg05GXcbnx4NxHYtf9tKHjDk9yYWssR+uV6vo/pWwAkDwYxXm/LzA4
Zv8QK5uvng1fW4eq9QkN3KflIDn+YhaH1jgwNcgyS+ZCdqZR1Mi949f+6Nj1fXt2
NeXOx3nhtqgNthKQNvHSMVJZrPjV3bdzOz+bULA+hMvTkr5gJy+ToAs30SLxGF5Y
BCJEE6b5M5Jnb+UHEBMuoxubBfmPHkY8LxfDzVWDLESsKcW2eYyeJyJXx4DNe/v9
O7Z5pcku+7R9LOlYQEzKeSuiYMqYLtmQtcNXyFBysksikjFJBWNgENna1LmgvmRH
j6fC5S9h4sIxzyKQkJgihIDt/a3f9WnhsoHw8EIn62tfdOIvMcT/xWq9YYgWaOjZ
H9040WXvEAFVcDn4cQ22DNgV+toJMpe0pLg6UXe7VtESUtbwMFM=
=JTfF
-----END PGP SIGNATURE-----
Merge tag 'for-5.9-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
"A few more fixes:
- regression fix for a crash after failed snapshot creation
- one more lockep fix: use nofs allocation when allocating missing
device
- fix reloc tree leak on degraded mount
- make some extent buffer alignment checks less strict to mount
filesystems created by btrfs-convert"
* tag 'for-5.9-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: fix NULL pointer dereference after failure to create snapshot
btrfs: free data reloc tree on failed mount
btrfs: require only sector size alignment for parent eb bytenr
btrfs: fix lockdep splat in add_missing_dev
While testing a weird problem with -o degraded, I noticed I was getting
leaked root errors
BTRFS warning (device loop0): writable mount is not allowed due to too many missing devices
BTRFS error (device loop0): open_ctree failed
BTRFS error (device loop0): leaked root -9-0 refcount 1
This is the DATA_RELOC root, which gets read before the other fs roots,
but is included in the fs roots radix tree. Handle this by adding a
btrfs_drop_and_free_fs_root() on the data reloc root if it exists. This
is ok to do here if we fail further up because we will only drop the ref
if we delete the root from the radix tree, and all other cleanup won't
be duplicated.
CC: stable@vger.kernel.org # 5.8+
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAl9D5EkACgkQxWXV+ddt
WDto+g/6A/2QzxhgOmqqHTiDvn3DkL60XfjB6lmq3NEvinrST+VH20EoX/EuX2Kn
u2+gMiWrgBUwlvERkoSasxdJf/6dCCc+9zYDjjKkAxCckENT85Np71o3iEc7Z5z+
LFgS26mt6aYlCCHyIsHutzHtK2MKiUz7/oaUYZMJBHHkKS/5hL1mzIbwiWAqfU2H
q0iMz9L2mjp1kZnpwa/yhg/NJ/oGZsKm3UPGDhdc0RlCWHBbDXHFk1wvNRo/yKQW
l+yy0dh6PAZ45pRL0/WZwvOzcAglb+uSmwa64UOvwio4Na9P7oAcBzTFmtbBtvP4
WBrOUPCTzkvgQcmoAsWFpD4nrzgW4oS71EICTOIRlPx7A86TP3wYpFEygUlLCoZC
Pd4e9mPClmW78hcRT12eJeGcJIzgoKWhR8597jNUEYz3R5T2wKHOcNnq9a1E1PLv
zR+5MFShsylUHd7HbMC1O86XnfXe5esegNQMvx36kTS+cR9Dyt5EWMNIAYK4BPM3
/tXWZRqlZPOh3T7DZ4QR5oSSDDNq7ROTdv9jmsleno+woG0MNDYsA7jCbeJnGTmI
CtTUP+p41otyM2lFZjV8PG/XyXDKb3UfU5gcsDOZdGP5S0tkyBiKSA6eqhz6DaTi
fQOLGZdkNpNN/burbMq7d7YEHr3F6LC17U3L4k5V4MTAm2lp7ZQ=
=ONgI
-----END PGP SIGNATURE-----
Merge tag 'for-5.9-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
- fix swapfile activation on subvolumes with deleted snapshots
- error value mixup when removing directory entries from tree log
- fix lzo compression level reset after previous level setting
- fix space cache memory leak after transaction abort
- fix const function attribute
- more error handling improvements
* tag 'for-5.9-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: detect nocow for swap after snapshot delete
btrfs: check the right error variable in btrfs_del_dir_entries_in_log
btrfs: fix space cache memory leak after transaction abort
btrfs: use the correct const function attribute for btrfs_get_num_csums
btrfs: reset compression level for lzo on remount
btrfs: handle errors from async submission
If a transaction aborts it can cause a memory leak of the pages array of
a block group's io_ctl structure. The following steps explain how that can
happen:
1) Transaction N is committing, currently in state TRANS_STATE_UNBLOCKED
and it's about to start writing out dirty extent buffers;
2) Transaction N + 1 already started and another task, task A, just called
btrfs_commit_transaction() on it;
3) Block group B was dirtied (extents allocated from it) by transaction
N + 1, so when task A calls btrfs_start_dirty_block_groups(), at the
very beginning of the transaction commit, it starts writeback for the
block group's space cache by calling btrfs_write_out_cache(), which
allocates the pages array for the block group's io_ctl with a call to
io_ctl_init(). Block group A is added to the io_list of transaction
N + 1 by btrfs_start_dirty_block_groups();
4) While transaction N's commit is writing out the extent buffers, it gets
an IO error and aborts transaction N, also setting the file system to
RO mode;
5) Task A has already returned from btrfs_start_dirty_block_groups(), is at
btrfs_commit_transaction() and has set transaction N + 1 state to
TRANS_STATE_COMMIT_START. Immediately after that it checks that the
filesystem was turned to RO mode, due to transaction N's abort, and
jumps to the "cleanup_transaction" label. After that we end up at
btrfs_cleanup_one_transaction() which calls btrfs_cleanup_dirty_bgs().
That helper finds block group B in the transaction's io_list but it
never releases the pages array of the block group's io_ctl, resulting in
a memory leak.
In fact at the point when we are at btrfs_cleanup_dirty_bgs(), the pages
array points to pages that were already released by us at
__btrfs_write_out_cache() through the call to io_ctl_drop_pages(). We end
up freeing the pages array only after waiting for the ordered extent to
complete through btrfs_wait_cache_io(), which calls io_ctl_free() to do
that. But in the transaction abort case we don't wait for the space cache's
ordered extent to complete through a call to btrfs_wait_cache_io(), so
that's why we end up with a memory leak - we wait for the ordered extent
to complete indirectly by shutting down the work queues and waiting for
any jobs in them to complete before returning from close_ctree().
We can solve the leak simply by freeing the pages array right after
releasing the pages (with the call to io_ctl_drop_pages()) at
__btrfs_write_out_cache(), since we will never use it anymore after that
and the pages array points to already released pages at that point, which
is currently not a problem since no one will use it after that, but not a
good practice anyway since it can easily lead to use-after-free issues.
So fix this by freeing the pages array right after releasing the pages at
__btrfs_write_out_cache().
This issue can often be reproduced with test case generic/475 from fstests
and kmemleak can detect it and reports it with the following trace:
unreferenced object 0xffff9bbf009fa600 (size 512):
comm "fsstress", pid 38807, jiffies 4298504428 (age 22.028s)
hex dump (first 32 bytes):
00 a0 7c 4d 3d ed ff ff 40 a0 7c 4d 3d ed ff ff ..|M=...@.|M=...
80 a0 7c 4d 3d ed ff ff c0 a0 7c 4d 3d ed ff ff ..|M=.....|M=...
backtrace:
[<00000000f4b5cfe2>] __kmalloc+0x1a8/0x3e0
[<0000000028665e7f>] io_ctl_init+0xa7/0x120 [btrfs]
[<00000000a1f95b2d>] __btrfs_write_out_cache+0x86/0x4a0 [btrfs]
[<00000000207ea1b0>] btrfs_write_out_cache+0x7f/0xf0 [btrfs]
[<00000000af21f534>] btrfs_start_dirty_block_groups+0x27b/0x580 [btrfs]
[<00000000c3c23d44>] btrfs_commit_transaction+0xa6f/0xe70 [btrfs]
[<000000009588930c>] create_subvol+0x581/0x9a0 [btrfs]
[<000000009ef2fd7f>] btrfs_mksubvol+0x3fb/0x4a0 [btrfs]
[<00000000474e5187>] __btrfs_ioctl_snap_create+0x119/0x1a0 [btrfs]
[<00000000708ee349>] btrfs_ioctl_snap_create_v2+0xb0/0xf0 [btrfs]
[<00000000ea60106f>] btrfs_ioctl+0x12c/0x3130 [btrfs]
[<000000005c923d6d>] __x64_sys_ioctl+0x83/0xb0
[<0000000043ace2c9>] do_syscall_64+0x33/0x80
[<00000000904efbce>] entry_SYSCALL_64_after_hwframe+0x44/0xa9
CC: stable@vger.kernel.org # 4.9+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAl8m7YwQHGF4Ym9lQGtl
cm5lbC5kawAKCRD301j7KXHgpt+dEAC7a0HYuX2OrkyawBnsgd1QQR/soC7surec
yDDa7SMM8cOq3935bfzcYHV9FWJszEGIknchiGb9R3/T+vmSohbvDsM5zgwya9u/
FHUIuTq324I6JWXKl30k4rwjiX9wQeMt+WZ5gC8KJYCWA296i2IpJwd0A45aaKuS
x4bTjxqknE+fD4gQiMUSt+bmuOUAp81fEku3EPapCRYDPAj8f5uoY7R2arT/POwB
b+s+AtXqzBymIqx1z0sZ/XcdZKmDuhdurGCWu7BfJFIzw5kQ2Qe3W8rUmrQ3pGut
8a21YfilhUFiBv+B4wptfrzJuzU6Ps0BXHCnBsQjzvXwq5uFcZH495mM/4E4OJvh
SbjL2K4iFj+O1ngFkukG/F8tdEM1zKBYy2ZEkGoWKUpyQanbAaGI6QKKJA+DCdBi
yPEb7yRAa5KfLqMiocm1qCEO1I56HRiNHaJVMqCPOZxLmpXj19Fs71yIRplP1Trv
GGXdWZsccjuY6OljoXWdEfnxAr5zBsO3Yf2yFT95AD+egtGsU1oOzlqAaU1mtflw
ABo452pvh6FFpxGXqz6oK4VqY4Et7WgXOiljA4yIGoPpG/08L1Yle4eVc2EE01Jb
+BL49xNJVeUhGFrvUjPGl9kVMeLmubPFbmgrtipW+VRg9W8+Yirw7DPP6K+gbPAR
RzAUdZFbWw==
=abJG
-----END PGP SIGNATURE-----
Merge tag 'for-5.9/block-20200802' of git://git.kernel.dk/linux-block
Pull core block updates from Jens Axboe:
"Good amount of cleanups and tech debt removals in here, and as a
result, the diffstat shows a nice net reduction in code.
- Softirq completion cleanups (Christoph)
- Stop using ->queuedata (Christoph)
- Cleanup bd claiming (Christoph)
- Use check_events, moving away from the legacy media change
(Christoph)
- Use inode i_blkbits consistently (Christoph)
- Remove old unused writeback congestion bits (Christoph)
- Cleanup/unify submission path (Christoph)
- Use bio_uninit consistently, instead of bio_disassociate_blkg
(Christoph)
- sbitmap cleared bits handling (John)
- Request merging blktrace event addition (Jan)
- sysfs add/remove race fixes (Luis)
- blk-mq tag fixes/optimizations (Ming)
- Duplicate words in comments (Randy)
- Flush deferral cleanup (Yufen)
- IO context locking/retry fixes (John)
- struct_size() usage (Gustavo)
- blk-iocost fixes (Chengming)
- blk-cgroup IO stats fixes (Boris)
- Various little fixes"
* tag 'for-5.9/block-20200802' of git://git.kernel.dk/linux-block: (135 commits)
block: blk-timeout: delete duplicated word
block: blk-mq-sched: delete duplicated word
block: blk-mq: delete duplicated word
block: genhd: delete duplicated words
block: elevator: delete duplicated word and fix typos
block: bio: delete duplicated words
block: bfq-iosched: fix duplicated word
iocost_monitor: start from the oldest usage index
iocost: Fix check condition of iocg abs_vdebt
block: Remove callback typedefs for blk_mq_ops
block: Use non _rcu version of list functions for tag_set_list
blk-cgroup: show global disk stats in root cgroup io.stat
blk-cgroup: make iostat functions visible to stat printing
block: improve discard bio alignment in __blkdev_issue_discard()
block: change REQ_OP_ZONE_RESET and REQ_OP_ZONE_RESET_ALL to be odd numbers
block: defer flush request no matter whether we have elevator
block: make blk_timeout_init() static
block: remove retry loop in ioc_release_fn()
block: remove unnecessary ioc nested locking
block: integrate bd_start_claiming into __blkdev_get
...
commit a514d63882 ("btrfs: qgroup: Commit transaction in advance to
reduce early EDQUOT") tries to reduce the early EDQUOT problems by
checking the qgroup free against threshold and tries to wake up commit
kthread to free some space.
The problem of that mechanism is, it can only free qgroup per-trans
metadata space, can't do anything to data, nor prealloc qgroup space.
Now since we have the ability to flush qgroup space, and implemented
retry-after-EDQUOT behavior, such mechanism can be completely replaced.
So this patch will cleanup such mechanism in favor of
retry-after-EDQUOT.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[PROBLEM]
There are known problem related to how btrfs handles qgroup reserved
space. One of the most obvious case is the the test case btrfs/153,
which do fallocate, then write into the preallocated range.
btrfs/153 1s ... - output mismatch (see xfstests-dev/results//btrfs/153.out.bad)
--- tests/btrfs/153.out 2019-10-22 15:18:14.068965341 +0800
+++ xfstests-dev/results//btrfs/153.out.bad 2020-07-01 20:24:40.730000089 +0800
@@ -1,2 +1,5 @@
QA output created by 153
+pwrite: Disk quota exceeded
+/mnt/scratch/testfile2: Disk quota exceeded
+/mnt/scratch/testfile2: Disk quota exceeded
Silence is golden
...
(Run 'diff -u xfstests-dev/tests/btrfs/153.out xfstests-dev/results//btrfs/153.out.bad' to see the entire diff)
[CAUSE]
Since commit c6887cd111 ("Btrfs: don't do nocow check unless we have to"),
we always reserve space no matter if it's COW or not.
Such behavior change is mostly for performance, and reverting it is not
a good idea anyway.
For preallcoated extent, we reserve qgroup data space for it already,
and since we also reserve data space for qgroup at buffered write time,
it needs twice the space for us to write into preallocated space.
This leads to the -EDQUOT in buffered write routine.
And we can't follow the same solution, unlike data/meta space check,
qgroup reserved space is shared between data/metadata.
The EDQUOT can happen at the metadata reservation, so doing NODATACOW
check after qgroup reservation failure is not a solution.
[FIX]
To solve the problem, we don't return -EDQUOT directly, but every time
we got a -EDQUOT, we try to flush qgroup space:
- Flush all inodes of the root
NODATACOW writes will free the qgroup reserved at run_dealloc_range().
However we don't have the infrastructure to only flush NODATACOW
inodes, here we flush all inodes anyway.
- Wait for ordered extents
This would convert the preallocated metadata space into per-trans
metadata, which can be freed in later transaction commit.
- Commit transaction
This will free all per-trans metadata space.
Also we don't want to trigger flush multiple times, so here we introduce
a per-root wait list and a new root status, to ensure only one thread
starts the flushing.
Fixes: c6887cd111 ("Btrfs: don't do nocow check unless we have to")
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
When the anonymous block device pool is exhausted, subvolume/snapshot
creation fails with EMFILE (Too many files open). This has been reported
by a user. The allocation happens in the second phase during transaction
commit where it's only way out is to abort the transaction
BTRFS: Transaction aborted (error -24)
WARNING: CPU: 17 PID: 17041 at fs/btrfs/transaction.c:1576 create_pending_snapshot+0xbc4/0xd10 [btrfs]
RIP: 0010:create_pending_snapshot+0xbc4/0xd10 [btrfs]
Call Trace:
create_pending_snapshots+0x82/0xa0 [btrfs]
btrfs_commit_transaction+0x275/0x8c0 [btrfs]
btrfs_mksubvol+0x4b9/0x500 [btrfs]
btrfs_ioctl_snap_create_transid+0x174/0x180 [btrfs]
btrfs_ioctl_snap_create_v2+0x11c/0x180 [btrfs]
btrfs_ioctl+0x11a4/0x2da0 [btrfs]
do_vfs_ioctl+0xa9/0x640
ksys_ioctl+0x67/0x90
__x64_sys_ioctl+0x1a/0x20
do_syscall_64+0x5a/0x110
entry_SYSCALL_64_after_hwframe+0x44/0xa9
---[ end trace 33f2f83f3d5250e9 ]---
BTRFS: error (device sda1) in create_pending_snapshot:1576: errno=-24 unknown
BTRFS info (device sda1): forced readonly
BTRFS warning (device sda1): Skipping commit of aborted transaction.
BTRFS: error (device sda1) in cleanup_transaction:1831: errno=-24 unknown
[CAUSE]
When the global anonymous block device pool is exhausted, the following
call chain will fail, and lead to transaction abort:
btrfs_ioctl_snap_create_v2()
|- btrfs_ioctl_snap_create_transid()
|- btrfs_mksubvol()
|- btrfs_commit_transaction()
|- create_pending_snapshot()
|- btrfs_get_fs_root()
|- btrfs_init_fs_root()
|- get_anon_bdev()
[FIX]
Although we can't enlarge the anonymous block device pool, at least we
can preallocate anon_dev for subvolume/snapshot in the first phase,
outside of transaction context and exactly at the moment the user calls
the creation ioctl.
Reported-by: Greed Rong <greedrong@gmail.com>
Link: https://lore.kernel.org/linux-btrfs/CA+UqX+NTrZ6boGnWHhSeZmEY5J76CTqmYjO2S+=tHJX7nb9DPw@mail.gmail.com/
CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
When a lot of subvolumes are created, there is a user report about
transaction aborted:
BTRFS: Transaction aborted (error -24)
WARNING: CPU: 17 PID: 17041 at fs/btrfs/transaction.c:1576 create_pending_snapshot+0xbc4/0xd10 [btrfs]
RIP: 0010:create_pending_snapshot+0xbc4/0xd10 [btrfs]
Call Trace:
create_pending_snapshots+0x82/0xa0 [btrfs]
btrfs_commit_transaction+0x275/0x8c0 [btrfs]
btrfs_mksubvol+0x4b9/0x500 [btrfs]
btrfs_ioctl_snap_create_transid+0x174/0x180 [btrfs]
btrfs_ioctl_snap_create_v2+0x11c/0x180 [btrfs]
btrfs_ioctl+0x11a4/0x2da0 [btrfs]
do_vfs_ioctl+0xa9/0x640
ksys_ioctl+0x67/0x90
__x64_sys_ioctl+0x1a/0x20
do_syscall_64+0x5a/0x110
entry_SYSCALL_64_after_hwframe+0x44/0xa9
---[ end trace 33f2f83f3d5250e9 ]---
BTRFS: error (device sda1) in create_pending_snapshot:1576: errno=-24 unknown
BTRFS info (device sda1): forced readonly
BTRFS warning (device sda1): Skipping commit of aborted transaction.
BTRFS: error (device sda1) in cleanup_transaction:1831: errno=-24 unknown
[CAUSE]
The error is EMFILE (Too many files open) and comes from the anonymous
block device allocation. The ids are in a shared pool of size 1<<20.
The ids are assigned to live subvolumes, ie. the root structure exists
in memory (eg. after creation or after the root appears in some path).
The pool could be exhausted if the numbers are not reclaimed fast
enough, after subvolume deletion or if other system component uses the
anon block devices.
[WORKAROUND]
Since it's not possible to completely solve the problem, we can only
minimize the time the id is allocated to a subvolume root.
Firstly, we can reduce the use of anon_dev by trees that are not
subvolume roots, like data reloc tree.
This patch will do extra check on root objectid, to skip roots that
don't need anon_dev. Currently it's only data reloc tree and orphan
roots.
Reported-by: Greed Rong <greedrong@gmail.com>
Link: https://lore.kernel.org/linux-btrfs/CA+UqX+NTrZ6boGnWHhSeZmEY5J76CTqmYjO2S+=tHJX7nb9DPw@mail.gmail.com/
CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Last touched in 2013 by commit de78b51a28 ("btrfs: remove cache only
arguments from defrag path") that was the only code that used the value.
Now it's only set but never used for anything, so we can remove it.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In btrfs_put_root() we're freeing a btrfs_root's 'node' and 'commit_root'
extent buffers manually via kfree(), while we're using
free_root_extent_buffers() in the free_root_pointers() function above.
free_root_extent_buffers() also NULLs the pointers after freeing, which
mitigates potential double frees.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Before this patch, qgroup completely relies on per-inode extent io tree
to detect reserved data space leak.
However previous bug has already shown how release page before
btrfs_finish_ordered_io() could lead to leak, and since it's
QGROUP_RESERVED bit cleared without triggering qgroup rsv, it can't be
detected by per-inode extent io tree.
So this patch adds another (and hopefully the final) safety net to catch
qgroup data reserved space leak. At least the new safety net catches
all the leaks during development, so it should be pretty useful in the
real world.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Except for pktdvd, the only places setting congested bits are file
systems that allocate their own backing_dev_info structures. And
pktdvd is a deprecated driver that isn't useful in stack setup
either. So remove the dead congested_fn stacking infrastructure.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Song Liu <song@kernel.org>
Acked-by: David Sterba <dsterba@suse.com>
[axboe: fixup unused variables in bcache/request.c]
Signed-off-by: Jens Axboe <axboe@kernel.dk>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAl8EdTkACgkQxWXV+ddt
WDv6xA/9Hguo/k6oj/7Nl9n3UUZ7gp44R/jy37fhMuNcwuEDuqIEfAgGXupdJVaj
pYDorUMRUQfI2yLB1iHAnPgBMKBidSroDsdrRHKuimnhABSO2/KX/KXPianIIRGi
wPvqZR04L565LNpRlDQx7OYkJWey7b6xf47UZqDglivnKY1OwCJlXgfCj/9FApr0
Y+PVlgEU78ExTeAHs/h8ofZ/f5T2eqiluBSFVykzCg1NngaQVOKpN3gnWEatUAvM
ekm6U4E1ZR9oOprdhlf6V96ztGzVTRKB1vFIeCvJLqLNIe+0pxlRfRn2aOj8vzEO
DRjgOlhyAIgypp78SwCspjhvejvVneSFdEGSVvHOw1ombB//OJ1qBb5G/lIcwCj3
PZ3OnQJV7+/Ty7Xt/X26W841zvnu90K0di0CsOPehtbkgkR4txgHCJB9mSlsMugN
awN5Ryy1rw1cAM5GspXG9EEOvJmnSizQf4BcK649IG5eUKThYYLc5mp68jiMljs0
NHFPg5P4yTRjk7Yqgxq5VvTPLLJo5j5xxqtY/1zDWuguRa40wIoy/JUJaJoPg9Vd
221/qRG4R4xGyZXGx6XTiWK+M3qjTlS9My9tGoWygwlExRkr7Uli9Ikef3U0tBoF
bjTcfCNOuCp+JECHNcnMZ9fhhFaMwIL1V4OflB1iicBAtXxo8Lk=
=+4BZ
-----END PGP SIGNATURE-----
Merge tag 'for-5.8-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
- regression fix of a leak in global block reserve accounting
- fix a (hard to hit) race of readahead vs releasepage that could lead
to crash
- convert all remaining uses of comment fall through annotations to the
pseudo keyword
- fix crash when mounting a fuzzed image with -o recovery
* tag 'for-5.8-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: reset tree root pointer after error in init_tree_roots
btrfs: fix reclaim_size counter leak after stealing from global reserve
btrfs: fix fatal extent_buffer readahead vs releasepage race
btrfs: convert comments to fallthrough annotations
Eric reported an issue where mounting -o recovery with a fuzzed fs
resulted in a kernel panic. This is because we tried to free the tree
node, except it was an error from the read. Fix this by properly
resetting the tree_root->node == NULL in this case. The panic was the
following
BTRFS warning (device loop0): failed to read tree root
BUG: kernel NULL pointer dereference, address: 000000000000001f
RIP: 0010:free_extent_buffer+0xe/0x90 [btrfs]
Call Trace:
free_root_extent_buffers.part.0+0x11/0x30 [btrfs]
free_root_pointers+0x1a/0xa2 [btrfs]
open_ctree+0x1776/0x18a5 [btrfs]
btrfs_mount_root.cold+0x13/0xfa [btrfs]
? selinux_fs_context_parse_param+0x37/0x80
legacy_get_tree+0x27/0x40
vfs_get_tree+0x25/0xb0
fc_mount+0xe/0x30
vfs_kern_mount.part.0+0x71/0x90
btrfs_mount+0x147/0x3e0 [btrfs]
? cred_has_capability+0x7c/0x120
? legacy_get_tree+0x27/0x40
legacy_get_tree+0x27/0x40
vfs_get_tree+0x25/0xb0
do_mount+0x735/0xa40
__x64_sys_mount+0x8e/0xd0
do_syscall_64+0x4d/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xa9
Nik says: this is problematic only if we fail on the last iteration of
the loop as this results in init_tree_roots returning err value with
tree_root->node = -ERR. Subsequently the caller does: fail_tree_roots
which calls free_root_pointers on the bogus value.
Reported-by: Eric Sandeen <sandeen@redhat.com>
Fixes: b8522a1e5f ("btrfs: Factor out tree roots initialization during mount")
CC: stable@vger.kernel.org # 5.5+
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ add details how the pointer gets dereferenced ]
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAl7U50AACgkQxWXV+ddt
WDtK1g//RXeNsTguYQr1N9R5eUPThjLEI0+4J0l4SYfCPU8Ou3C7nqpOEJJQgm8F
ezZE+16cWi9U5uGueOc+w0rfyz4AuIXKgzoz+c0/GG2+yV5jp6DsAMbWqojAb96L
V/N3HxEzR66jqwgVUBE/x5okb2SyY7//B1l/O0amc66XDO7KTMImpIwThere6zWZ
o2SNpYpHAPQeUYJQx8h+FAW3w1CxrCZmnifazU9Jqe9J7QeQLg7rbUlJDV38jySm
ZOA8ohKN9U1gPZy+dTU3kdyyuBIq1etkIaSPJANyTo5TczPKiC0IMg75cXtS4ae/
NSxhccMpSIjVMcIHARzSFGYKNP3sGNRsmaTUg/2Cx/9GoHOhYMiCAVc8qtBBpwJO
UI0siexrCe64RuTBMRRc128GdFv7IjmSImcdi8xaR62bCcUiNdEa3zvjRe/9tOEH
ET7Z85oBnKpSzpC3MdhSUU4dtHY5XLawP8z3oUU1VSzSWM2DVjlHf79/VzbOfp18
miCVpt94lCn/gUX7el6qcnbuvMAjDyeC6HmfD+TwzQgGwyV6TLgKN9lRXeH/Oy6/
VgjGQSavGHMll3zIGURmrBCXKudjJg0J+IP4wN1TimmSEMfwKH+7tnekQd8y5qlF
eXEIqlWNykKeDzEnmV9QJy+/cV83hVWM/mUslcTx39tLN/3B/Us=
=qTt8
-----END PGP SIGNATURE-----
Merge tag 'for-5.8-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs updates from David Sterba:
"Highlights:
- speedup dead root detection during orphan cleanup, eg. when there
are many deleted subvolumes waiting to be cleaned, the trees are
now looked up in radix tree instead of a O(N^2) search
- snapshot creation with inherited qgroup will mark the qgroup
inconsistent, requires a rescan
- send will emit file capabilities after chown, this produces a
stream that does not need postprocessing to set the capabilities
again
- direct io ported to iomap infrastructure, cleaned up and simplified
code, notably removing last use of struct buffer_head in btrfs code
Core changes:
- factor out backreference iteration, to be used by ordinary
backreferences and relocation code
- improved global block reserve utilization
* better logic to serialize requests
* increased maximum available for unlink
* improved handling on large pages (64K)
- direct io cleanups and fixes
* simplify layering, where cloned bios were unnecessarily created
for some cases
* error handling fixes (submit, endio)
* remove repair worker thread, used to avoid deadlocks during
repair
- refactored block group reading code, preparatory work for new type
of block group storage that should improve mount time on large
filesystems
Cleanups:
- cleaned up (and slightly sped up) set/get helpers for metadata data
structure members
- root bit REF_COWS got renamed to SHAREABLE to reflect the that the
blocks of the tree get shared either among subvolumes or with the
relocation trees
Fixes:
- when subvolume deletion fails due to ENOSPC, the filesystem is not
turned read-only
- device scan deals with devices from other filesystems that changed
ownership due to overwrite (mkfs)
- fix a race between scrub and block group removal/allocation
- fix long standing bug of a runaway balance operation, printing the
same line to the syslog, caused by a stale status bit on a reloc
tree that prevented progress
- fix corrupt log due to concurrent fsync of inodes with shared
extents
- fix space underflow for NODATACOW and buffered writes when it for
some reason needs to fallback to COW mode"
* tag 'for-5.8-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: (133 commits)
btrfs: fix space_info bytes_may_use underflow during space cache writeout
btrfs: fix space_info bytes_may_use underflow after nocow buffered write
btrfs: fix wrong file range cleanup after an error filling dealloc range
btrfs: remove redundant local variable in read_block_for_search
btrfs: open code key_search
btrfs: split btrfs_direct_IO to read and write part
btrfs: remove BTRFS_INODE_READDIO_NEED_LOCK
fs: remove dio_end_io()
btrfs: switch to iomap_dio_rw() for dio
iomap: remove lockdep_assert_held()
iomap: add a filesystem hook for direct I/O bio submission
fs: export generic_file_buffered_read()
btrfs: turn space cache writeout failure messages into debug messages
btrfs: include error on messages about failure to write space/inode caches
btrfs: remove useless 'fail_unlock' label from btrfs_csum_file_blocks()
btrfs: do not ignore error from btrfs_next_leaf() when inserting checksums
btrfs: make checksum item extension more efficient
btrfs: fix corrupt log due to concurrent fsync of inodes with shared extents
btrfs: unexport btrfs_compress_set_level()
btrfs: simplify iget helpers
...
Since the new pair function is introduced, we can call them to clean the
code in btrfs.
Signed-off-by: Guoqing Jiang <guoqing.jiang@cloud.ionos.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: David Sterba <dsterba@suse.com>
Cc: Chris Mason <clm@fb.com>
Cc: Josef Bacik <josef@toxicpanda.com>
Link: http://lkml.kernel.org/r/20200517214718.468-4-guoqing.jiang@cloud.ionos.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When we have extents shared amongst different inodes in the same subvolume,
if we fsync them in parallel we can end up with checksum items in the log
tree that represent ranges which overlap.
For example, consider we have inodes A and B, both sharing an extent that
covers the logical range from X to X + 64KiB:
1) Task A starts an fsync on inode A;
2) Task B starts an fsync on inode B;
3) Task A calls btrfs_csum_file_blocks(), and the first search in the
log tree, through btrfs_lookup_csum(), returns -EFBIG because it
finds an existing checksum item that covers the range from X - 64KiB
to X;
4) Task A checks that the checksum item has not reached the maximum
possible size (MAX_CSUM_ITEMS) and then releases the search path
before it does another path search for insertion (through a direct
call to btrfs_search_slot());
5) As soon as task A releases the path and before it does the search
for insertion, task B calls btrfs_csum_file_blocks() and gets -EFBIG
too, because there is an existing checksum item that has an end
offset that matches the start offset (X) of the checksum range we want
to log;
6) Task B releases the path;
7) Task A does the path search for insertion (through btrfs_search_slot())
and then verifies that the checksum item that ends at offset X still
exists and extends its size to insert the checksums for the range from
X to X + 64KiB;
8) Task A releases the path and returns from btrfs_csum_file_blocks(),
having inserted the checksums into an existing checksum item that got
its size extended. At this point we have one checksum item in the log
tree that covers the logical range from X - 64KiB to X + 64KiB;
9) Task B now does a search for insertion using btrfs_search_slot() too,
but it finds that the previous checksum item no longer ends at the
offset X, it now ends at an of offset X + 64KiB, so it leaves that item
untouched.
Then it releases the path and calls btrfs_insert_empty_item()
that inserts a checksum item with a key offset corresponding to X and
a size for inserting a single checksum (4 bytes in case of crc32c).
Subsequent iterations end up extending this new checksum item so that
it contains the checksums for the range from X to X + 64KiB.
So after task B returns from btrfs_csum_file_blocks() we end up with
two checksum items in the log tree that have overlapping ranges, one
for the range from X - 64KiB to X + 64KiB, and another for the range
from X to X + 64KiB.
Having checksum items that represent ranges which overlap, regardless of
being in the log tree or in the chekcsums tree, can lead to problems where
checksums for a file range end up not being found. This type of problem
has happened a few times in the past and the following commits fixed them
and explain in detail why having checksum items with overlapping ranges is
problematic:
27b9a8122f "Btrfs: fix csum tree corruption, duplicate and outdated checksums"
b84b8390d6 "Btrfs: fix file read corruption after extent cloning and fsync"
40e046acbd "Btrfs: fix missing data checksums after replaying a log tree"
Since this specific instance of the problem can only happen when logging
inodes, because it is the only case where concurrent attempts to insert
checksums for the same range can happen, fix the issue by using an extent
io tree as a range lock to serialize checksum insertion during inode
logging.
This issue could often be reproduced by the test case generic/457 from
fstests. When it happens it produces the following trace:
BTRFS critical (device dm-0): corrupt leaf: root=18446744073709551610 block=30625792 slot=42, csum end range (15020032) goes beyond the start range (15015936) of the next csum item
BTRFS info (device dm-0): leaf 30625792 gen 7 total ptrs 49 free space 2402 owner 18446744073709551610
BTRFS info (device dm-0): refs 1 lock (w:0 r:0 bw:0 br:0 sw:0 sr:0) lock_owner 0 current 15884
item 0 key (18446744073709551606 128 13979648) itemoff 3991 itemsize 4
item 1 key (18446744073709551606 128 13983744) itemoff 3987 itemsize 4
item 2 key (18446744073709551606 128 13987840) itemoff 3983 itemsize 4
item 3 key (18446744073709551606 128 13991936) itemoff 3979 itemsize 4
item 4 key (18446744073709551606 128 13996032) itemoff 3975 itemsize 4
item 5 key (18446744073709551606 128 14000128) itemoff 3971 itemsize 4
(...)
BTRFS error (device dm-0): block=30625792 write time tree block corruption detected
------------[ cut here ]------------
WARNING: CPU: 1 PID: 15884 at fs/btrfs/disk-io.c:539 btree_csum_one_bio+0x268/0x2d0 [btrfs]
Modules linked in: btrfs dm_thin_pool ...
CPU: 1 PID: 15884 Comm: fsx Tainted: G W 5.6.0-rc7-btrfs-next-58 #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-59-gc9ba5276e321-prebuilt.qemu.org 04/01/2014
RIP: 0010:btree_csum_one_bio+0x268/0x2d0 [btrfs]
Code: c7 c7 ...
RSP: 0018:ffffbb0109e6f8e0 EFLAGS: 00010296
RAX: 0000000000000000 RBX: ffffe1c0847b6080 RCX: 0000000000000000
RDX: 0000000000000000 RSI: ffffffffaa963988 RDI: 0000000000000001
RBP: ffff956a4f4d2000 R08: 0000000000000000 R09: 0000000000000001
R10: 0000000000000526 R11: 0000000000000000 R12: ffff956a5cd28bb0
R13: 0000000000000000 R14: ffff956a649c9388 R15: 000000011ed82000
FS: 00007fb419959e80(0000) GS:ffff956a7aa00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000fe6d54 CR3: 0000000138696005 CR4: 00000000003606e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
btree_submit_bio_hook+0x67/0xc0 [btrfs]
submit_one_bio+0x31/0x50 [btrfs]
btree_write_cache_pages+0x2db/0x4b0 [btrfs]
? __filemap_fdatawrite_range+0xb1/0x110
do_writepages+0x23/0x80
__filemap_fdatawrite_range+0xd2/0x110
btrfs_write_marked_extents+0x15e/0x180 [btrfs]
btrfs_sync_log+0x206/0x10a0 [btrfs]
? kmem_cache_free+0x315/0x3b0
? btrfs_log_inode+0x1e8/0xf90 [btrfs]
? __mutex_unlock_slowpath+0x45/0x2a0
? lockref_put_or_lock+0x9/0x30
? dput+0x2d/0x580
? dput+0xb5/0x580
? btrfs_sync_file+0x464/0x4d0 [btrfs]
btrfs_sync_file+0x464/0x4d0 [btrfs]
do_fsync+0x38/0x60
__x64_sys_fsync+0x10/0x20
do_syscall_64+0x5c/0x280
entry_SYSCALL_64_after_hwframe+0x49/0xbe
RIP: 0033:0x7fb41953a6d0
Code: 48 3d ...
RSP: 002b:00007ffcc86bd218 EFLAGS: 00000246 ORIG_RAX: 000000000000004a
RAX: ffffffffffffffda RBX: 000000000000000d RCX: 00007fb41953a6d0
RDX: 0000000000000009 RSI: 0000000000040000 RDI: 0000000000000003
RBP: 0000000000040000 R08: 0000000000000001 R09: 0000000000000009
R10: 0000000000000064 R11: 0000000000000246 R12: 0000556cf4b2c060
R13: 0000000000000100 R14: 0000000000000000 R15: 0000556cf322b420
irq event stamp: 0
hardirqs last enabled at (0): [<0000000000000000>] 0x0
hardirqs last disabled at (0): [<ffffffffa96bdedf>] copy_process+0x74f/0x2020
softirqs last enabled at (0): [<ffffffffa96bdedf>] copy_process+0x74f/0x2020
softirqs last disabled at (0): [<0000000000000000>] 0x0
---[ end trace d543fc76f5ad7fd8 ]---
In that trace the tree checker detected the overlapping checksum items at
the time when we triggered writeback for the log tree when syncing the
log.
Another trace that can happen is due to BUG_ON() when deleting checksum
items while logging an inode:
BTRFS critical (device dm-0): slot 81 key (18446744073709551606 128 13635584) new key (18446744073709551606 128 13635584)
BTRFS info (device dm-0): leaf 30949376 gen 7 total ptrs 98 free space 8527 owner 18446744073709551610
BTRFS info (device dm-0): refs 4 lock (w:1 r:0 bw:0 br:0 sw:1 sr:0) lock_owner 13473 current 13473
item 0 key (257 1 0) itemoff 16123 itemsize 160
inode generation 7 size 262144 mode 100600
item 1 key (257 12 256) itemoff 16103 itemsize 20
item 2 key (257 108 0) itemoff 16050 itemsize 53
extent data disk bytenr 13631488 nr 4096
extent data offset 0 nr 131072 ram 131072
(...)
------------[ cut here ]------------
kernel BUG at fs/btrfs/ctree.c:3153!
invalid opcode: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC PTI
CPU: 1 PID: 13473 Comm: fsx Not tainted 5.6.0-rc7-btrfs-next-58 #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-59-gc9ba5276e321-prebuilt.qemu.org 04/01/2014
RIP: 0010:btrfs_set_item_key_safe+0x1ea/0x270 [btrfs]
Code: 0f b6 ...
RSP: 0018:ffff95e3889179d0 EFLAGS: 00010282
RAX: 0000000000000000 RBX: 0000000000000051 RCX: 0000000000000000
RDX: 0000000000000000 RSI: ffffffffb7763988 RDI: 0000000000000001
RBP: fffffffffffffff6 R08: 0000000000000000 R09: 0000000000000001
R10: 00000000000009ef R11: 0000000000000000 R12: ffff8912a8ba5a08
R13: ffff95e388917a06 R14: ffff89138dcf68c8 R15: ffff95e388917ace
FS: 00007fe587084e80(0000) GS:ffff8913baa00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fe587091000 CR3: 0000000126dac005 CR4: 00000000003606e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
btrfs_del_csums+0x2f4/0x540 [btrfs]
copy_items+0x4b5/0x560 [btrfs]
btrfs_log_inode+0x910/0xf90 [btrfs]
btrfs_log_inode_parent+0x2a0/0xe40 [btrfs]
? dget_parent+0x5/0x370
btrfs_log_dentry_safe+0x4a/0x70 [btrfs]
btrfs_sync_file+0x42b/0x4d0 [btrfs]
__x64_sys_msync+0x199/0x200
do_syscall_64+0x5c/0x280
entry_SYSCALL_64_after_hwframe+0x49/0xbe
RIP: 0033:0x7fe586c65760
Code: 00 f7 ...
RSP: 002b:00007ffe250f98b8 EFLAGS: 00000246 ORIG_RAX: 000000000000001a
RAX: ffffffffffffffda RBX: 00000000000040e1 RCX: 00007fe586c65760
RDX: 0000000000000004 RSI: 0000000000006b51 RDI: 00007fe58708b000
RBP: 0000000000006a70 R08: 0000000000000003 R09: 00007fe58700cb61
R10: 0000000000000100 R11: 0000000000000246 R12: 00000000000000e1
R13: 00007fe58708b000 R14: 0000000000006b51 R15: 0000558de021a420
Modules linked in: dm_log_writes ...
---[ end trace c92a7f447a8515f5 ]---
CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The main function to lookup a root by its id btrfs_get_fs_root takes the
whole key, while only using the objectid. The value of offset is preset
to (u64)-1 but not actually used until btrfs_find_root that does the
actual search.
Switch btrfs_get_fs_root to use only objectid and remove all local
variables that existed just for the lookup. The actual key for search is
set up in btrfs_get_fs_root, reusing another key variable.
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
There are several reported runaway balance, that balance is flooding the
log with "found X extents" where the X never changes.
[CAUSE]
Commit d2311e6985 ("btrfs: relocation: Delay reloc tree deletion after
merge_reloc_roots") introduced BTRFS_ROOT_DEAD_RELOC_TREE bit to
indicate that one subvolume has finished its tree blocks swap with its
reloc tree.
However if balance is canceled or hits ENOSPC halfway, we didn't clear
the BTRFS_ROOT_DEAD_RELOC_TREE bit, leaving that bit hanging forever
until unmount.
Any subvolume root with that bit, would cause backref cache to skip this
tree block, as it has finished its tree block swap. This would cause
all tree blocks of that root be ignored by balance, leading to runaway
balance.
[FIX]
Fix the problem by also clearing the BTRFS_ROOT_DEAD_RELOC_TREE bit for
the original subvolume of orphan reloc root.
Add an umount check for the stale bit still set.
Fixes: d2311e6985 ("btrfs: relocation: Delay reloc tree deletion after merge_reloc_roots")
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
SHAREABLE flag is set for subvolumes because users can create snapshot
for subvolumes, thus sharing tree blocks of them.
But data reloc tree is not exposed to user space, as it's only an
internal tree for data relocation, thus it doesn't need the full path
replacement handling at all.
This patch will make data reloc tree a non-shareable tree, and add
btrfs_fs_info::data_reloc_root for data reloc tree, so relocation code
can grab it from fs_info directly.
This would slightly improve tree relocation, as now data reloc tree
can go through regular COW routine to get relocated, without bothering
the complex tree reloc tree routine.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The name BTRFS_ROOT_REF_COWS is not very clear about the meaning.
In fact, that bit can only be set to those trees:
- Subvolume roots
- Data reloc root
- Reloc roots for above roots
All other trees won't get this bit set. So just by the result, it is
obvious that, roots with this bit set can have tree blocks shared with
other trees. Either shared by snapshots, or by reloc roots (an special
snapshot created by relocation).
This patch will rename BTRFS_ROOT_REF_COWS to BTRFS_ROOT_SHAREABLE to
make it easier to understand, and update all comment mentioning
"reference counted" to follow the rename.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Use crypto_shash_digest() instead of crypto_shash_init() +
crypto_shash_update() + crypto_shash_final(). This is more efficient.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This was originally added in commit 8b110e393c ("Btrfs: implement
repair function when direct read fails") to avoid a deadlock. In that
commit, the direct I/O read endio executes on the endio_workers
workqueue, submits a repair bio, and waits for it to complete. The
repair bio endio must execute on a different workqueue, otherwise it
could block on the endio_workers workqueue becoming available, which
won't happen because the original endio is blocked on the repair bio.
As of the previous commit, the original endio doesn't wait for the
repair bio, so this separate workqueue is unnecessary.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Dave reported a problem where we were panicing with generic/475 with
misc-5.7. This is because we were doing IO after we had stopped all of
the worker threads, because we do the log tree cleanup on roots at drop
time. Cleaning up the log tree will always need to do reads if we
happened to have evicted the blocks from memory.
Because of this simply add a helper to btrfs_cleanup_transaction() that
will go through and drop all of the log roots. This gets run before we
do the close_ctree() work, and thus we are allowed to do any reads that
we would need. I ran this through many iterations of generic/475 with
constrained memory and I did not see the issue.
general protection fault, probably for non-canonical address 0x6b6b6b6b6b6b6b6b: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC PTI
CPU: 2 PID: 12359 Comm: umount Tainted: G W 5.6.0-rc7-btrfs-next-58 #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-59-gc9ba5276e321-prebuilt.qemu.org 04/01/2014
RIP: 0010:btrfs_queue_work+0x33/0x1c0 [btrfs]
RSP: 0018:ffff9cfb015937d8 EFLAGS: 00010246
RAX: 0000000000000000 RBX: ffff8eb5e339ed80 RCX: 0000000000000000
RDX: 0000000000000001 RSI: ffff8eb5eb33b770 RDI: ffff8eb5e37a0460
RBP: ffff8eb5eb33b770 R08: 000000000000020c R09: ffffffff9fc09ac0
R10: 0000000000000007 R11: 0000000000000000 R12: 6b6b6b6b6b6b6b6b
R13: ffff9cfb00229040 R14: 0000000000000008 R15: ffff8eb5d3868000
FS: 00007f167ea022c0(0000) GS:ffff8eb5fae00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f167e5e0cb1 CR3: 0000000138c18004 CR4: 00000000003606e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
btrfs_end_bio+0x81/0x130 [btrfs]
__split_and_process_bio+0xaf/0x4e0 [dm_mod]
? percpu_counter_add_batch+0xa3/0x120
dm_process_bio+0x98/0x290 [dm_mod]
? generic_make_request+0xfb/0x410
dm_make_request+0x4d/0x120 [dm_mod]
? generic_make_request+0xfb/0x410
generic_make_request+0x12a/0x410
? submit_bio+0x38/0x160
submit_bio+0x38/0x160
? percpu_counter_add_batch+0xa3/0x120
btrfs_map_bio+0x289/0x570 [btrfs]
? kmem_cache_alloc+0x24d/0x300
btree_submit_bio_hook+0x79/0xc0 [btrfs]
submit_one_bio+0x31/0x50 [btrfs]
read_extent_buffer_pages+0x2fe/0x450 [btrfs]
btree_read_extent_buffer_pages+0x7e/0x170 [btrfs]
walk_down_log_tree+0x343/0x690 [btrfs]
? walk_log_tree+0x3d/0x380 [btrfs]
walk_log_tree+0xf7/0x380 [btrfs]
? plist_requeue+0xf0/0xf0
? delete_node+0x4b/0x230
free_log_tree+0x4c/0x130 [btrfs]
? wait_log_commit+0x140/0x140 [btrfs]
btrfs_free_log+0x17/0x30 [btrfs]
btrfs_drop_and_free_fs_root+0xb0/0xd0 [btrfs]
btrfs_free_fs_roots+0x10c/0x190 [btrfs]
? do_raw_spin_unlock+0x49/0xc0
? _raw_spin_unlock+0x29/0x40
? release_extent_buffer+0x121/0x170 [btrfs]
close_ctree+0x289/0x2e6 [btrfs]
generic_shutdown_super+0x6c/0x110
kill_anon_super+0xe/0x30
btrfs_kill_super+0x12/0x20 [btrfs]
deactivate_locked_super+0x3a/0x70
Reported-by: David Sterba <dsterba@suse.com>
Fixes: 8c38938c7b ("btrfs: move the root freeing stuff into btrfs_put_root")
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that we have proper root ref counting everywhere we can kill the
subvol_srcu.
* removal of fs_info::subvol_srcu reduces size of fs_info by 1176 bytes
* the refcount_t used for the references checks for accidental 0->1
in cases where the root lifetime would not be properly protected
* there's a leak detector for roots to catch unfreed roots at umount
time
* SRCU served us well over the years but is was not a proper
synchronization mechanism for some cases
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ update changelog ]
Signed-off-by: David Sterba <dsterba@suse.com>
The radix root is primarily protected by the fs_roots_radix_lock, so use
that to lookup and get a ref on all of our fs roots in
btrfs_cleanup_fs_roots. The tree reference is taken in the protected
section as before.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that all the users of roots take references for them we can drop the
extra root ref we've been taking. Before we had roots at 2 refs for the
life of the file system, one for the radix tree, and one simply for
existing. Now that we have proper ref accounting in all places that use
roots we can drop this extra ref simply for existing as we no longer
need it.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
At the point we add a root to the dead roots list we have no open inodes
for that root, so we need to hold a ref on that root to keep it from
disappearing.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If we make sure all the inodes have refs on their root we don't have to
worry about the root disappearing while we have open inodes.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are a few different ways to free roots, either you allocated them
yourself and you just do
free_extent_buffer(root->node);
free_extent_buffer(root->commit_node);
btrfs_put_root(root);
Which is the pattern for log roots. Or for snapshots/subvolumes that
are being dropped you simply call btrfs_free_fs_root() which does all
the cleanup for you.
Unify this all into btrfs_put_root(), so that we don't free up things
associated with the root until the last reference is dropped. This
makes the root freeing code much more significant.
The only caveat is at close_ctree() time we have to free the extent
buffers for all of our main roots (extent_root, chunk_root, etc) because
we have to drop the btree_inode and we'll run into issues if we hold
onto those nodes until ->kill_sb() time. This will be addressed in the
future when we kill the btree_inode.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We are going to make root life be controlled soley by refcounting, and
inodes will be one of the things that hold a ref on the root. This
means we need to handle dropping the ino_cache_inode outside of the root
freeing logic, so move it into btrfs_drop_and_free_fs_root() so it is
cleaned up properly on unmount.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
I'm going to make the entire destruction of btrfs_root's controlled by
their refcount, so it will be helpful to notice if we're leaking their
eb's on umount.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that csum_tree_block is not returning any errors, we can make
csum_tree_block return void and simplify callers.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Thw whole point of csum_tree_block is to iterate over all extent buffer
pages and pass it to checksumming functions. The bytes where checksum is
stored must be skipped, thus map_private_extent_buffer. This complicates
further offset calculations.
As the first page will be always present, checksum the relevant bytes
unconditionally and then do a simple iteration over the remaining pages.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
During unmount we can have a job from the delayed inode items work queue
still running, that can lead to at least two bad things:
1) A crash, because the worker can try to create a transaction just
after the fs roots were freed;
2) A transaction leak, because the worker can create a transaction
before the fs roots are freed and just after we committed the last
transaction and after we stopped the transaction kthread.
A stack trace example of the crash:
[79011.691214] kernel BUG at lib/radix-tree.c:982!
[79011.692056] invalid opcode: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC PTI
[79011.693180] CPU: 3 PID: 1394 Comm: kworker/u8:2 Tainted: G W 5.6.0-rc2-btrfs-next-54 #2
(...)
[79011.696789] Workqueue: btrfs-delayed-meta btrfs_work_helper [btrfs]
[79011.697904] RIP: 0010:radix_tree_tag_set+0xe7/0x170
(...)
[79011.702014] RSP: 0018:ffffb3c84a317ca0 EFLAGS: 00010293
[79011.702949] RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000000
[79011.704202] RDX: ffffb3c84a317cb0 RSI: ffffb3c84a317ca8 RDI: ffff8db3931340a0
[79011.705463] RBP: 0000000000000005 R08: 0000000000000005 R09: ffffffff974629d0
[79011.706756] R10: ffffb3c84a317bc0 R11: 0000000000000001 R12: ffff8db393134000
[79011.708010] R13: ffff8db3931340a0 R14: ffff8db393134068 R15: 0000000000000001
[79011.709270] FS: 0000000000000000(0000) GS:ffff8db3b6a00000(0000) knlGS:0000000000000000
[79011.710699] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[79011.711710] CR2: 00007f22c2a0a000 CR3: 0000000232ad4005 CR4: 00000000003606e0
[79011.712958] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[79011.714205] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[79011.715448] Call Trace:
[79011.715925] record_root_in_trans+0x72/0xf0 [btrfs]
[79011.716819] btrfs_record_root_in_trans+0x4b/0x70 [btrfs]
[79011.717925] start_transaction+0xdd/0x5c0 [btrfs]
[79011.718829] btrfs_async_run_delayed_root+0x17e/0x2b0 [btrfs]
[79011.719915] btrfs_work_helper+0xaa/0x720 [btrfs]
[79011.720773] process_one_work+0x26d/0x6a0
[79011.721497] worker_thread+0x4f/0x3e0
[79011.722153] ? process_one_work+0x6a0/0x6a0
[79011.722901] kthread+0x103/0x140
[79011.723481] ? kthread_create_worker_on_cpu+0x70/0x70
[79011.724379] ret_from_fork+0x3a/0x50
(...)
The following diagram shows a sequence of steps that lead to the crash
during ummount of the filesystem:
CPU 1 CPU 2 CPU 3
btrfs_punch_hole()
btrfs_btree_balance_dirty()
btrfs_balance_delayed_items()
--> sees
fs_info->delayed_root->items
with value 200, which is greater
than
BTRFS_DELAYED_BACKGROUND (128)
and smaller than
BTRFS_DELAYED_WRITEBACK (512)
btrfs_wq_run_delayed_node()
--> queues a job for
fs_info->delayed_workers to run
btrfs_async_run_delayed_root()
btrfs_async_run_delayed_root()
--> job queued by CPU 1
--> starts picking and running
delayed nodes from the
prepare_list list
close_ctree()
btrfs_delete_unused_bgs()
btrfs_commit_super()
btrfs_join_transaction()
--> gets transaction N
btrfs_commit_transaction(N)
--> set transaction state
to TRANTS_STATE_COMMIT_START
btrfs_first_prepared_delayed_node()
--> picks delayed node X through
the prepared_list list
btrfs_run_delayed_items()
btrfs_first_delayed_node()
--> also picks delayed node X
but through the node_list
list
__btrfs_commit_inode_delayed_items()
--> runs all delayed items from
this node and drops the
node's item count to 0
through call to
btrfs_release_delayed_inode()
--> finishes running any remaining
delayed nodes
--> finishes transaction commit
--> stops cleaner and transaction threads
btrfs_free_fs_roots()
--> frees all roots and removes them
from the radix tree
fs_info->fs_roots_radix
btrfs_join_transaction()
start_transaction()
btrfs_record_root_in_trans()
record_root_in_trans()
radix_tree_tag_set()
--> crashes because
the root is not in
the radix tree
anymore
If the worker is able to call btrfs_join_transaction() before the unmount
task frees the fs roots, we end up leaking a transaction and all its
resources, since after the call to btrfs_commit_super() and stopping the
transaction kthread, we don't expect to have any transaction open anymore.
When this situation happens the worker has a delayed node that has no
more items to run, since the task calling btrfs_run_delayed_items(),
which is doing a transaction commit, picks the same node and runs all
its items first.
We can not wait for the worker to complete when running delayed items
through btrfs_run_delayed_items(), because we call that function in
several phases of a transaction commit, and that could cause a deadlock
because the worker calls btrfs_join_transaction() and the task doing the
transaction commit may have already set the transaction state to
TRANS_STATE_COMMIT_DOING.
Also it's not possible to get into a situation where only some of the
items of a delayed node are added to the fs/subvolume tree in the current
transaction and the remaining ones in the next transaction, because when
running the items of a delayed inode we lock its mutex, effectively
waiting for the worker if the worker is running the items of the delayed
node already.
Since this can only cause issues when unmounting a filesystem, fix it in
a simple way by waiting for any jobs on the delayed workers queue before
calling btrfs_commit_supper() at close_ctree(). This works because at this
point no one can call btrfs_btree_balance_dirty() or
btrfs_balance_delayed_items(), and if we end up waiting for any worker to
complete, btrfs_commit_super() will commit the transaction created by the
worker.
CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are new types and helpers that are supposed to be used in new code.
As a preparation to get rid of legacy types and API functions do
the conversion here.
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
All we need to read is checksum size from fs_info superblock, and
fs_info is provided by extent buffer so we can get rid of the wild
pointer indirections from page/inode/root.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The message seems to be for debugging and has little value for users.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The helper btrfs_header_chunk_tree_uuid follows naming convention of
other struct accessors but does something compeletly different. As the
offsetof calculation is clear in the context of extent buffer operations
we can remove it.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The helper btrfs_header_fsid follows naming convention of other struct
accessors but does something compeletly different. As the offsetof
calculation is clear in the context of extent buffer operations we can
remove it.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This patch removes all haphazard code implementing nocow writers
exclusion from pending snapshot creation and switches to using the drew
lock to ensure this invariant still holds.
'Readers' are snapshot creators from create_snapshot and 'writers' are
nocow writers from buffered write path or btrfs_setsize. This locking
scheme allows for multiple snapshots to happen while any nocow writers
are blocked, since writes to page cache in the nocow path will make
snapshots inconsistent.
So for performance reasons we'd like to have the ability to run multiple
concurrent snapshots and also favors readers in this case. And in case
there aren't pending snapshots (which will be the majority of the cases)
we rely on the percpu's writers counter to avoid cacheline contention.
The main gain from using the drew lock is it's now a lot easier to
reason about the guarantees of the locking scheme and whether there is
some silent breakage lurking.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In my EIO stress testing I noticed I was getting forced to rescan the
uuid tree pretty often, which was weird. This is because my error
injection stuff would sometimes inject an error after log replay but
before we loaded the UUID tree. If log replay committed the transaction
it wouldn't have updated the uuid tree generation, but the tree was
valid and didn't change, so there's no reason to not update the
generation here.
Fix this by setting the BTRFS_FS_UPDATE_UUID_TREE_GEN bit immediately
after reading all the fs roots if the uuid tree generation matches the
fs generation. Then any transaction commits that happen during mount
won't screw up our uuid tree state, forcing us to do needless uuid
rescans.
Fixes: 70f8017547 ("Btrfs: check UUID tree during mount if required")
CC: stable@vger.kernel.org # 4.19+
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In doing my fsstress+EIO stress testing I started running into issues
where umount would get stuck forever because the uuid checker was
chewing through the thousands of subvolumes I had created.
We shouldn't block umount on this, simply bail if we're unmounting the
fs. We need to make sure we don't mark the UUID tree as ok, so we only
set that bit if we made it through the whole rescan operation, but
otherwise this is completely safe.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
It's used only during filesystem mount as such it can be made private to
disk-io.c file. Also use the occasion to move btrfs_uuid_rescan_kthread
as btrfs_check_uuid_tree is its sole caller.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Similar to the superblock read path, change the write path to using bios
and pages instead of buffer_heads. This allows us to skip over the
buffer_head code, for writing the superblock to disk.
This is based on a patch originally authored by Nikolay Borisov.
Co-developed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Super-block reading in BTRFS is done using buffer_heads. Buffer_heads
have some drawbacks, like not being able to propagate errors from the
lower layers.
Directly use the page cache for reading the super blocks from disk or
invalidating an on-disk super block. We have to use the page cache so to
avoid races between mkfs and udev. See also 6f60cbd3ae ("btrfs: access
superblock via pagecache in scan_one_device").
This patch unwraps the buffer head API and does not change the way the
super block is actually read.
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This commit flips the switch to start tracking/processing pinned extents
on a per-transaction basis. It mostly replaces all references from
btrfs_fs_info::(pinned_extents|freed_extents[]) to
btrfs_transaction::pinned_extents.
Two notable modifications that warrant explicit mention are changing
clean_pinned_extents to get a reference to the previously running
transaction. The other one is removal of call to
btrfs_destroy_pinned_extent since transactions are going to be cleaned
in btrfs_cleanup_one_transaction.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Having btrfs_destroy_delayed_refs call btrfs_pin_extent is problematic
for making pinned extents tracking per-transaction since
btrfs_trans_handle cannot be passed to btrfs_pin_extent in this context.
Additionally delayed refs heads pinned in btrfs_destroy_delayed_refs
are going to be handled very closely, in btrfs_destroy_pinned_extent.
To enable btrfs_pin_extent to take btrfs_trans_handle simply open code
it in btrfs_destroy_delayed_refs and call btrfs_error_unpin_extent_range
on the range. This enables us to do less work in
btrfs_destroy_pinned_extent and leaves btrfs_pin_extent being called in
contexts which have a valid btrfs_trans_handle.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The tree pointer can be safely read from the page's inode, use it and
drop the redundant argument.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We are now using these for all roots, rename them to btrfs_put_root()
and btrfs_grab_root();
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that we're going to start relying on getting ref counting right for
roots, add a list to track allocated roots and print out any roots that
aren't freed up at free_fs_info time.
Hide this behind CONFIG_BTRFS_DEBUG because this will just be used for
developers to verify they aren't breaking things.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In adding things like eb leak checking and root leak checking there were
a lot of weird corner cases that come from the fact that
1) We do not init the fs_info until we get to open_ctree time in the
normal case and
2) The test infrastructure half-init's the fs_info for things that it
needs.
This makes it really annoying to make changes because you have to add
init in two different places, have special cases for testing fs_info's
that may not have certain things initialized, and cases for fs_info's
that didn't make it to open_ctree and thus are not fully set up.
Fix this by extracting out the non-allocating init of the fs info into
it's own public function and use that to make sure we're all getting
consistent views of an allocated fs_info.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
open_ctree mixes initialization of fs stuff and fs_info stuff, which
makes it confusing when doing things like adding the root leak
detection. Make a separate function that inits all the static
structures inside of the fs_info needed for the fs to operate, and then
call that before we start setting up the fs_info to be mounted.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Things like the percpu_counters, the mapping_tree, and the csum hash can
all be freed at btrfs_free_fs_info time, since the helpers all check if
the structure has been initialized already. This significantly cleans
up the error cases in open_ctree.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that all callers of btrfs_get_fs_root are subsequently calling
btrfs_grab_fs_root and handling dropping the ref when they are done
appropriately, go ahead and push btrfs_grab_fs_root up into
btrfs_get_fs_root.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If we are going to track leaked roots we need to free them all the same
way, so don't kfree() roots directly, use btrfs_put_fs_root.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We lookup the fs_root and put it in our fs_info directly, we should hold
a ref on this root for the lifetime of the fs_info.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We're going to start freeing roots and doing other complicated things in
free_fs_info, so we need to move it to disk-io.c and export it in order
to use things lik btrfs_put_fs_root().
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If the root is sitting in the radix tree, we should probably have a ref
for the radix tree. Grab a ref on the root when we insert it, and drop
it when it gets deleted.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that the orphan cleanup stuff doesn't use this directly we can just
make them static.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
All this does is call btrfs_get_fs_root() with check_ref == true. Just
use btrfs_get_fs_root() so we don't have a bunch of different helpers
that do the same thing.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
All helpers should either be using btrfs_get_fs_root() or
btrfs_read_tree_root().
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Tree-log uses btrfs_read_fs_root to load its log, but this just calls
btrfs_read_tree_root. We don't save the log roots in our root cache, so
just export this helper and use it in the logging code.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We have a helper for reading fs roots that just reads the fs root off
the disk and then sets REF_COWS and init's the inheritable flags. Move
this into btrfs_init_fs_root so we can later get rid of this helper and
consolidate all of the fs root reading into one helper.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There's no reason to not init the root at alloc time, and with later
patches it actually causes problems if we error out mounting the fs
before the tree_root is init'ed because we expect it to have a valid ref
count. Fix this by pushing __setup_root into btrfs_alloc_root.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_assert_delayed_root_empty() will check if the delayed root is
completely empty, but this is a filesystem-wide check. On cleanup we
may have allowed other transactions to begin, for whatever reason, and
thus the delayed root is not empty.
So remove this check from cleanup_one_transation(). This however can
stay in btrfs_cleanup_transaction(), because it checks only after all of
the transactions have been properly cleaned up, and thus is valid.
CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
While running my error injection script I hit a panic when we tried to
clean up the fs_root when freeing the fs_root. This is because
fs_info->fs_root == PTR_ERR(-EIO), which isn't great. Fix this by
setting fs_info->fs_root = NULL; if we fail to read the root.
CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We clean up the delayed references when we abort a transaction but we
leave the pending qgroup extent records behind, leaking memory.
This patch destroys the extent records when we destroy the delayed refs
and makes sure ensure they're gone before releasing the transaction.
Fixes: 3368d001ba ("btrfs: qgroup: Record possible quota-related extent for qgroup.")
CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
[ Rebased to latest upstream, remove to_qgroup() helper, use
rbtree_postorder_for_each_entry_safe() wrapper ]
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There's no logged information about tree-log replay although this is
something that points to previous unclean unmount. Other filesystems
report that as well.
Suggested-by: Chris Murphy <lists@colorremedies.com>
CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There is a race between adding and removing elements to the tree mod log
list and rbtree that can lead to use-after-free problems.
Consider the following example that explains how/why the problems happens:
1) Task A has mod log element with sequence number 200. It currently is
the only element in the mod log list;
2) Task A calls btrfs_put_tree_mod_seq() because it no longer needs to
access the tree mod log. When it enters the function, it initializes
'min_seq' to (u64)-1. Then it acquires the lock 'tree_mod_seq_lock'
before checking if there are other elements in the mod seq list.
Since the list it empty, 'min_seq' remains set to (u64)-1. Then it
unlocks the lock 'tree_mod_seq_lock';
3) Before task A acquires the lock 'tree_mod_log_lock', task B adds
itself to the mod seq list through btrfs_get_tree_mod_seq() and gets a
sequence number of 201;
4) Some other task, name it task C, modifies a btree and because there
elements in the mod seq list, it adds a tree mod elem to the tree
mod log rbtree. That node added to the mod log rbtree is assigned
a sequence number of 202;
5) Task B, which is doing fiemap and resolving indirect back references,
calls btrfs get_old_root(), with 'time_seq' == 201, which in turn
calls tree_mod_log_search() - the search returns the mod log node
from the rbtree with sequence number 202, created by task C;
6) Task A now acquires the lock 'tree_mod_log_lock', starts iterating
the mod log rbtree and finds the node with sequence number 202. Since
202 is less than the previously computed 'min_seq', (u64)-1, it
removes the node and frees it;
7) Task B still has a pointer to the node with sequence number 202, and
it dereferences the pointer itself and through the call to
__tree_mod_log_rewind(), resulting in a use-after-free problem.
This issue can be triggered sporadically with the test case generic/561
from fstests, and it happens more frequently with a higher number of
duperemove processes. When it happens to me, it either freezes the VM or
it produces a trace like the following before crashing:
[ 1245.321140] general protection fault: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC PTI
[ 1245.321200] CPU: 1 PID: 26997 Comm: pool Not tainted 5.5.0-rc6-btrfs-next-52 #1
[ 1245.321235] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-0-ga698c8995f-prebuilt.qemu.org 04/01/2014
[ 1245.321287] RIP: 0010:rb_next+0x16/0x50
[ 1245.321307] Code: ....
[ 1245.321372] RSP: 0018:ffffa151c4d039b0 EFLAGS: 00010202
[ 1245.321388] RAX: 6b6b6b6b6b6b6b6b RBX: ffff8ae221363c80 RCX: 6b6b6b6b6b6b6b6b
[ 1245.321409] RDX: 0000000000000001 RSI: 0000000000000000 RDI: ffff8ae221363c80
[ 1245.321439] RBP: ffff8ae20fcc4688 R08: 0000000000000002 R09: 0000000000000000
[ 1245.321475] R10: ffff8ae20b120910 R11: 00000000243f8bb1 R12: 0000000000000038
[ 1245.321506] R13: ffff8ae221363c80 R14: 000000000000075f R15: ffff8ae223f762b8
[ 1245.321539] FS: 00007fdee1ec7700(0000) GS:ffff8ae236c80000(0000) knlGS:0000000000000000
[ 1245.321591] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 1245.321614] CR2: 00007fded4030c48 CR3: 000000021da16003 CR4: 00000000003606e0
[ 1245.321642] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 1245.321668] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[ 1245.321706] Call Trace:
[ 1245.321798] __tree_mod_log_rewind+0xbf/0x280 [btrfs]
[ 1245.321841] btrfs_search_old_slot+0x105/0xd00 [btrfs]
[ 1245.321877] resolve_indirect_refs+0x1eb/0xc60 [btrfs]
[ 1245.321912] find_parent_nodes+0x3dc/0x11b0 [btrfs]
[ 1245.321947] btrfs_check_shared+0x115/0x1c0 [btrfs]
[ 1245.321980] ? extent_fiemap+0x59d/0x6d0 [btrfs]
[ 1245.322029] extent_fiemap+0x59d/0x6d0 [btrfs]
[ 1245.322066] do_vfs_ioctl+0x45a/0x750
[ 1245.322081] ksys_ioctl+0x70/0x80
[ 1245.322092] ? trace_hardirqs_off_thunk+0x1a/0x1c
[ 1245.322113] __x64_sys_ioctl+0x16/0x20
[ 1245.322126] do_syscall_64+0x5c/0x280
[ 1245.322139] entry_SYSCALL_64_after_hwframe+0x49/0xbe
[ 1245.322155] RIP: 0033:0x7fdee3942dd7
[ 1245.322177] Code: ....
[ 1245.322258] RSP: 002b:00007fdee1ec6c88 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
[ 1245.322294] RAX: ffffffffffffffda RBX: 00007fded40210d8 RCX: 00007fdee3942dd7
[ 1245.322314] RDX: 00007fded40210d8 RSI: 00000000c020660b RDI: 0000000000000004
[ 1245.322337] RBP: 0000562aa89e7510 R08: 0000000000000000 R09: 00007fdee1ec6d44
[ 1245.322369] R10: 0000000000000073 R11: 0000000000000246 R12: 00007fdee1ec6d48
[ 1245.322390] R13: 00007fdee1ec6d40 R14: 00007fded40210d0 R15: 00007fdee1ec6d50
[ 1245.322423] Modules linked in: ....
[ 1245.323443] ---[ end trace 01de1e9ec5dff3cd ]---
Fix this by ensuring that btrfs_put_tree_mod_seq() computes the minimum
sequence number and iterates the rbtree while holding the lock
'tree_mod_log_lock' in write mode. Also get rid of the 'tree_mod_seq_lock'
lock, since it is now redundant.
Fixes: bd989ba359 ("Btrfs: add tree modification log functions")
Fixes: 097b8a7c9e ("Btrfs: join tree mod log code with the code holding back delayed refs")
CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Sometimes when running generic/475 we would trip the
WARN_ON(cache->reserved) check when free'ing the block groups on umount.
This is because sometimes we don't commit the transaction because of IO
errors and thus do not cleanup the tree logs until at umount time.
These blocks are still reserved until they are cleaned up, but they
aren't cleaned up until _after_ we do the free block groups work. Fix
this by moving the free after free'ing the fs roots, that way all of the
tree logs are cleaned up and we have a properly cleaned fs. A bunch of
loops of generic/475 confirmed this fixes the problem.
CC: stable@vger.kernel.org # 4.9+
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When discard is enabled, everytime a pinned extent is released back to
the block_group's free space cache, a discard is issued for the extent.
This is an overeager approach when it comes to discarding and helping
the SSD maintain enough free space to prevent severe garbage collection
situations.
This adds the beginning of async discard. Instead of issuing a discard
prior to returning it to the free space, it is just marked as untrimmed.
The block_group is then added to a LRU which then feeds into a workqueue
to issue discards at a much slower rate. Full discarding of unused block
groups is still done and will be addressed in a future patch of the
series.
For now, we don't persist the discard state of extents and bitmaps.
Therefore, our failure recovery mode will be to consider extents
untrimmed. This lets us handle failure and unmounting as one in the
same.
On a number of Facebook webservers, I collected data every minute
accounting the time we spent in btrfs_finish_extent_commit() (col. 1)
and in btrfs_commit_transaction() (col. 2). btrfs_finish_extent_commit()
is where we discard extents synchronously before returning them to the
free space cache.
discard=sync:
p99 total per minute p99 total per minute
Drive | extent_commit() (ms) | commit_trans() (ms)
---------------------------------------------------------------
Drive A | 434 | 1170
Drive B | 880 | 2330
Drive C | 2943 | 3920
Drive D | 4763 | 5701
discard=async:
p99 total per minute p99 total per minute
Drive | extent_commit() (ms) | commit_trans() (ms)
--------------------------------------------------------------
Drive A | 134 | 956
Drive B | 64 | 1972
Drive C | 59 | 1032
Drive D | 62 | 1200
While it's not great that the stats are cumulative over 1m, all of these
servers are running the same workload and and the delta between the two
are substantial. We are spending significantly less time in
btrfs_finish_extent_commit() which is responsible for discarding.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Dennis Zhou <dennis@kernel.org>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We only pass this as 1 from __extent_writepage_io(). The parameter
basically means "pretend I didn't pass in a page". This is silly since
we can simply not pass in the page. Get rid of the parameter from
btrfs_get_extent(), and since it's used as a get_extent_t callback,
remove it from get_extent_t and btree_get_extent(), neither of which
need it.
While we're here, let's document btrfs_get_extent().
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Merge btrfs_sysfs_add_fsid() and btrfs_sysfs_add_devices_kobj() functions
as these two are small and they are called one after the other.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_sysfs_add_device() creates the directory
/sys/fs/btrfs/UUID/devices but its function name is misleading. Rename
it to btrfs_sysfs_add_devices_kobj() instead. No functional changes.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Commit 24bd69cb ("Btrfs: sysfs: add support to add parent for fsid")
added parent argument in preparation to show the seed fsid under the
sprout fsid as in the patch [1] in the mailing list.
[1] Btrfs: sysfs: support seed devices in the sysfs layout
But later this idea was superseded by another idea to rename the fsid as
in the commit f93c39970b ("btrfs: factor out sysfs code for updating
sprout fsid").
So we don't need parent argument anymore.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We can now remove the bdev from extent_map. Previous patches made sure
that bio_set_dev is correctly in all places and that we don't need to
grab it from latest_bdev or pass it around inside the extent map.
Signed-off-by: David Sterba <dsterba@suse.com>
The type name is misleading, a single entry is named 'cache' while this
normally means a collection of objects. Rename that everywhere. Also the
identifier was quite long, making function prototypes harder to format.
Suggested-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The backup_root_index member stores the index at which the backup root
should be saved upon next transaction commit. However, there is a
small deviation from this behavior in the form of a check in
backup_super_roots which checks if current root generation equals to the
generation of the previous root. This can trigger in the following
scenario:
slot0: gen-2
slot1: gen-1
slot2: gen
slot3: unused
Now suppose slot3 (which is also the root specified in the super block)
is corrupted hence init_tree_roots chooses to use the backup root at
slot2, meaning read_backup_root will read slot2 and assign the
superblock generation to gen-1. Despite this backup_root_index will
point at slot3 because its init happens in init_backup_root_slot, long
before any parsing of the backup roots occur. Then on next transaction
start, gen-1 will be incremented by 1 making the root's generation
equal gen. Subsequently, on transaction commit the following check
triggers:
if (btrfs_backup_tree_root_gen(root_backup) ==
btrfs_header_generation(info->tree_root->node))
This causes the 'next_backup', which is the index at which the backup is
going to be written to, to set to last_backup, which will be slot2.
All of this is a very confusing way of expressing the following
invariant:
Always write a backup root at the index following the last used backup
root.
This commit streamlines this logic by setting backup_root_index to the
next index after the one used for mount.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The old name name was an awful misnomer because it didn't really find
the oldest super backup per-se but rather its slot. For example if we
have:
slot0: gen - 2
slot1: gen - 1
slot2: gen
slot3: empty
init_backup_root_slot will return slot3 and not slot0.
The new name is more appropriate since the function doesn't care whether
there is a valid backup in the returned slot or not.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This function has been superseded by previous commits and is no longer
used so just remove it.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Since the filesystem is not well formed and no trees are loaded it's
pointless holding the objectid_mutex. Just remove its usage.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The code responsible for reading and initializing tree roots is
scattered in open_ctree among 2 labels, emulating a loop. This is rather
confusing to reason about. Instead, factor the code to a new function,
init_tree_roots which implements the same logical flow.
There are a couple of notable differences, namely:
* Instead of using next_backup_root it's using the newly introduced
read_backup_root.
* If read_backup_root returns an error init_tree_roots propagates the
error and there is no special handling of that case e.g. the code jumps
straight to 'fail_tree_roots' label. The old code, however, was
(erroneously) jumping to 'fail_block_groups' label if next_backup_root
did fail, this was unnecessary since the tree roots init logic doesn't
modify the state of block groups.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This function will replace next_root_backup with a much saner/cleaner
interface.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
It's no longer needed following cleanups around find_newest_backup_root
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Backup roots are always written in a circular manner. By definition we
can only ever have 1 backup root whose generation equals to that of the
superblock. Hence, the 'if' in the for loop will trigger at most once.
This is sufficient to return the newest backup root.
Furthermore the newest_gen parameter is always set to the generation of
the superblock. This value can be obtained from the fs_info.
This patch removes the unnecessary code dealing with the wraparound
case and makes 'newest_gen' a local variable.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently all the checksum algorithms generate a fixed size digest size
and we use it. The on-disk format can hold up to BTRFS_CSUM_SIZE bytes
and BLAKE2b produces digest of 512 bits by default. We can't do that and
will use the blake2b-256, this needs to be passed to the crypto API.
Separate that from the base algorithm name and add a member to request
specific driver, in this case with the digest size.
The only place that uses the driver name is the crypto API setup.
Signed-off-by: David Sterba <dsterba@suse.com>
Add sha256 to the list of possible checksumming algorithms used by BTRFS.
Signed-off-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Add xxhash64 to the list of possible checksumming algorithms used by
BTRFS.
Signed-off-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We don't need int argument bool shall do in free_root_pointers(). And
rename the argument as it confused two people.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The helper is trivial and we can understand what the atomic_inc on
something named refs does.
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Unlike read time tree checker errors, write time error can't be
inspected by "btrfs inspect dump-tree", so we need extra information to
determine what's going wrong.
The patch will add the following output for write time tree checker
error:
- The content of the offending tree block
To help determining if it's a false alert.
- Kernel WARN_ON() for debug build
This is helpful for us to detect unexpected write time tree checker
error, especially fstests could catch the dmesg.
Since the WARN_ON() is only triggered for write time tree checker,
test cases utilizing dm-error won't trigger this WARN_ON(), thus no
extra noise.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Async CRCs and compression submit IO through helper threads, which means
they have IO priority inversions when cgroup IO controllers are in use.
This flags all of the writes submitted by btrfs helper threads as
REQ_CGROUP_PUNT. submit_bio() will punt these to dedicated per-blkcg
work items to avoid the priority inversion.
For the compression code, we take a reference on the wbc's blkg css and
pass it down to the async workers.
For the async CRCs, the bio already has the correct css, we just need to
tell the block layer to use REQ_CGROUP_PUNT.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Chris Mason <clm@fb.com>
Modified-and-reviewed-by: Tejun Heo <tj@kernel.org>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that we're not using btrfs_schedule_bio() anymore, delete all the
code that supported it.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_schedule_bio() hands IO off to a helper thread to do the actual
submit_bio() call. This has been used to make sure async crc and
compression helpers don't get stuck on IO submission. To maintain good
performance, over time the IO submission threads duplicated some IO
scheduler characteristics such as high and low priority IOs and they
also made some ugly assumptions about request allocation batch sizes.
All of this cost at least one extra context switch during IO submission,
and doesn't fit well with the modern blkmq IO stack. So, this commit stops
using btrfs_schedule_bio(). We may need to adjust the number of async
helper threads for crcs and compression, but long term it's a better
path.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The attribute can mark functions supposed to be called rarely if at all
and the text can be moved to sections far from the other code. The
attribute has been added to several functions already, this patch is
based on hints given by gcc -Wsuggest-attribute=cold.
The net effect of this patch is decrease of btrfs.ko by 1000-1300,
depending on the config options.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The state was introduced in commit 4a9d8bdee3 ("Btrfs: make the state
of the transaction more readable"), then in commit 302167c50b
("btrfs: don't end the transaction for delayed refs in throttle") the
state is completely removed.
So we can just clean up the state since it's only compared but never
set.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Commit 9e0af23764 ("Btrfs: fix task hang under heavy compressed
write") worked around the issue that a recycled work item could get a
false dependency on the original work item due to how the workqueue code
guarantees non-reentrancy. It did so by giving different work functions
to different types of work.
However, the fixes in the previous few patches are more complete, as
they prevent a work item from being recycled at all (except for a tiny
window that the kernel workqueue code handles for us). This obsoletes
the previous fix, so we don't need the unique helpers for correctness.
The only other reason to keep them would be so they show up in stack
traces, but they always seem to be optimized to a tail call, so they
don't show up anyways. So, let's just get rid of the extra indirection.
While we're here, rename normal_work_helper() to the more informative
btrfs_work_helper().
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently, end_workqueue_fn() frees the end_io_wq entry (which embeds
the work item) and then calls bio_endio(). This is another potential
instance of the bug in "btrfs: don't prematurely free work in
run_ordered_work()".
In particular, the endio call may depend on other work items. For
example, btrfs_end_dio_bio() can call btrfs_subio_endio_read() ->
__btrfs_correct_data_nocsum() -> dio_read_error() ->
submit_dio_repair_bio(), which submits a bio that is also completed
through a end_workqueue_fn() work item. However,
__btrfs_correct_data_nocsum() waits for the newly submitted bio to
complete, thus it depends on another work item.
This example currently usually works because we use different workqueue
helper functions for BTRFS_WQ_ENDIO_DATA and BTRFS_WQ_ENDIO_DIO_REPAIR.
However, it may deadlock with stacked filesystems and is fragile
overall. The proper fix is to free the work item at the very end of the
work function, so let's do that.
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The patch 32b593bfcb ("Btrfs: remove no longer used function to run
delayed refs asynchronously") removed the async delayed refs but the
thread has been created, without any use. Remove it to avoid resource
consumption.
Fixes: 32b593bfcb ("Btrfs: remove no longer used function to run delayed refs asynchronously")
CC: stable@vger.kernel.org # 5.2+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This function is used only for the readahead machinery. It makes no
sense to keep it external to reada.c file. Place it above its sole
caller and make it static. No functional changes.
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This is prep work for moving all of the block group cache code into its
own file.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ minor comment updates ]
Signed-off-by: David Sterba <dsterba@suse.com>
In the 5.3 merge window, commit 7c7e301406 ("btrfs: sysfs: Replace
default_attrs in ktypes with groups"), we started using the member
"defaults_groups" for the kobject type "btrfs_raid_ktype". That leads
to a series of warnings when running some test cases of fstests, such
as btrfs/027, btrfs/124 and btrfs/176. The traces produced by those
warnings are like the following:
[116648.059212] kernfs: can not remove 'total_bytes', no directory
[116648.060112] WARNING: CPU: 3 PID: 28500 at fs/kernfs/dir.c:1504 kernfs_remove_by_name_ns+0x75/0x80
(...)
[116648.066482] CPU: 3 PID: 28500 Comm: umount Tainted: G W 5.3.0-rc3-btrfs-next-54 #1
(...)
[116648.069376] RIP: 0010:kernfs_remove_by_name_ns+0x75/0x80
(...)
[116648.072385] RSP: 0018:ffffabfd0090bd08 EFLAGS: 00010282
[116648.073437] RAX: 0000000000000000 RBX: ffffffffc0c11998 RCX: 0000000000000000
[116648.074201] RDX: ffff9fff603a7a00 RSI: ffff9fff603978a8 RDI: ffff9fff603978a8
[116648.074956] RBP: ffffffffc0b9ca2f R08: 0000000000000000 R09: 0000000000000001
[116648.075708] R10: ffff9ffe1f72e1c0 R11: 0000000000000000 R12: ffffffffc0b94120
[116648.076434] R13: ffffffffb3d9b4e0 R14: 0000000000000000 R15: dead000000000100
[116648.077143] FS: 00007f9cdc78a2c0(0000) GS:ffff9fff60380000(0000) knlGS:0000000000000000
[116648.077852] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[116648.078546] CR2: 00007f9fc4747ab4 CR3: 00000005c7832003 CR4: 00000000003606e0
[116648.079235] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[116648.079907] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[116648.080585] Call Trace:
[116648.081262] remove_files+0x31/0x70
[116648.081929] sysfs_remove_group+0x38/0x80
[116648.082596] sysfs_remove_groups+0x34/0x70
[116648.083258] kobject_del+0x20/0x60
[116648.083933] btrfs_free_block_groups+0x405/0x430 [btrfs]
[116648.084608] close_ctree+0x19a/0x380 [btrfs]
[116648.085278] generic_shutdown_super+0x6c/0x110
[116648.085951] kill_anon_super+0xe/0x30
[116648.086621] btrfs_kill_super+0x12/0xa0 [btrfs]
[116648.087289] deactivate_locked_super+0x3a/0x70
[116648.087956] cleanup_mnt+0xb4/0x160
[116648.088620] task_work_run+0x7e/0xc0
[116648.089285] exit_to_usermode_loop+0xfa/0x100
[116648.089933] do_syscall_64+0x1cb/0x220
[116648.090567] entry_SYSCALL_64_after_hwframe+0x49/0xbe
[116648.091197] RIP: 0033:0x7f9cdc073b37
(...)
[116648.100046] ---[ end trace 22e24db328ccadf8 ]---
[116648.100618] ------------[ cut here ]------------
[116648.101175] kernfs: can not remove 'used_bytes', no directory
[116648.101731] WARNING: CPU: 3 PID: 28500 at fs/kernfs/dir.c:1504 kernfs_remove_by_name_ns+0x75/0x80
(...)
[116648.105649] CPU: 3 PID: 28500 Comm: umount Tainted: G W 5.3.0-rc3-btrfs-next-54 #1
(...)
[116648.107461] RIP: 0010:kernfs_remove_by_name_ns+0x75/0x80
(...)
[116648.109336] RSP: 0018:ffffabfd0090bd08 EFLAGS: 00010282
[116648.109979] RAX: 0000000000000000 RBX: ffffffffc0c119a0 RCX: 0000000000000000
[116648.110625] RDX: ffff9fff603a7a00 RSI: ffff9fff603978a8 RDI: ffff9fff603978a8
[116648.111283] RBP: ffffffffc0b9ca41 R08: 0000000000000000 R09: 0000000000000001
[116648.111940] R10: ffff9ffe1f72e1c0 R11: 0000000000000000 R12: ffffffffc0b94120
[116648.112603] R13: ffffffffb3d9b4e0 R14: 0000000000000000 R15: dead000000000100
[116648.113268] FS: 00007f9cdc78a2c0(0000) GS:ffff9fff60380000(0000) knlGS:0000000000000000
[116648.113939] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[116648.114607] CR2: 00007f9fc4747ab4 CR3: 00000005c7832003 CR4: 00000000003606e0
[116648.115286] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[116648.115966] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[116648.116649] Call Trace:
[116648.117326] remove_files+0x31/0x70
[116648.117997] sysfs_remove_group+0x38/0x80
[116648.118671] sysfs_remove_groups+0x34/0x70
[116648.119342] kobject_del+0x20/0x60
[116648.120022] btrfs_free_block_groups+0x405/0x430 [btrfs]
[116648.120707] close_ctree+0x19a/0x380 [btrfs]
[116648.121396] generic_shutdown_super+0x6c/0x110
[116648.122057] kill_anon_super+0xe/0x30
[116648.122702] btrfs_kill_super+0x12/0xa0 [btrfs]
[116648.123335] deactivate_locked_super+0x3a/0x70
[116648.123961] cleanup_mnt+0xb4/0x160
[116648.124586] task_work_run+0x7e/0xc0
[116648.125210] exit_to_usermode_loop+0xfa/0x100
[116648.125830] do_syscall_64+0x1cb/0x220
[116648.126463] entry_SYSCALL_64_after_hwframe+0x49/0xbe
[116648.127080] RIP: 0033:0x7f9cdc073b37
(...)
[116648.135923] ---[ end trace 22e24db328ccadf9 ]---
These happen because, during the unmount path, we call kobject_del() for
raid kobjects that are not fully initialized, meaning that we set their
ktype (as btrfs_raid_ktype) through link_block_group() but we didn't set
their parent kobject, which is done through btrfs_add_raid_kobjects().
We have this split raid kobject setup since commit 75cb379d26
("btrfs: defer adding raid type kobject until after chunk relocation") in
order to avoid triggering reclaim during contextes where we can not
(either we are holding a transaction handle or some lock required by
the transaction commit path), so that we do the calls to kobject_add(),
which triggers GFP_KERNEL allocations, through btrfs_add_raid_kobjects()
in contextes where it is safe to trigger reclaim. That change expected
that a new raid kobject can only be created either when mounting the
filesystem or after raid profile conversion through the relocation path.
However, we can have new raid kobject created in other two cases at least:
1) During device replace (or scrub) after adding a device a to the
filesystem. The replace procedure (and scrub) do calls to
btrfs_inc_block_group_ro() which can allocate a new block group
with a new raid profile (because we now have more devices). This
can be triggered by test cases btrfs/027 and btrfs/176.
2) During a degraded mount trough any write path. This can be triggered
by test case btrfs/124.
Fixing this by adding extra calls to btrfs_add_raid_kobjects(), not only
makes things more complex and fragile, can also introduce deadlocks with
reclaim the following way:
1) Calling btrfs_add_raid_kobjects() at btrfs_inc_block_group_ro() or
anywhere in the replace/scrub path will cause a deadlock with reclaim
because if reclaim happens and a transaction commit is triggered,
the transaction commit path will block at btrfs_scrub_pause().
2) During degraded mounts it is essentially impossible to figure out where
to add extra calls to btrfs_add_raid_kobjects(), because allocation of
a block group with a new raid profile can happen anywhere, which means
we can't safely figure out which contextes are safe for reclaim, as
we can either hold a transaction handle or some lock needed by the
transaction commit path.
So it is too complex and error prone to have this split setup of raid
kobjects. So fix the issue by consolidating the setup of the kobjects in a
single place, at link_block_group(), and setup a nofs context there in
order to prevent reclaim being triggered by the memory allocations done
through the call chain of kobject_add().
Besides fixing the sysfs warnings during kobject_del(), this also ensures
the sysfs directories for the new raid profiles end up created and visible
to users (a bug that existed before the 5.3 commit 7c7e301406
("btrfs: sysfs: Replace default_attrs in ktypes with groups")).
Fixes: 75cb379d26 ("btrfs: defer adding raid type kobject until after chunk relocation")
Fixes: 7c7e301406 ("btrfs: sysfs: Replace default_attrs in ktypes with groups")
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Send always operates on read-only trees and always expected that while it
is in progress, nothing changes in those trees. Due to that expectation
and the fact that send is a read-only operation, it operates on commit
roots and does not hold transaction handles. However relocation can COW
nodes and leafs from read-only trees, which can cause unexpected failures
and crashes (hitting BUG_ONs). while send using a node/leaf, it gets
COWed, the transaction used to COW it is committed, a new transaction
starts, the extent previously used for that node/leaf gets allocated,
possibly for another tree, and the respective extent buffer' content
changes while send is still using it. When this happens send normally
fails with EIO being returned to user space and messages like the
following are found in dmesg/syslog:
[ 3408.699121] BTRFS error (device sdc): parent transid verify failed on 58703872 wanted 250 found 253
[ 3441.523123] BTRFS error (device sdc): did not find backref in send_root. inode=63211, offset=0, disk_byte=5222825984 found extent=5222825984
Other times, less often, we hit a BUG_ON() because an extent buffer that
send is using used to be a node, and while send is still using it, it
got COWed and got reused as a leaf while send is still using, producing
the following trace:
[ 3478.466280] ------------[ cut here ]------------
[ 3478.466282] kernel BUG at fs/btrfs/ctree.c:1806!
[ 3478.466965] invalid opcode: 0000 [#1] SMP DEBUG_PAGEALLOC PTI
[ 3478.467635] CPU: 0 PID: 2165 Comm: btrfs Not tainted 5.0.0-btrfs-next-46 #1
[ 3478.468311] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.11.2-0-gf9626ccb91-prebuilt.qemu-project.org 04/01/2014
[ 3478.469681] RIP: 0010:read_node_slot+0x122/0x130 [btrfs]
(...)
[ 3478.471758] RSP: 0018:ffffa437826bfaa0 EFLAGS: 00010246
[ 3478.472457] RAX: ffff961416ed7000 RBX: 000000000000003d RCX: 0000000000000002
[ 3478.473151] RDX: 000000000000003d RSI: ffff96141e387408 RDI: ffff961599b30000
[ 3478.473837] RBP: ffffa437826bfb8e R08: 0000000000000001 R09: ffffa437826bfb8e
[ 3478.474515] R10: ffffa437826bfa70 R11: 0000000000000000 R12: ffff9614385c8708
[ 3478.475186] R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000
[ 3478.475840] FS: 00007f8e0e9cc8c0(0000) GS:ffff9615b6a00000(0000) knlGS:0000000000000000
[ 3478.476489] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 3478.477127] CR2: 00007f98b67a056e CR3: 0000000005df6005 CR4: 00000000003606f0
[ 3478.477762] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 3478.478385] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[ 3478.479003] Call Trace:
[ 3478.479600] ? do_raw_spin_unlock+0x49/0xc0
[ 3478.480202] tree_advance+0x173/0x1d0 [btrfs]
[ 3478.480810] btrfs_compare_trees+0x30c/0x690 [btrfs]
[ 3478.481388] ? process_extent+0x1280/0x1280 [btrfs]
[ 3478.481954] btrfs_ioctl_send+0x1037/0x1270 [btrfs]
[ 3478.482510] _btrfs_ioctl_send+0x80/0x110 [btrfs]
[ 3478.483062] btrfs_ioctl+0x13fe/0x3120 [btrfs]
[ 3478.483581] ? rq_clock_task+0x2e/0x60
[ 3478.484086] ? wake_up_new_task+0x1f3/0x370
[ 3478.484582] ? do_vfs_ioctl+0xa2/0x6f0
[ 3478.485075] ? btrfs_ioctl_get_supported_features+0x30/0x30 [btrfs]
[ 3478.485552] do_vfs_ioctl+0xa2/0x6f0
[ 3478.486016] ? __fget+0x113/0x200
[ 3478.486467] ksys_ioctl+0x70/0x80
[ 3478.486911] __x64_sys_ioctl+0x16/0x20
[ 3478.487337] do_syscall_64+0x60/0x1b0
[ 3478.487751] entry_SYSCALL_64_after_hwframe+0x49/0xbe
[ 3478.488159] RIP: 0033:0x7f8e0d7d4dd7
(...)
[ 3478.489349] RSP: 002b:00007ffcf6fb4908 EFLAGS: 00000202 ORIG_RAX: 0000000000000010
[ 3478.489742] RAX: ffffffffffffffda RBX: 0000000000000105 RCX: 00007f8e0d7d4dd7
[ 3478.490142] RDX: 00007ffcf6fb4990 RSI: 0000000040489426 RDI: 0000000000000005
[ 3478.490548] RBP: 0000000000000005 R08: 00007f8e0d6f3700 R09: 00007f8e0d6f3700
[ 3478.490953] R10: 00007f8e0d6f39d0 R11: 0000000000000202 R12: 0000000000000005
[ 3478.491343] R13: 00005624e0780020 R14: 0000000000000000 R15: 0000000000000001
(...)
[ 3478.493352] ---[ end trace d5f537302be4f8c8 ]---
Another possibility, much less likely to happen, is that send will not
fail but the contents of the stream it produces may not be correct.
To avoid this, do not allow send and relocation (balance) to run in
parallel. In the long term the goal is to allow for both to be able to
run concurrently without any problems, but that will take a significant
effort in development and testing.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently btrfs_csum_data() relied on the crc32c() wrapper around the
crypto framework for calculating the CRCs.
As we have our own crypto_shash structure in the fs_info now, we can
directly call into the crypto framework without going trough the wrapper.
This way we can even remove the btrfs_csum_data() and btrfs_csum_final()
wrappers.
The module dependency on crc32c is preserved via MODULE_SOFTDEP("pre:
crc32c"), which was previously provided by LIBCRC32C config option doing
the same.
Signed-off-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Add boilerplate code for directly including the crypto framework. This
helps us flipping the switch for new algorithms.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that we have already checked for a valid checksum type before
calling btrfs_check_super_csum(), it can be simplified even further.
While at it get rid of the implicit size assumption of the resulting
checksum as well.
This is a preparation for changing all checksum functionality to use the
crypto layer later.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that we have factorerd out the superblock checksum type validation,
we can check for supported superblock checksum types before doing the
actual validation of the superblock read from disk.
This leads the path to further simplifications of
btrfs_check_super_csum() later on.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: David Sterba <dsterba@suse.com>
[ add comment ]
Signed-off-by: David Sterba <dsterba@suse.com>
Currently btrfs is only supporting CRC32C as checksumming algorithm. As
this is about to change provide a function to validate the checksum type
in the superblock against all possible algorithms.
This makes adding new algorithms easier as there are fewer places to
adjust when adding new algorithms.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The raid_attr table is now 7 * 56 = 392 bytes long, consisting of just
small numbers so we don't have to use ints. New size is 7 * 32 = 224,
saving 3 cachelines.
Signed-off-by: David Sterba <dsterba@suse.com>
fs_info::mapping_tree is the physical<->logical mapping tree and uses
the same underlying structure as extents, but is embedded to another
structure. There are no other members and this indirection is useless.
No functional change.
Signed-off-by: David Sterba <dsterba@suse.com>