Have frwr's ro_unmap_sync recognize an invalidated rkey that appears
as part of a Receive completion. Local invalidation can be skipped
for that rkey.
Use an out-of-band signaling mechanism to indicate to the server
that the client is prepared to receive RDMA Send With Invalidate.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Send an RDMA-CM private message on connect, and look for one during
a connection-established event.
Both sides can communicate their various implementation limits.
Implementations that don't support this sideband protocol ignore it.
Once the client knows the server's inline threshold maxima, it can
adjust the use of Reply chunks, and eliminate most use of Position
Zero Read chunks. Moderately-sized I/O can be done using a pure
inline RDMA Send instead of RDMA operations that require memory
registration.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Clean up: The fields in the recv_wr do not vary. There is no need to
initialize them before each ib_post_recv(). This removes a large-ish
data structure from the stack.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Clean up: Most of the fields in each send_wr do not vary. There is
no need to initialize them before each ib_post_send(). This removes
a large-ish data structure from the stack.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Clean up.
Since commit fc66448549 ("xprtrdma: Split the completion queue"),
rpcrdma_ep_post_recv() no longer uses the "ep" argument.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Clean up. The "ia" argument is no longer used.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Currently, each regbuf is allocated and DMA mapped at the same time.
This is done during transport creation.
When a device driver is unloaded, every DMA-mapped buffer in use by
a transport has to be unmapped, and then remapped to the new
device if the driver is loaded again. Remapping will have to be done
_after_ the connect worker has set up the new device.
But there's an ordering problem:
call_allocate, which invokes xprt_rdma_allocate which calls
rpcrdma_alloc_regbuf to allocate Send buffers, happens _before_
the connect worker can run to set up the new device.
Instead, at transport creation, allocate each buffer, but leave it
unmapped. Once the RPC carries these buffers into ->send_request, by
which time a transport connection should have been established,
check to see that the RPC's buffers have been DMA mapped. If not,
map them there.
When device driver unplug support is added, it will simply unmap all
the transport's regbufs, but it doesn't have to deallocate the
underlying memory.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
The use of DMA_BIDIRECTIONAL is discouraged by DMA-API.txt.
Fortunately, xprtrdma now knows which direction I/O is going as
soon as it allocates each regbuf.
The RPC Call and Reply buffers are no longer the same regbuf. They
can each be labeled correctly now. The RPC Reply buffer is never
part of either a Send or Receive WR, but it can be part of Reply
chunk, which is mapped and registered via ->ro_map . So it is not
DMA mapped when it is allocated (DMA_NONE), to avoid a double-
mapping.
Since Receive buffers are no longer DMA_BIDIRECTIONAL and their
contents are never modified by the host CPU, DMA-API-HOWTO.txt
suggests that a DMA sync before posting each buffer should be
unnecessary. (See my_card_interrupt_handler).
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Commit 949317464b ("xprtrdma: Limit number of RDMA segments in
RPC-over-RDMA headers") capped the number of chunks that may appear
in RPC-over-RDMA headers. The maximum header size can be estimated
and fixed to avoid allocating buffer space that is never used.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
RPC-over-RDMA needs to separate its RPC call and reply buffers.
o When an RPC Call is sent, rq_snd_buf is DMA mapped for an RDMA
Send operation using DMA_TO_DEVICE
o If the client expects a large RPC reply, it DMA maps rq_rcv_buf
as part of a Reply chunk using DMA_FROM_DEVICE
The two mappings are for data movement in opposite directions.
DMA-API.txt suggests that if these mappings share a DMA cacheline,
bad things can happen. This could occur in the final bytes of
rq_snd_buf and the first bytes of rq_rcv_buf if the two buffers
happen to share a DMA cacheline.
On x86_64 the cacheline size is typically 8 bytes, and RPC call
messages are usually much smaller than the send buffer, so this
hasn't been a noticeable problem. But the DMA cacheline size can be
larger on other platforms.
Also, often rq_rcv_buf starts most of the way into a page, thus
an additional RDMA segment is needed to map and register the end of
that buffer. Try to avoid that scenario to reduce the cost of
registering and invalidating Reply chunks.
Instead of carrying a single regbuf that covers both rq_snd_buf and
rq_rcv_buf, each struct rpcrdma_req now carries one regbuf for
rq_snd_buf and one regbuf for rq_rcv_buf.
Some incidental changes worth noting:
- To clear out some spaghetti, refactor xprt_rdma_allocate.
- The value stored in rg_size is the same as the value stored in
the iov.length field, so eliminate rg_size
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Currently there's a hidden and indirect mechanism for finding the
rpcrdma_req that goes with an rpc_rqst. It depends on getting from
the rq_buffer pointer in struct rpc_rqst to the struct
rpcrdma_regbuf that controls that buffer, and then to the struct
rpcrdma_req it goes with.
This was done back in the day to avoid the need to add a per-rqst
pointer or to alter the buf_free API when support for RPC-over-RDMA
was introduced.
I'm about to change the way regbuf's work to support larger inline
thresholds. Now is a good time to replace this indirect mechanism
with something that is more straightforward. I guess this should be
considered a clean up.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
For xprtrdma, the RPC Call and Reply buffers are involved in real
I/O operations.
To start with, the DMA direction of the I/O for a Call is opposite
that of a Reply.
In the current arrangement, the Reply buffer address is on a
four-byte alignment just past the call buffer. Would be friendlier
on some platforms if that was at a DMA cache alignment instead.
Because the current arrangement allocates a single memory region
which contains both buffers, the RPC Reply buffer often contains a
page boundary in it when the Call buffer is large enough (which is
frequent).
It would be a little nicer for setting up DMA operations (and
possible registration of the Reply buffer) if the two buffers were
separated, well-aligned, and contained as few page boundaries as
possible.
Now, I could just pad out the single memory region used for the pair
of buffers. But frequently that would mean a lot of unused space to
ensure the Reply buffer did not have a page boundary.
Add a separate pointer to rpc_rqst that points right to the RPC
Reply buffer. This makes no difference to xprtsock, but it will help
xprtrdma in subsequent patches.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
xprtrdma needs to allocate the Call and Reply buffers separately.
TBH, the reliance on using a single buffer for the pair of XDR
buffers is transport implementation-specific.
Instead of passing just the rq_buffer into the buf_free method, pass
the task structure and let buf_free take care of freeing both
XDR buffers at once.
There's a micro-optimization here. In the common case, both
xprt_release and the transport's buf_free method were checking if
rq_buffer was NULL. Now the check is done only once per RPC.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
xprtrdma needs to allocate the Call and Reply buffers separately.
TBH, the reliance on using a single buffer for the pair of XDR
buffers is transport implementation-specific.
Transports that want to allocate separate Call and Reply buffers
will ignore the "size" argument anyway. Don't bother passing it.
The buf_alloc method can't return two pointers. Instead, make the
method's return value an error code, and set the rq_buffer pointer
in the method itself.
This gives call_allocate an opportunity to terminate an RPC instead
of looping forever when a permanent problem occurs. If a request is
just bogus, or the transport is in a state where it can't allocate
resources for any request, there needs to be a way to kill the RPC
right there and not loop.
This immediately fixes a rare problem in the backchannel send path,
which loops if the server happens to send a CB request whose
call+reply size is larger than a page (which it shouldn't do yet).
One more issue: looks like xprt_inject_disconnect was incorrectly
placed in the failure path in call_allocate. It needs to be in the
success path, as it is for other call-sites.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Clean up: there is some XDR initialization logic that is common
to the forward channel and backchannel. Move it to an XDR header
so it can be shared.
rpc_rqst::rq_buffer points to a buffer containing big-endian data.
Update its annotation as part of the clean up.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Clean up: r_xprt is already available everywhere these macros are
invoked, so just dereference that directly.
RPCRDMA_INLINE_PAD_VALUE is no longer used, so it can simply be
removed.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
An RPC can terminate before its reply arrives, if a credential
problem or a soft timeout occurs. After this happens, xprtrdma
reports it is out of Receive buffers.
A Receive buffer is posted before each RPC is sent, and returned to
the buffer pool when a reply is received. If no reply is received
for an RPC, that Receive buffer remains posted. But xprtrdma tries
to post another when the next RPC is sent.
If this happens a few dozen times, there are no receive buffers left
to be posted at send time. I don't see a way for a transport
connection to recover at that point, and it will spit warnings and
unnecessarily delay RPCs on occasion for its remaining lifetime.
Commit 1e465fd4ff ("xprtrdma: Replace send and receive arrays")
removed a little bit of logic to detect this case and not provide
a Receive buffer so no more buffers are posted, and then transport
operation continues correctly. We didn't understand what that logic
did, and it wasn't commented, so it was removed as part of the
overhaul to support backchannel requests.
Restore it, but be wary of the need to keep extra Receives posted
to deal with backchannel requests.
Fixes: 1e465fd4ff ("xprtrdma: Replace send and receive arrays")
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
Receive buffer exhaustion, if it were to actually occur, would be
catastrophic. However, when there are no reply buffers to post, that
means all of them have already been posted and are waiting for
incoming replies. By design, there can never be more RPCs in flight
than there are available receive buffers.
A receive buffer can be left posted after an RPC exits without a
received reply; say, due to a credential problem or a soft timeout.
This does not result in fewer posted receive buffers than there are
pending RPCs, and there is already logic in xprtrdma to deal
appropriately with this case.
It also looks like the "+ 2" that was removed was accidentally
accommodating the number of extra receive buffers needed for
receiving backchannel requests. That will need to be addressed by
another patch.
Fixes: 3d4cf35bd4 ("xprtrdma: Reply buffer exhaustion can be...")
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
Direct data placement is not allowed when using flavors that
guarantee integrity or privacy. When such security flavors are in
effect, don't allow the use of Read and Write chunks for moving
individual data items. All messages larger than the inline threshold
are sent via Long Call or Long Reply.
On my systems (CX-3 Pro on FDR), for small I/O operations, the use
of Long messages adds only around 5 usecs of latency in each
direction.
Note that when integrity or encryption is used, the host CPU touches
every byte in these messages. Even if it could be used, data
movement offload doesn't buy much in this case.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Steve Wise <swise@opengridcomputing.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
fixup_copy_count should count only the number of bytes copied to the
page list. The head and tail are now always handled without a data
copy.
And the debugging at the end of rpcrdma_inline_fixup() is also no
longer necessary, since copy_len will be non-zero when there is reply
data in the tail (a normal and valid case).
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Steve Wise <swise@opengridcomputing.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Now that rpcrdma_inline_fixup() updates only two fields in
rq_rcv_buf, a full memcpy of that structure to rq_private_buf is
unwarranted. Updating rq_private_buf fields only where needed also
better documents what is going on.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Steve Wise <swise@opengridcomputing.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
While trying NFSv4.0/RDMA with sec=krb5p, I noticed small NFS READ
operations failed. After the client unwrapped the NFS READ reply
message, the NFS READ XDR decoder was not able to decode the reply.
The message was "Server cheating in reply", with the reported
number of received payload bytes being zero. Applications reported
a read(2) that returned -1/EIO.
The problem is rpcrdma_inline_fixup() sets the tail.iov_len to zero
when the incoming reply fits entirely in the head iovec. The zero
tail.iov_len confused xdr_buf_trim(), which then mangled the actual
reply data instead of simply removing the trailing GSS checksum.
As near as I can tell, RPC transports are not supposed to update the
head.iov_len, page_len, or tail.iov_len fields in the receive XDR
buffer when handling an incoming RPC reply message. These fields
contain the length of each component of the XDR buffer, and hence
the maximum number of bytes of reply data that can be stored in each
XDR buffer component. I've concluded this because:
- This is how xdr_partial_copy_from_skb() appears to behave
- rpcrdma_inline_fixup() already does not alter page_len
- call_decode() compares rq_private_buf and rq_rcv_buf and WARNs
if they are not exactly the same
Unfortunately, as soon as I tried the simple fix to just remove the
line that sets tail.iov_len to zero, I saw that the logic that
appends the implicit Write chunk pad inline depends on inline_fixup
setting tail.iov_len to zero.
To address this, re-organize the tail iovec handling logic to use
the same approach as with the head iovec: simply point tail.iov_base
to the correct bytes in the receive buffer.
While I remember all this, write down the conclusion in documenting
comments.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Steve Wise <swise@opengridcomputing.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
When the remaining length of an incoming reply is longer than the
XDR buf's page_len, switch over to the tail iovec instead of
copying more than page_len bytes into the page list.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Steve Wise <swise@opengridcomputing.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Currently, all three chunk list encoders each use a portion of the
one rl_segments array in rpcrdma_req. This is because the MWs for
each chunk list were preserved in rl_segments so that ro_unmap could
find and invalidate them after the RPC was complete.
However, now that MWs are placed on a per-req linked list as they
are registered, there is no longer any information in rpcrdma_mr_seg
that is shared between ro_map and ro_unmap_{sync,safe}, and thus
nothing in rl_segments needs to be preserved after
rpcrdma_marshal_req is complete.
Thus the rl_segments array can be used now just for the needs of
each rpcrdma_convert_iovs call. Once each chunk list is encoded, the
next chunk list encoder is free to re-use all of rl_segments.
This means all three chunk lists in one RPC request can now each
encode a full size data payload with no increase in the size of
rl_segments.
This is a key requirement for Kerberos support, since both the Call
and Reply for a single RPC transaction are conveyed via Long
messages (RDMA Read/Write). Both can be large.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Steve Wise <swise@opengridcomputing.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Instead of placing registered MWs sparsely into the rl_segments
array, place these MWs on a per-req list.
ro_unmap_{sync,safe} can then simply pull those MWs off the list
instead of walking through the array.
This change significantly reduces the size of struct rpcrdma_req
by removing nsegs and rl_mw from every array element.
As an additional clean-up, chunk co-ordinates are returned in the
"*mw" output argument so they are no longer needed in every
array element.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Steve Wise <swise@opengridcomputing.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Instead of leaving orphaned MRs to be released when the transport
is destroyed, release them immediately. The MR free list can now be
replenished if it becomes exhausted.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Steve Wise <swise@opengridcomputing.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Frequent MR list exhaustion can impact I/O throughput, so enough MRs
are always created during transport set-up to prevent running out.
This means more MRs are created than most workloads need.
Commit 94f58c58c0 ("xprtrdma: Allow Read list and Reply chunk
simultaneously") introduced support for sending two chunk lists per
RPC, which consumes more MRs per RPC.
Instead of trying to provision more MRs, introduce a mechanism for
allocating MRs on demand. A few MRs are allocated during transport
set-up to kick things off.
This significantly reduces the average number of MRs per transport
while allowing the MR count to grow for workloads or devices that
need more MRs.
FRWR with mlx4 allocated almost 400 MRs per transport before this
patch. Now it starts with 32.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Steve Wise <swise@opengridcomputing.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Clean up, based on code audit: Remove the possibility that the
chunk list XDR encoders can return zero, which would be interpreted
as a NULL.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Steve Wise <swise@opengridcomputing.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Commit c93c62231c ("xprtrdma: Disconnect on registration failure")
added a disconnect for some RPC marshaling failures. This is needed
only in a handful of cases, but it was triggering for simple stuff
like temporary resource shortages. Try to straighten this out.
Fix up the lower layers so they don't return -ENOMEM or other error
codes that the RPC client's FSM doesn't explicitly recognize.
Also fix up the places in the send_request path that do want a
disconnect. For example, when ib_post_send or ib_post_recv fail,
this is a sign that there is a send or receive queue resource
miscalculation. That should be rare, and is a sign of a software
bug. But xprtrdma can recover: disconnect to reset the transport and
start over.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Steve Wise <swise@opengridcomputing.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Not having an rpcrdma_rep at call_allocate time can be a problem.
It means that send_request can't post a receive buffer to catch
the RPC's reply. Possible consequences are RPC timeouts or even
transport deadlock.
Instead of allowing an RPC to proceed if an rpcrdma_rep is
not available, return NULL to force call_allocate to wait and
try again.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Steve Wise <swise@opengridcomputing.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Clean up: ALLPHYSICAL is gone and FMR has been converted to use
scatterlists. There are no more users of these functions.
This patch shrinks the size of struct rpcrdma_req by about 3500
bytes on x86_64. There is one of these structs for each RPC credit
(128 credits per transport connection).
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Steve Wise <swise@opengridcomputing.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
No HCA or RNIC in the kernel tree requires the use of ALLPHYSICAL.
ALLPHYSICAL advertises in the clear on the network fabric an R_key
that is good for all of the client's memory. No known exploit
exists, but theoretically any user on the server can use that R_key
on the client's QP to read or update any part of the client's memory.
ALLPHYSICAL exposes the client to server bugs, including:
o base/bounds errors causing data outside the i/o buffer to be
accessed
o RDMA access after reply causing data corruption and/or integrity
fail
ALLPHYSICAL can't protect application memory regions from server
update after a local signal or soft timeout has terminated an RPC.
ALLPHYSICAL chunks are no larger than a page. Special cases to
handle small chunks and long chunk lists have been a source of
implementation complexity and bugs.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Steve Wise <swise@opengridcomputing.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Based on code audit.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Steve Wise <swise@opengridcomputing.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
I found that commit ead3f26e35 ("xprtrdma: Add ro_unmap_safe
memreg method"), which introduces ro_unmap_safe, never wired up the
FMR recovery worker.
The FMR and FRWR recovery work queues both do the same thing.
Instead of setting up separate individual work queues for this,
schedule a delayed worker to deal with them, since recovering MRs is
not performance-critical.
Fixes: ead3f26e35 ("xprtrdma: Add ro_unmap_safe memreg method")
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Steve Wise <swise@opengridcomputing.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
The use of a scatterlist for handling DMA mapping and unmapping
was recently introduced in frwr_ops.c in commit 4143f34e01
("xprtrdma: Port to new memory registration API"). That commit did
not make a similar update to xprtrdma's FMR support because the
core ib_map_phys_fmr() and ib_unmap_fmr() APIs have not been changed
to take a scatterlist argument.
However, FMR still needs to do DMA mapping and unmapping. It appears
that RDS, for example, uses a scatterlist for this, then builds the
DMA addr array for the ib_map_phys_fmr call separately. I see that
SRP also utilizes a scatterlist for DMA mapping. xprtrdma can do
something similar.
This modernization is used immediately to properly defer DMA
unmapping during fmr_unmap_safe (a FIXME). It separates the DMA
unmapping coordinates from the rl_segments array. This array, being
part of an rpcrdma_req, is always re-used immediately when an RPC
exits. A scatterlist is allocated in memory independent of the
rl_segments array, so it can be preserved indefinitely (ie, until
the MR invalidation and DMA unmapping can actually be done by a
worker thread).
The FRWR and FMR DMA mapping code are slightly different from each
other now, and will diverge further when the "Check for holes" logic
can be removed from FRWR (support for SG_GAP MRs). So I chose not to
create helpers for the common-looking code.
Fixes: ead3f26e35 ("xprtrdma: Add ro_unmap_safe memreg method")
Suggested-by: Sagi Grimberg <sagi@lightbits.io>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Steve Wise <swise@opengridcomputing.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Clean up: Use the same naming convention used in other
RPC/RDMA-related data structures.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Steve Wise <swise@opengridcomputing.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Clean up: Moving these helpers in a separate patch makes later
patches more readable.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Steve Wise <swise@opengridcomputing.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Clean up: FMR is about to replace the rpcrdma_map_one code with
scatterlists. Move the scatterlist fields out of the FRWR-specific
union and into the generic part of rpcrdma_mw.
One minor change: -EIO is now returned if FRWR registration fails.
The RPC is terminated immediately, since the problem is likely due
to a software bug, thus retrying likely won't help.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Steve Wise <swise@opengridcomputing.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
ib_unmap_fmr() takes a list of FMRs to unmap. However, it does not
remove the FMRs from this list as it processes them. Other
ib_unmap_fmr() call sites are careful to remove FMRs from the list
after ib_unmap_fmr() returns.
Since commit 7c7a5390dc ("xprtrdma: Add ro_unmap_sync method for FMR")
fmr_op_unmap_sync passes more than one FMR to ib_unmap_fmr(), but
it didn't bother to remove the FMRs from that list once the call was
complete.
I've noticed some instability that could be related to list
tangling by the new fmr_op_unmap_sync() logic. In an abundance
of caution, add some defensive logic to clean up properly after
ib_unmap_fmr().
Fixes: 7c7a5390dc ("xprtrdma: Add ro_unmap_sync method for FMR")
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Steve Wise <swise@opengridcomputing.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Highlights include:
Features:
- Add support for the NFS v4.2 COPY operation
- Add support for NFS/RDMA over IPv6
Bugfixes and cleanups:
- Avoid race that crashes nfs_init_commit()
- Fix oops in callback path
- Fix LOCK/OPEN race when unlinking an open file
- Choose correct stateids when using delegations in setattr, read and write
- Don't send empty SETATTR after OPEN_CREATE
- xprtrdma: Prevent server from writing a reply into memory client has released
- xprtrdma: Support using Read list and Reply chunk in one RPC call
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iQIcBAABCAAGBQJXRu76AAoJENfLVL+wpUDrDVoQAKPKv1tEVJMRUQA3UVoKoixd
KjmmZMjl6GfpISwTZl+a8W549jyGuYH7Gl8vSbMaE9/FI+kJW6XZQniTYfFqY8/a
LbMSdNx1+yURisbkyO0vPqqwKw9r6UmsfGeUT8SpS3ff61yp4Oj436ra2qcPJsZ3
cWl/lHItzX7oKFAWmr0Nmq2X8ac/8+NFyK29+V/QGfwtp3qAPbpA8XM5HrHw3rA2
uk5uNSr3hwqz7P3+Hi7ZoO2m4nQTAbQnEunfYpxlOwz4IaM7qcGnntT6Jhwq1pGE
/1YasG7bHeiWjhynmZZ4CWuMkogau2UJ/G68Cz7ehLhPNr8rH/ZFCJZ+XX0e0CgI
1d+AwxZvgszIQVBY3S7sg8ezVSCPBXRFJ8rtzggGscqC53aP7L+rLfUFH+OKrhMg
6n7RQiq4EmGDJGviB/R2HixI9CpdOf2puNhDKSJmPOqiSS7UuHMw8QCq++vdru+1
GLGunGyO7D70yTV92KtsdzJlFlnfa/g+FIJrmaMpL3HH1h0stTctWX5xlTYmqEL3
z3aUuT8RySk2t1FTabSj6KRWqE/krK5BMZbX91kpF27WL4c/olXFaZPqBDsj0q4u
2rm1fIrc8RxLXctJan9ro092s/e9dup/1JxV5XWMq/EGS1ezvf+0XkCOtURaAWp3
2aPHlx7M8iuq2SouL6f7
=QMmY
-----END PGP SIGNATURE-----
Merge tag 'nfs-for-4.7-1' of git://git.linux-nfs.org/projects/anna/linux-nfs
Pull NFS client updates from Anna Schumaker:
"Highlights include:
Features:
- Add support for the NFS v4.2 COPY operation
- Add support for NFS/RDMA over IPv6
Bugfixes and cleanups:
- Avoid race that crashes nfs_init_commit()
- Fix oops in callback path
- Fix LOCK/OPEN race when unlinking an open file
- Choose correct stateids when using delegations in setattr, read and
write
- Don't send empty SETATTR after OPEN_CREATE
- xprtrdma: Prevent server from writing a reply into memory client
has released
- xprtrdma: Support using Read list and Reply chunk in one RPC call"
* tag 'nfs-for-4.7-1' of git://git.linux-nfs.org/projects/anna/linux-nfs: (61 commits)
pnfs: pnfs_update_layout needs to consider if strict iomode checking is on
nfs/flexfiles: Use the layout segment for reading unless it a IOMODE_RW and reading is disabled
nfs/flexfiles: Helper function to detect FF_FLAGS_NO_READ_IO
nfs: avoid race that crashes nfs_init_commit
NFS: checking for NULL instead of IS_ERR() in nfs_commit_file()
pnfs: make pnfs_layout_process more robust
pnfs: rework LAYOUTGET retry handling
pnfs: lift retry logic from send_layoutget to pnfs_update_layout
pnfs: fix bad error handling in send_layoutget
flexfiles: add kerneldoc header to nfs4_ff_layout_prepare_ds
flexfiles: remove pointless setting of NFS_LAYOUT_RETURN_REQUESTED
pnfs: only tear down lsegs that precede seqid in LAYOUTRETURN args
pnfs: keep track of the return sequence number in pnfs_layout_hdr
pnfs: record sequence in pnfs_layout_segment when it's created
pnfs: don't merge new ff lsegs with ones that have LAYOUTRETURN bit set
pNFS/flexfiles: When initing reads or writes, we might have to retry connecting to DSes
pNFS/flexfiles: When checking for available DSes, conditionally check for MDS io
pNFS/flexfile: Fix erroneous fall back to read/write through the MDS
NFS: Reclaim writes via writepage are opportunistic
NFSv4: Use the right stateid for delegations in setattr, read and write
...
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJXRL2PAAoJECebzXlCjuG+c34P/1wnkehVxDozBJp7UEzhrsE/
U1dpwfykzVEIMh68TldBvyrt2Lb4ThLPZ7V2dVwNqA831S/VM6fWJyw8WerSgGgU
SUGOzdF04rNfy41lXQNpDiiC417Fbp4Js4O+Q5kd+8kqQbXYqCwz0ce3DVbAT571
JmJgBI8gZLhicyNRDOt0y6C+/3P+0bbXYvS8wkzY+CwbNczHJOCLhwViKzWTptm9
LCSgDGm68ckpR7mZkWfEF3WdiZ9+SxeI+pT9dcomzxNfbv8NluDplYmdLbepA2J8
uWHGprVe9WJMDnw4hJhrI2b3/rHIntpxuZYktmnb/z/ezBTyi3FXYWgAEdE1by+Y
Gf7OewKOp8XcQ/iHRZ8vwXNrheHAr9++SB49mGBZJ3qj6bO+FrISQKX9FRxo6PrJ
SDRgYjt5yUG2oD1AAs1NzuBPqZzR40mA6Yk4zuNAcxzK/S7DdRF/9Kjyk86TVv08
3E3O5i1RyVcU/A7JdnbiyeDFMQoRshdnN0HShIZcSfcfW+qFKghNlO9bFfSl904F
jlG6moNB5OBiV8FNOelY+HGAYoUdw120QxqQMv47oZGKCjv+rfK38aB4GBJ4iEuo
TrGqNmrMrs/AKdL3Sd+8LuJqSfXggrwUDc/KS6CFz/U0eBbp6k0kcd7FEyG/J8kW
JxQ0URgyJ+DHfc60E8LN
=k6RP
-----END PGP SIGNATURE-----
Merge tag 'nfsd-4.7' of git://linux-nfs.org/~bfields/linux
Pull nfsd updates from Bruce Fields:
"A very quiet cycle for nfsd, mainly just an RDMA update from Chuck
Lever"
* tag 'nfsd-4.7' of git://linux-nfs.org/~bfields/linux:
sunrpc: fix stripping of padded MIC tokens
svcrpc: autoload rdma module
svcrdma: Generalize svc_rdma_xdr_decode_req()
svcrdma: Eliminate code duplication in svc_rdma_recvfrom()
svcrdma: Drain QP before freeing svcrdma_xprt
svcrdma: Post Receives only for forward channel requests
svcrdma: Remove superfluous line from rdma_read_chunks()
svcrdma: svc_rdma_put_context() is invoked twice in Send error path
svcrdma: Do not add XDR padding to xdr_buf page vector
svcrdma: Support IPv6 with NFS/RDMA
nfsd: handle seqid wraparound in nfsd4_preprocess_layout_stateid
Remove unnecessary allocation
Clean up.
After "xprtrdma: Remove ro_unmap() from all registration modes",
there are no longer any sites that take rpcrdma_ia::qplock for read.
The one site that takes it for write is always single-threaded. It
is safe to remove it.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
In a cluster failover scenario, it is desirable for the client to
attempt to reconnect quickly, as an alternate NFS server is already
waiting to take over for the down server. The client can't see that
a server IP address has moved to a new server until the existing
connection is gone.
For fabrics and devices where it is meaningful, set a definite upper
bound on the amount of time before it is determined that a
connection is no longer valid. This allows the RPC client to detect
connection loss in a timely matter, then perform a fresh resolution
of the server GUID in case it has changed (cluster failover).
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Steve Wise <swise@opengridcomputing.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Clean up: The ro_unmap method is no longer used.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Steve Wise <swise@opengridcomputing.com>
Reviewed-by: Sagi Grimberg <sagi@grimberg.me>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
There needs to be a safe method of releasing registered memory
resources when an RPC terminates. Safe can mean a number of things:
+ Doesn't have to sleep
+ Doesn't rely on having a QP in RTS
ro_unmap_safe will be that safe method. It can be used in cases
where synchronous memory invalidation can deadlock, or needs to have
an active QP.
The important case is fencing an RPC's memory regions after it is
signaled (^C) and before it exits. If this is not done, there is a
window where the server can write an RPC reply into memory that the
client has released and re-used for some other purpose.
Note that this is a full solution for FRWR, but FMR and physical
still have some gaps where a particularly bad server can wreak
some havoc on the client. These gaps are not made worse by this
patch and are expected to be exceptionally rare and timing-based.
They are noted in documenting comments.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Steve Wise <swise@opengridcomputing.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Separate the DMA unmap operation from freeing the MW. In a
subsequent patch they will not always be done at the same time,
and they are not related operations (except by order; freeing
the MW must be the last step during invalidation).
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Steve Wise <swise@opengridcomputing.com>
Reviewed-by: Sagi Grimberg <sagi@grimberg.me>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
In a subsequent patch, the fr_xprt and fr_worker fields will be
needed by another memory registration mode. Move them into the
generic rpcrdma_mw structure that wraps struct rpcrdma_frmr.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Steve Wise <swise@opengridcomputing.com>
Reviewed-by: Sagi Grimberg <sagi@grimberg.me>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Maintain the order of invalidation and DMA unmapping when doing
a background MR reset.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Steve Wise <swise@opengridcomputing.com>
Reviewed-by: Sagi Grimberg <sagi@grimberg.me>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
frwr_op_unmap_sync() is now invoked in a workqueue context, the same
as __frwr_queue_recovery(). There's no need to defer MR reset if
posting LOCAL_INV MRs fails.
This means that even when ib_post_send() fails (which should occur
very rarely) the invalidation and DMA unmapping steps are still done
in the correct order.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Steve Wise <swise@opengridcomputing.com>
Reviewed-by: Sagi Grimberg <sagi@grimberg.me>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Move the the I/O direction field from rpcrdma_mr_seg into the
rpcrdma_frmr.
This makes it possible to DMA-unmap the frwr long after an RPC has
exited and its rpcrdma_mr_seg array has been released and re-used.
This might occur if an RPC times out while waiting for a new
connection to be established.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Steve Wise <swise@opengridcomputing.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Clean up: Follow same naming convention as other fields in struct
rpcrdma_frwr.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Steve Wise <swise@opengridcomputing.com>
Reviewed-by: Sagi Grimberg <sagi@grimberg.me>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Clean up: Replace rpcrdma_flush_cqs() and rpcrdma_clean_cqs() with
the new ib_drain_qp() API.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-By: Leon Romanovsky <leonro@mellanox.com>
Tested-by: Steve Wise <swise@opengridcomputing.com>
Reviewed-by: Sagi Grimberg <sagi@grimberg.me>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
rpcrdma_create_chunks() has been replaced, and can be removed.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Steve Wise <swise@opengridcomputing.com>
Reviewed-by: Sagi Grimberg <sagi@grimberg.me>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
rpcrdma_marshal_req() makes a simplifying assumption: that NFS
operations with large Call messages have small Reply messages, and
vice versa. Therefore with RPC-over-RDMA, only one chunk type is
ever needed for each Call/Reply pair, because one direction needs
chunks, the other direction will always fit inline.
In fact, this assumption is asserted in the code:
if (rtype != rpcrdma_noch && wtype != rpcrdma_noch) {
dprintk("RPC: %s: cannot marshal multiple chunk lists\n",
__func__);
return -EIO;
}
But RPCGSS_SEC breaks this assumption. Because krb5i and krb5p
perform data transformation on RPC messages before they are
transmitted, direct data placement techniques cannot be used, thus
RPC messages must be sent via a Long call in both directions.
All such calls are sent with a Position Zero Read chunk, and all
such replies are handled with a Reply chunk. Thus the client must
provide every Call/Reply pair with both a Read list and a Reply
chunk.
Without any special security in effect, NFSv4 WRITEs may now also
use the Read list and provide a Reply chunk. The marshal_req
logic was preventing that, meaning an NFSv4 WRITE with a large
payload that included a GETATTR result larger than the inline
threshold would fail.
The code that encodes each chunk list is now completely contained in
its own function. There is some code duplication, but the trade-off
is that the overall logic should be more clear.
Note that all three chunk lists now share the rl_segments array.
Some additional per-req accounting is necessary to track this
usage. For the same reasons that the above simplifying assumption
has held true for so long, I don't expect more array elements are
needed at this time.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Steve Wise <swise@opengridcomputing.com>
Reviewed-by: Sagi Grimberg <sagi@grimberg.me>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Update documenting comments to reflect code changes over the past
year.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Steve Wise <swise@opengridcomputing.com>
Reviewed-by: Sagi Grimberg <sagi@grimberg.me>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Avoid the latency and interrupt overhead of registering a Write
chunk when handling NFS READ requests of a few hundred bytes or
less.
This change does not interoperate with Linux NFS/RDMA servers
that do not have commit 9d11b51ce7 ('svcrdma: Fix send_reply()
scatter/gather set-up'). Commit 9d11b51ce7 was introduced in v4.3,
and is included in 4.2.y, 4.1.y, and 3.18.y.
Oracle bug 22925946 has been filed to request that the above fix
be included in the Oracle Linux UEK4 NFS/RDMA server.
Red Hat bugzillas 1327280 and 1327554 have been filed to request
that RHEL NFS/RDMA server backports include the above fix.
Workaround: Replace the "proto=rdma,port=20049" mount options
with "proto=tcp" until commit 9d11b51ce7 is applied to your
NFS server.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Steve Wise <swise@opengridcomputing.com>
Reviewed-by: Sagi Grimberg <sagi@grimberg.me>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
When deciding whether to send a Call inline, rpcrdma_marshal_req
doesn't take into account header bytes consumed by chunk lists.
This results in Call messages on the wire that are sometimes larger
than the inline threshold.
Likewise, when a Write list or Reply chunk is in play, the server's
reply has to emit an RDMA Send that includes a larger-than-minimal
RPC-over-RDMA header.
The actual size of a Call message cannot be estimated until after
the chunk lists have been registered. Thus the size of each
RPC-over-RDMA header can be estimated only after chunks are
registered; but the decision to register chunks is based on the size
of that header. Chicken, meet egg.
The best a client can do is estimate header size based on the
largest header that might occur, and then ensure that inline content
is always smaller than that.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Steve Wise <swise@opengridcomputing.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Send buffer space is shared between the RPC-over-RDMA header and
an RPC message. A large RPC-over-RDMA header means less space is
available for the associated RPC message, which then has to be
moved via an RDMA Read or Write.
As more segments are added to the chunk lists, the header increases
in size. Typical modern hardware needs only a few segments to
convey the maximum payload size, but some devices and registration
modes may need a lot of segments to convey data payload. Sometimes
so many are needed that the remaining space in the Send buffer is
not enough for the RPC message. Sending such a message usually
fails.
To ensure a transport can always make forward progress, cap the
number of RDMA segments that are allowed in chunk lists. This
prevents less-capable devices and memory registrations from
consuming a large portion of the Send buffer by reducing the
maximum data payload that can be conveyed with such devices.
For now I choose an arbitrary maximum of 8 RDMA segments. This
allows a maximum size RPC-over-RDMA header to fit nicely in the
current 1024 byte inline threshold with over 700 bytes remaining
for an inline RPC message.
The current maximum data payload of NFS READ or WRITE requests is
one megabyte. To convey that payload on a client with 4KB pages,
each chunk segment would need to handle 32 or more data pages. This
is well within the capabilities of FMR. For physical registration,
the maximum payload size on platforms with 4KB pages is reduced to
32KB.
For FRWR, a device's maximum page list depth would need to be at
least 34 to support the maximum 1MB payload. A device with a smaller
maximum page list depth means the maximum data payload is reduced
when using that device.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Steve Wise <swise@opengridcomputing.com>
Reviewed-by: Sagi Grimberg <sagi@grimberg.me>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Currently the sysctls that allow setting the inline threshold allow
any value to be set.
Small values only make the transport run slower. The default 1KB
setting is as low as is reasonable. And the logic that decides how
to divide a Send buffer between RPC-over-RDMA header and RPC message
assumes (but does not check) that the lower bound is not crazy (say,
57 bytes).
Send and receive buffers share a page with some control information.
Values larger than about 3KB can't be supported, currently.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Steve Wise <swise@opengridcomputing.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
RPC-over-RDMA transports have a limit on how large a backward
direction (backchannel) RPC message can be. Ensure that the NFSv4.x
CREATE_SESSION operation advertises this limit to servers.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Steve Wise <swise@opengridcomputing.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Clean up: Pass in just the piece of the svc_rqst that is needed
here.
While we're in the area, add an informative documenting comment.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
If the server has forced a disconnect, the associated QP has not
been moved to the Error state, and thus Receives are still posted.
Ensure Receives (and any other outstanding WRs) are drained to
release resources that can be freed during teardown of the
svcrdma_xprt.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
Since backward direction support was added, the rq_depth was
increased to accommodate both forward and backward Receives.
But only forward Receives need to be posted after a connection
has been accepted. Receives for backward replies are posted as
needed by svc_rdma_bc_sendto().
This doesn't break anything, but it means some resources are
wasted.
Fixes: 03fe993153 ('svcrdma: Define maximum number of ...')
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
Clean up: svc_rdma_get_read_chunk() already returns a pointer
to the Read list. No need to set "ch" again to the value it
already contains.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
Get a fresh op_ctxt in send_reply() instead of in svc_rdma_sendto().
This ensures that svc_rdma_put_context() is invoked only once if
send_reply() fails.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
An xdr_buf has a head, a vector of pages, and a tail. Each
RPC request is presented to the NFS server contained in an
xdr_buf.
The RDMA transport would like to supply the NFS server with only
the NFS WRITE payload bytes in the page vector. In some common
cases, that would allow the NFS server to swap those pages right
into the target file's page cache.
Have the transport's RDMA Read logic put XDR pad bytes in the tail
iovec, and not in the pages that hold the data payload.
The NFSv3 WRITE XDR decoder is finicky about the lengths involved,
so make sure it is looking in the correct places when computing
the total length of the incoming NFS WRITE request.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
Allow both IPv4 and IPv6 to bind same port at the same time,
restricts use of the IPv6 socket to IPv6 communication.
Changes from v1:
- Check rdma_set_afonly return value (suggested by Leon Romanovsky)
Changes from v2:
- Acked-by: Leon Romanovsky <leonro@mellanox.com>
Signed-off-by: Shirley Ma <shirley.ma@oracle.com>
Acked-by: Leon Romanovsky <leonro@mellanox.com>
Reviewed-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
The SRP initiator allows to set max_sectors to a value that exceeds
the largest amount of data that can be mapped at once with an mlx4
HCA using fast registration and a page size of 4 KB. Hence modify
ib_map_mr_sg() such that it can map partial sg-elements. If an
sg-element has been mapped partially, let the caller know
which fraction has been mapped by adjusting *sg_offset.
Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com>
Tested-by: Laurence Oberman <loberman@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Sagi Grimberg <sagi@grimberg.me>
Signed-off-by: Doug Ledford <dledford@redhat.com>
pnfs layout type from Christoph Hellwig. The new layout type is a
variant of the block layout which uses SCSI features to offer improved
fencing and device identification.
(Also: note this pull request also includes the client side of SCSI
layout, with Trond's permission.)
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJW8+uhAAoJECebzXlCjuG+26YP/35DP4MPfszEJ5G0dYq5HMwl
dJUni8ajSHRswZ/2FqiBsRwmg3Djfc+uoXdOneD1f6ogkDe7S16yp+FRyh8/VwUs
Ym6LcxSjT28uqkxO0MblcnUl0G9nNSuOwqIsZ0HG7/UC7E6RmCF4o3r5fFUfOsA+
B3koB5UcHNAFythAk+GDwOQ46Fr96VkZ7Y+OhdNAwmeXZIdKXIufweueI/o2uipB
RoJFJ7lqrzAjFe+CqAUBr2l2k6lEKzdxbEH6HXQ5+cvVNwfVIgnrONpF78uF/p9T
NNDnZ+fn3YdRhd+W9RxUHZq7ZL5YOEA8kHsAlloeBH74GqCy7IcS+DrKt1ReM3px
bhgsXM3dqqJ9xiDGqmeE4VQwRF30SxgYZbO386E+cLHnCYV+vfY6RUaWPrk6On/r
FL9g3iyVvhyC4HO06Xm+uvvERw8R+fTZY9KZQKH2RL0Tr5DkWRRNJfasMO+PwGOv
Fdku01vyoA4Y6mbqUgQ9DmrbLO4gK3UyMiOTanQV9shrIDxI0MOuLK03zL25vZCM
s1A4YBpXmg4gx3XsOFM+tygv6EVujDu6scICeb+hj0vi0oG82Lx7T9e3MJEiYC+T
jbi8bu+x+0bX2obMprvDNVUzi/PgSUVpGCnRlbRTaXBa0lB6nV7uUiQ1HC9gGesm
ZWWiOv7du+7WlFP5c6r5
=mY8w
-----END PGP SIGNATURE-----
Merge tag 'nfsd-4.6' of git://linux-nfs.org/~bfields/linux
Pull nfsd updates from Bruce Fields:
"Various bugfixes, a RDMA update from Chuck Lever, and support for a
new pnfs layout type from Christoph Hellwig. The new layout type is a
variant of the block layout which uses SCSI features to offer improved
fencing and device identification.
(Also: note this pull request also includes the client side of SCSI
layout, with Trond's permission.)"
* tag 'nfsd-4.6' of git://linux-nfs.org/~bfields/linux:
sunrpc/cache: drop reference when sunrpc_cache_pipe_upcall() detects a race
nfsd: recover: fix memory leak
nfsd: fix deadlock secinfo+readdir compound
nfsd4: resfh unused in nfsd4_secinfo
svcrdma: Use new CQ API for RPC-over-RDMA server send CQs
svcrdma: Use new CQ API for RPC-over-RDMA server receive CQs
svcrdma: Remove close_out exit path
svcrdma: Hook up the logic to return ERR_CHUNK
svcrdma: Use correct XID in error replies
svcrdma: Make RDMA_ERROR messages work
rpcrdma: Add RPCRDMA_HDRLEN_ERR
svcrdma: svc_rdma_post_recv() should close connection on error
svcrdma: Close connection when a send error occurs
nfsd: Lower NFSv4.1 callback message size limit
svcrdma: Do not send Write chunk XDR pad with inline content
svcrdma: Do not write xdr_buf::tail in a Write chunk
svcrdma: Find client-provided write and reply chunks once per reply
nfsd: Update NFS server comments related to RDMA support
nfsd: Fix a memory leak when meeting unsupported state_protect_how4
nfsd4: fix bad bounds checking
Calling ib_poll_cq() to sort through WCs during a completion is a
common pattern amongst RDMA consumers. Since commit 14d3a3b249
("IB: add a proper completion queue abstraction"), WC sorting can
be handled by the IB core.
By converting to this new API, xprtrdma is made a better neighbor to
other RDMA consumers, as it allows the core to schedule the delivery
of completions more fairly amongst all active consumers.
Because each ib_cqe carries a pointer to a completion method, the
core can now post its own operations on a consumer's QP, and handle
the completions itself, without changes to the consumer.
Send completions were previously handled entirely in the completion
upcall handler (ie, deferring to a process context is unneeded).
Thus IB_POLL_SOFTIRQ is a direct replacement for the current
xprtrdma send code path.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Devesh Sharma <devesh.sharma@broadcom.com>
Reviewed-by: Sagi Grimberg <sagig@mellanox.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Calling ib_poll_cq() to sort through WCs during a completion is a
common pattern amongst RDMA consumers. Since commit 14d3a3b249
("IB: add a proper completion queue abstraction"), WC sorting can
be handled by the IB core.
By converting to this new API, xprtrdma is made a better neighbor to
other RDMA consumers, as it allows the core to schedule the delivery
of completions more fairly amongst all active consumers.
Because each ib_cqe carries a pointer to a completion method, the
core can now post its own operations on a consumer's QP, and handle
the completions itself, without changes to the consumer.
xprtrdma's reply processing is already handled in a work queue, but
there is some initial order-dependent processing that is done in the
soft IRQ context before a work item is scheduled.
IB_POLL_SOFTIRQ is a direct replacement for the current xprtrdma
receive code path.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Devesh Sharma <devesh.sharma@broadcom.com>
Reviewed-by: Sagi Grimberg <sagig@mellanox.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Commit fe97b47cd6 ("xprtrdma: Use workqueue to process RPC/RDMA
replies") replaced the reply tasklet with a workqueue that allows
RPC replies to be processed in parallel. Thus the credit values in
RPC-over-RDMA replies can be applied in a different order than in
which the server sent them.
To fix this, revert commit eba8ff660b ("xprtrdma: Move credit
update to RPC reply handler"). Reverting is done by hand to
accommodate code changes that have occurred since then.
Fixes: fe97b47cd6 ("xprtrdma: Use workqueue to process . . .")
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Sagi Grimberg <sagig@mellanox.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
These are shorter than RPCRDMA_HDRLEN_MIN, and they need to
complete the waiting RPC.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Sagi Grimberg <sagig@mellanox.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
If ib_post_send() in ro_unmap_sync() fails, the WRs have not been
posted, no completions will fire, and wait_for_completion() will
wait forever. Skip the wait in that case.
To ensure the MRs are invalid, disconnect.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
A single memory allocation is used for the pair of buffers wherein
the RPC client builds an RPC call message and decodes its matching
reply. These buffers are sized based on the maximum possible size
of the RPC call and reply messages for the operation in progress.
This means that as the call buffer increases in size, the start of
the reply buffer is pushed farther into the memory allocation.
RPC requests are growing in size. It used to be that both the call
and reply buffers fit inside a single page.
But these days, thanks to NFSv4 (and especially security labels in
NFSv4.2) the maximum call and reply sizes are large. NFSv4.0 OPEN,
for example, now requires a 6KB allocation for a pair of call and
reply buffers, and NFSv4 LOOKUP is not far behind.
As the maximum size of a call increases, the reply buffer is pushed
far enough into the buffer's memory allocation that a page boundary
can appear in the middle of it.
When the maximum possible reply size is larger than the client's
RDMA receive buffers (currently 1KB), the client has to register a
Reply chunk for the server to RDMA Write the reply into.
The logic in rpcrdma_convert_iovs() assumes that xdr_buf head and
tail buffers would always be contained on a single page. It supplies
just one segment for the head and one for the tail.
FMR, for example, registers up to a page boundary (only a portion of
the reply buffer in the OPEN case above). But without additional
segments, it doesn't register the rest of the buffer.
When the server tries to write the OPEN reply, the RDMA Write fails
with a remote access error since the client registered only part of
the Reply chunk.
rpcrdma_convert_iovs() must split the XDR buffer into multiple
segments, each of which are guaranteed not to contain a page
boundary. That way fmr_op_map is given the proper number of segments
to register the whole reply buffer.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Devesh Sharma <devesh.sharma@broadcom.com>
Reviewed-by: Sagi Grimberg <sagig@mellanox.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
physical_op_unmap{_sync} don't use mr_nsegs, so don't bother to set
it in physical_op_map.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Sagi Grimberg <sagig@mellanox.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Calling ib_poll_cq() to sort through WCs during a completion is a
common pattern amongst RDMA consumers. Since commit 14d3a3b249
("IB: add a proper completion queue abstraction"), WC sorting can
be handled by the IB core.
By converting to this new API, svcrdma is made a better neighbor to
other RDMA consumers, as it allows the core to schedule the delivery
of completions more fairly amongst all active consumers.
This new API also aims each completion at a function that is
specific to the WR's opcode. Thus the ctxt->wr_op field and the
switch in process_context is replaced by a set of methods that
handle each completion type.
Because each ib_cqe carries a pointer to a completion method, the
core can now post operations on a consumer's QP, and handle the
completions itself.
The server's rdma_stat_sq_poll and rdma_stat_sq_prod metrics are no
longer updated.
As a clean up, the cq_event_handler, the dto_tasklet, and all
associated locking is removed, as they are no longer referenced or
used.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Steve Wise <swise@opengridcomputing.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
Calling ib_poll_cq() to sort through WCs during a completion is a
common pattern amongst RDMA consumers. Since commit 14d3a3b249
("IB: add a proper completion queue abstraction"), WC sorting can
be handled by the IB core.
By converting to this new API, svcrdma is made a better neighbor to
other RDMA consumers, as it allows the core to schedule the delivery
of completions more fairly amongst all active consumers.
Because each ib_cqe carries a pointer to a completion method, the
core can now post operations on a consumer's QP, and handle the
completions itself.
svcrdma receive completions no longer use the dto_tasklet. Each
polled Receive WC is now handled individually in soft IRQ context.
The server transport's rdma_stat_rq_poll and rdma_stat_rq_prod
metrics are no longer updated.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
Clean up: close_out is reached only when ctxt == NULL and XPT_CLOSE
is already set.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Devesh Sharma <devesh.sharma@broadcom.com>
Tested-by: Devesh Sharma <devesh.sharma@broadcom.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
RFC 5666 Section 4.2 states:
> When the peer detects an RPC-over-RDMA header version that it does
> not support (currently this document defines only version 1), it
> replies with an error code of ERR_VERS, and provides the low and
> high inclusive version numbers it does, in fact, support.
And:
> When other decoding errors are detected in the header or chunks,
> either an RPC decode error MAY be returned or the RPC/RDMA error
> code ERR_CHUNK MUST be returned.
The Linux NFS server does throw ERR_VERS when a client sends it
a request whose rdma_version is not "one." But it does not return
ERR_CHUNK when a header decoding error occurs. It just drops the
request.
To improve protocol extensibility, it should reject invalid values
in the rdma_proc field instead of treating them all like RDMA_MSG.
Otherwise clients can't detect when the server doesn't support
new rdma_proc values.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Devesh Sharma <devesh.sharma@broadcom.com>
Tested-by: Devesh Sharma <devesh.sharma@broadcom.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
When constructing an error reply, svc_rdma_xdr_encode_error()
needs to view the client's request message so it can get the
failing request's XID.
svc_rdma_xdr_decode_req() is supposed to return a pointer to the
client's request header. But if it fails to decode the client's
message (and thus an error reply is needed) it does not return the
pointer. The server then sends a bogus XID in the error reply.
Instead, unconditionally generate the pointer to the client's header
in svc_rdma_recvfrom(), and pass that pointer to both functions.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Devesh Sharma <devesh.sharma@broadcom.com>
Tested-by: Devesh Sharma <devesh.sharma@broadcom.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
Fix several issues with svc_rdma_send_error():
- Post a receive buffer to replace the one that was consumed by
the incoming request
- Posting a send should use DMA_TO_DEVICE, not DMA_FROM_DEVICE
- No need to put_page _and_ free pages in svc_rdma_put_context
- Make sure the sge is set up completely in case the error
path goes through svc_rdma_unmap_dma()
- Replace the use of ENOSYS, which has a reserved meaning
Related fixes in svc_rdma_recvfrom():
- Don't leak the ctxt associated with the incoming request
- Don't close the connection after sending an error reply
- Let svc_rdma_send_error() figure out the right header error code
As a last clean up, move svc_rdma_send_error() to svc_rdma_sendto.c
with other similar functions. There is some common logic in these
functions that could someday be combined to reduce code duplication.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Devesh Sharma <devesh.sharma@broadcom.com>
Tested-by: Devesh Sharma <devesh.sharma@broadcom.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
Clean up: Most svc_rdma_post_recv() call sites close the transport
connection when a receive cannot be posted. Wrap that in a common
helper.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Devesh Sharma <devesh.sharma@broadcom.com>
Tested-by: Devesh Sharma <devesh.sharma@broadcom.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
The NFS server's XDR encoders adds an XDR pad for content in the
xdr_buf page list at the beginning of the xdr_buf's tail buffer.
On RDMA transports, Write chunks are sent separately and without an
XDR pad.
If a Write chunk is being sent, strip off the pad in the tail buffer
so that inline content following the Write chunk remains XDR-aligned
when it is sent to the client.
BugLink: https://bugzilla.linux-nfs.org/show_bug.cgi?id=294
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
When the Linux NFS server writes an odd-length data item into a
Write chunk, it finishes with XDR pad bytes. If the data item is
smaller than the Write chunk, the pad bytes are written at the end
of the data item, but still inside the chunk (ie, in the
application's buffer). Since this is direct data placement, that
exposes the pad bytes.
XDR pad bytes are inserted in order to preserve the XDR alignment
of the next XDR data item in an XDR stream. But Write chunks do not
appear in the payload XDR stream, and only one data item is allowed
in each chunk. Thus XDR padding is not needed in a Write chunk.
With NFSv4, the Linux NFS server places the results of any
operations that follow an NFSv4 READ or READLINK in the xdr_buf's
tail. Those results also should never be sent as a part of a Write
chunk. The current logic in send_write_chunks() appears to assume
that the xdr_buf's tail contains only pad bytes (ie, NFSv3).
The server should write only the contents of the xdr_buf's page list
in a Write chunk. If there's more than an XDR pad in the tail, that
needs to go inline or in the Reply chunk.
BugLink: https://bugzilla.linux-nfs.org/show_bug.cgi?id=294
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
The client provides the location of Write chunks into which the
server writes bulk payload. The client provides these when the
Upper Layer Protocol wants direct data placement and the Binding
allows it. (For NFS, this is READ and READLINK operations).
The client also provides the location of a Reply chunk into which
the server writes the non-bulk part of an RPC reply. The client
provides this chunk whenever it believes the reply can be larger
than its receive buffers.
The server then uses the presence of these chunks to determine how
it will form its reply message.
svc_rdma_sendto() was looking for Write and Reply chunks multiple
times for every reply message. It would be more efficient to do it
just once.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
This patch fixes a bug where NFS v4.1 callbacks were returning
RPC_GARBAGE_ARGS to the server.
Signed-off-by: Anna Schumaker <Anna@OcarinaProject.net>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iQIcBAABCAAGBQJWxO+oAAoJENfLVL+wpUDrTwMQAPb1meyxjiRAWbZJPF/GO0oE
R62K7y6Y7fJ8MtOXWO+cyhZ54sRaGflTm233KS9L9ICY0acLU0fcArO43QLDH5p9
hozOJso2C7Ti2AVcgpLRNAK//DyBe8zzSU4qNGdLGSccKJcl97oUuI+18QpeWS8p
4dbscyx6pYxwTBUrvihLSUWcONge+uKYHHOriZ/r/sno+4wHNY6e11xeseMqmHQx
RFZOvsZakIoXsBW1UEZZsSpY0GnOTTTWZlk0rOb5ZyaCU+/sZygxJSHOSri66v8h
vPp7zx2HUGGpeMNRXlRgWkiJ2B+pShJ7JH7kfq5ZyMoy1uEeMEw3cdVoG+/OSBaT
EjOWbuj2Npq30GJAdXYE9joQ+Pd2d3h8q2/qzucpQh89hoGcf5jwgYrdyUgzHOdA
Lnsvhv5Wm8QiKO8LxNtnNA607dsDI5FLus+ijNl0bVFT12MYS/2ge679armCh5tA
eTJCp0ARKzWsoVRCCkGiPjmGg9yCTP73uNm/EXr4HLKfzSIbrZLK1Aswe9NS1+/L
tLVJsxbjRKfm9Ovvs7fl0lB7S4fbMKW78PO+vUuNfaRbgtha7SexvTp4g3am0Plh
2JnOgUqeG6My5Q9z843iG7vBD5U7jMId8dD37IlkXNMeiav7xBo1MQIokUDfpuXo
pbzSYIpdnIiPkSvAU3L2
=7AXa
-----END PGP SIGNATURE-----
Merge tag 'nfs-rdma-4.5-1' of git://git.linux-nfs.org/projects/anna/nfs-rdma
NFS: NFSoRDMA Client Bugfix
This patch fixes a bug where NFS v4.1 callbacks were returning
RPC_GARBAGE_ARGS to the server.
Signed-off-by: Anna Schumaker <Anna@OcarinaProject.net>
Some NFSv4.1 OPEN requests were hanging waiting for the NFS server
to finish recalling delegations. Turns out that each NFSv4.1 CB
request on RDMA gets a GARBAGE_ARGS reply from the Linux client.
Commit 756b9b37cf added a line in bc_svc_process that
overwrites the incoming rq_rcv_buf's length with the value in
rq_private_buf.len. But rpcrdma_bc_receive_call() does not invoke
xprt_complete_bc_request(), thus rq_private_buf.len is not
initialized. svc_process_common() is invoked with a zero-length
RPC message, and fails.
Fixes: 756b9b37cf ('SUNRPC: Fix callback channel')
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
- Remove usage of ib_query_device and instead store attributes in
ib_device struct
- Move iopoll out of block and into lib, rename to irqpoll, and use
in several places in the rdma stack as our new completion queue
polling library mechanism. Update the other block drivers that
already used iopoll to use the new mechanism too.
- Replace the per-entry GID table locks with a single GID table lock
- IPoIB multicast cleanup
- Cleanups to the IB MR facility
- Add support for 64bit extended IB counters
- Fix for netlink oops while parsing RDMA nl messages
- RoCEv2 support for the core IB code
- mlx4 RoCEv2 support
- mlx5 RoCEv2 support
- Cross Channel support for mlx5
- Timestamp support for mlx5
- Atomic support for mlx5
- Raw QP support for mlx5
- MAINTAINERS update for mlx4/mlx5
- Misc ocrdma, qib, nes, usNIC, cxgb3, cxgb4, mlx4, mlx5 updates
- Add support for remote invalidate to the iSER driver (pushed through the
RDMA tree due to dependencies, acknowledged by nab)
- Update to NFSoRDMA (pushed through the RDMA tree due to dependencies,
acknowledged by Bruce)
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJWoSygAAoJELgmozMOVy/dDjsP/2vbTda2MvQfkfkGEZBQdJSg
095RN0gQgCJdg78lAl8yuaK8r4VN/7uefpDtFdudH1I/Pei7X0wxN9R1UzFNG4KR
AD53lz92IVPs15328SbPR2kvNWISR9aBFQo3rlElq3Grqlp0EMn2Ou1vtu87rekF
aMllxr8Nl0uZhP+eWusOsYpJUUtwirLgRnrAyfqo2UxZh/TMIroT0TCx1KXjVcAg
dhDARiZAdu3OgSc6OsWqmH+DELEq6dFVA5F+DDBGAb8bFZqlJc7cuMHWInwNsNXT
so4bnEQ835alTbsdYtqs5DUNS8heJTAJP4Uz0ehkTh/uNCcvnKeUTw1c2P/lXI1k
7s33gMM+0FXj0swMBw0kKwAF2d9Hhus9UAN7NwjBuOyHcjGRd5q7SAnfWkvKx000
s9jVW19slb2I38gB58nhjOh8s+vXUArgxnV1+kTia1+bJSR5swvVoWRicRXdF0vh
TvLX/BjbSIU73g1TnnLNYoBTV3ybFKQ6bVdQW7fzSTDs54dsI1vvdHXi3bYZCpnL
HVwQTZRfEzkvb0AdKbcvf8p/TlaAHem3ODqtO1eHvO4if1QJBSn+SptTEeJVYYdK
n4B3l/dMoBH4JXJUmEHB9jwAvYOpv/YLAFIvdL7NFwbqGNsC3nfXFcmkVORB1W3B
KEMcM2we4bz+uyKMjEAD
=5oO7
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dledford/rdma
Pull rdma updates from Doug Ledford:
"Initial roundup of 4.5 merge window patches
- Remove usage of ib_query_device and instead store attributes in
ib_device struct
- Move iopoll out of block and into lib, rename to irqpoll, and use
in several places in the rdma stack as our new completion queue
polling library mechanism. Update the other block drivers that
already used iopoll to use the new mechanism too.
- Replace the per-entry GID table locks with a single GID table lock
- IPoIB multicast cleanup
- Cleanups to the IB MR facility
- Add support for 64bit extended IB counters
- Fix for netlink oops while parsing RDMA nl messages
- RoCEv2 support for the core IB code
- mlx4 RoCEv2 support
- mlx5 RoCEv2 support
- Cross Channel support for mlx5
- Timestamp support for mlx5
- Atomic support for mlx5
- Raw QP support for mlx5
- MAINTAINERS update for mlx4/mlx5
- Misc ocrdma, qib, nes, usNIC, cxgb3, cxgb4, mlx4, mlx5 updates
- Add support for remote invalidate to the iSER driver (pushed
through the RDMA tree due to dependencies, acknowledged by nab)
- Update to NFSoRDMA (pushed through the RDMA tree due to
dependencies, acknowledged by Bruce)"
* tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dledford/rdma: (169 commits)
IB/mlx5: Unify CQ create flags check
IB/mlx5: Expose Raw Packet QP to user space consumers
{IB, net}/mlx5: Move the modify QP operation table to mlx5_ib
IB/mlx5: Support setting Ethernet priority for Raw Packet QPs
IB/mlx5: Add Raw Packet QP query functionality
IB/mlx5: Add create and destroy functionality for Raw Packet QP
IB/mlx5: Refactor mlx5_ib_qp to accommodate other QP types
IB/mlx5: Allocate a Transport Domain for each ucontext
net/mlx5_core: Warn on unsupported events of QP/RQ/SQ
net/mlx5_core: Add RQ and SQ event handling
net/mlx5_core: Export transport objects
IB/mlx5: Expose CQE version to user-space
IB/mlx5: Add CQE version 1 support to user QPs and SRQs
IB/mlx5: Fix data validation in mlx5_ib_alloc_ucontext
IB/sa: Fix netlink local service GFP crash
IB/srpt: Remove redundant wc array
IB/qib: Improve ipoib UD performance
IB/mlx4: Advertise RoCE v2 support
IB/mlx4: Create and use another QP1 for RoCEv2
IB/mlx4: Enable send of RoCE QP1 packets with IP/UDP headers
...
We now alwasy have a per-PD local_dma_lkey available. Make use of that
fact in svc_rdma and stop registering our own MR.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Sagi Grimberg <sagig@mellanox.com>
Reviewed-by: Jason Gunthorpe <jgunthorpe@obsidianresearch.com>
Reviewed-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Steve Wise <swise@opengridcomputing.com>
Acked-by: J. Bruce Fields <bfields@redhat.com>
Signed-off-by: Doug Ledford <dledford@redhat.com>
To support the server-side of an NFSv4.1 backchannel on RDMA
connections, add a transport class that enables backward
direction messages on an existing forward channel connection.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Acked-by: Bruce Fields <bfields@fieldses.org>
Signed-off-by: Doug Ledford <dledford@redhat.com>
Extra resources for handling backchannel requests have to be
pre-allocated when a transport instance is created. Set up
additional fields in svcxprt_rdma to track these resources.
The max_requests fields are elements of the RPC-over-RDMA
protocol, so they should be u32. To ensure that unsigned
arithmetic is used everywhere, some other fields in the
svcxprt_rdma struct are updated.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Acked-by: Bruce Fields <bfields@fieldses.org>
Signed-off-by: Doug Ledford <dledford@redhat.com>
Pre-requisite to use map_xdr in the backchannel code.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Acked-by: Bruce Fields <bfields@fieldses.org>
Signed-off-by: Doug Ledford <dledford@redhat.com>
Clean up.
These functions can otherwise fail, so check for page allocation
failures too.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Acked-by: Bruce Fields <bfields@fieldses.org>
Signed-off-by: Doug Ledford <dledford@redhat.com>
svc_rdma_post_recv() allocates pages for receive buffers on-demand.
It uses GFP_KERNEL so the allocator tries hard, and may sleep. But
I'm about to add a call to svc_rdma_post_recv() from a function
that may not sleep.
Since all svc_rdma_post_recv() call sites can tolerate its failure,
allow it to fail if the page allocator returns nothing. Longer term,
receive buffers, being a finite resource per-connection, should be
pre-allocated and re-used.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Acked-by: Bruce Fields <bfields@fieldses.org>
Signed-off-by: Doug Ledford <dledford@redhat.com>
To ensure this allocation cannot fail and will not sleep,
pre-allocate the req_map structures per-connection.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Acked-by: Bruce Fields <bfields@fieldses.org>
Signed-off-by: Doug Ledford <dledford@redhat.com>
When the maximum payload size of NFS READ and WRITE was increased
by commit cc9a903d91 ("svcrdma: Change maximum server payload back
to RPCSVC_MAXPAYLOAD"), the size of struct svc_rdma_op_ctxt
increased to over 6KB (on x86_64). That makes allocating one of
these from a kmem_cache more likely to fail in situations when
system memory is exhausted.
Since I'm about to add a caller where this allocation must always
work _and_ it cannot sleep, pre-allocate ctxts for each connection.
Another motivation for this change is that NFSv4.x servers are
required by specification not to drop NFS requests. Pre-allocating
memory resources reduces the likelihood of a drop.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Acked-by: Bruce Fields <bfields@fieldses.org>
Signed-off-by: Doug Ledford <dledford@redhat.com>
Be sure the completed ctxt is put in every path.
The xprt enqueue can take a while, so put the completed ctxt back
in circulation _before_ enqueuing the xprt.
Remove/disable debugging.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Acked-by: Bruce Fields <bfields@fieldses.org>
Signed-off-by: Doug Ledford <dledford@redhat.com>
kzalloc is used here, so setting the atomic fields to zero is
unnecessary. sc_ord is set again in handle_connect_req. The other
fields are re-initialized in svc_rdma_accept().
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Acked-by: Bruce Fields <bfields@fieldses.org>
Signed-off-by: Doug Ledford <dledford@redhat.com>
Instead, use the cached copy of the attributes present on the device.
Signed-off-by: Or Gerlitz <ogerlitz@mellanox.com>
Signed-off-by: Doug Ledford <dledford@redhat.com>
The root of the problem was that sends (especially unsignalled
FASTREG and LOCAL_INV Work Requests) were not properly flow-
controlled, which allowed a send queue overrun.
Now that the RPC/RDMA reply handler waits for invalidation to
complete, the send queue is properly flow-controlled. Thus this
limit is no longer necessary.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Devesh Sharma <devesh.sharma@avagotech.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
There is a window between the time the RPC reply handler wakes the
waiting RPC task and when xprt_release() invokes ops->buf_free.
During this time, memory regions containing the data payload may
still be accessed by a broken or malicious server, but the RPC
application has already been allowed access to the memory containing
the RPC request's data payloads.
The server should be fenced from client memory containing RPC data
payloads _before_ the RPC application is allowed to continue.
This change also more strongly enforces send queue accounting. There
is a maximum number of RPC calls allowed to be outstanding. When an
RPC/RDMA transport is set up, just enough send queue resources are
allocated to handle registration, Send, and invalidation WRs for
each those RPCs at the same time.
Before, additional RPC calls could be dispatched while invalidation
WRs were still consuming send WQEs. When invalidation WRs backed
up, dispatching additional RPCs resulted in a send queue overrun.
Now, the reply handler prevents RPC dispatch until invalidation is
complete. This prevents RPC call dispatch until there are enough
send queue resources to proceed.
Still to do: If an RPC exits early (say, ^C), the reply handler has
no opportunity to perform invalidation. Currently, xprt_rdma_free()
still frees remaining RDMA resources, which could deadlock.
Additional changes are needed to handle invalidation properly in this
case.
Reported-by: Jason Gunthorpe <jgunthorpe@obsidianresearch.com>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Devesh Sharma <devesh.sharma@avagotech.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
physical's ro_unmap is synchronous already. The new ro_unmap_sync
method just has to DMA unmap all MRs associated with the RPC
request.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Devesh Sharma <devesh.sharma@avagotech.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
FMR's ro_unmap method is already synchronous because ib_unmap_fmr()
is a synchronous verb. However, some improvements can be made here.
1. Gather all the MRs for the RPC request onto a list, and invoke
ib_unmap_fmr() once with that list. This reduces the number of
doorbells when there is more than one MR to invalidate
2. Perform the DMA unmap _after_ the MRs are unmapped, not before.
This is critical after invalidating a Write chunk.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Devesh Sharma <devesh.sharma@avagotech.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
FRWR's ro_unmap is asynchronous. The new ro_unmap_sync posts
LOCAL_INV Work Requests and waits for them to complete before
returning.
Note also, DMA unmapping is now done _after_ invalidation.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Devesh Sharma <devesh.sharma@avagotech.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
In the current xprtrdma implementation, some memreg strategies
implement ro_unmap synchronously (the MR is knocked down before the
method returns) and some asynchonously (the MR will be knocked down
and returned to the pool in the background).
To guarantee the MR is truly invalid before the RPC consumer is
allowed to resume execution, we need an unmap method that is
always synchronous, invoked from the RPC/RDMA reply handler.
The new method unmaps all MRs for an RPC. The existing ro_unmap
method unmaps only one MR at a time.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Devesh Sharma <devesh.sharma@avagotech.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
For FRWR FASTREG and LOCAL_INV, move the ib_*_wr structure off
the stack. This allows frwr_op_map and frwr_op_unmap to chain
WRs together without limit to register or invalidate a set of MRs
with a single ib_post_send().
(This will be for chaining LOCAL_INV requests).
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Devesh Sharma <devesh.sharma@avagotech.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Preserve any rpcrdma_req that is attached to rpc_rqst's allocated
for the backchannel. Otherwise, after all the pre-allocated
backchannel req's are consumed, incoming backward calls start
writing on freed memory.
Somehow this hunk got lost.
Fixes: f531a5dbc4 ('xprtrdma: Pre-allocate backward rpc_rqst')
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Devesh Sharma <devesh.sharma@avagotech.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Clean up.
rb_lock critical sections added in rpcrdma_ep_post_extra_recv()
should have first been converted to use normal spin_lock now that
the reply handler is a work queue.
The backchannel set up code should use the appropriate helper
instead of open-coding a rb_recv_bufs list add.
Problem introduced by glib patch re-ordering on my part.
Fixes: f531a5dbc4 ('xprtrdma: Pre-allocate backward rpc_rqst')
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Devesh Sharma <devesh.sharma@avagotech.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
The rpcrdma_create_req() function returns error pointers or success. It
never returns NULL.
Fixes: f531a5dbc4 ('xprtrdma: Pre-allocate backward rpc_rqst and send/receive buffers')
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
It doesn't matter either way, but the curly braces were clearly intended
here. It causes a Smatch warning.
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Highlights include:
Features:
- RDMA client backchannel from Chuck
- Support for NFSv4.2 file CLONE using the btrfs ioctl
Bugfixes + cleanups
- Move socket data receive out of the bottom halves and into a workqueue
- Refactor NFSv4 error handling so synchronous and asynchronous RPC handles
errors identically.
- Fix a panic when blocks or object layouts reads return a bad data length
- Fix nfsroot so it can handle a 1024 byte long path.
- Fix bad usage of page offset in bl_read_pagelist
- Various NFSv4 callback cleanups+fixes
- Fix GETATTR bitmap verification
- Support hexadecimal number for sunrpc debug sysctl files
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJWQPMXAAoJEGcL54qWCgDy6ZUQAL32vpgyMXe7R4jcxoQxm52+
tn8FrY8aBZAqucvQsIGCrYfE01W/s8goDTQdZODn0MCcoor12BTPVYNIR42/J/no
MNnRTDF0dJ4WG+inX9G87XGG6sFN3wDaQcCaexknkQZlFNF4KthxojzR2BgjmRVI
p3WKkLSNTt6DYQQ8eDetvKoDT0AjR/KCYm89tiE8GMhKYcaZl6dTazJxwOcp2CX9
YDW6+fQbsv8qp5v2ay03e88O/DSmcNRFoxy/KUGT9OwJgdN08IN8fTt6GG38yycT
D9tb9uObBRcll4PnucouadBcykGr6jAP0z8HklE266LH1dwYLOHQoDFdgAs0QGtq
nlySiKvToj6CYXonXoPOjZF3P/lxlkj5ViZ2enBxgxrPmyWl172cUSa6NTXOMO46
kPpxw50xa1gP5kkBVwIZ6XZuzl/5YRhB3BRP3g6yuJCbAwVBJvawYU7riC+6DEB9
zygVfm21vi9juUQXJ37zXVRBTtoFhFjuSxcAYxc63o181lWYShKQ3IiRYg+zTxnq
7DOhXa0ZNGvMgJJi0tH9Es3/S6TrGhyKh5gKY/o2XUjY0hCSsCSdP6jw6Mb9Ax1s
0LzByHAikxBKPt2OFeoUgwycI2xqow4iAfuFk071iP7n0nwC804cUHSkGxW67dBZ
Ve5Skkg1CV+oWQYxGmGZ
=py1V
-----END PGP SIGNATURE-----
Merge tag 'nfs-for-4.4-1' of git://git.linux-nfs.org/projects/trondmy/linux-nfs
Pull NFS client updates from Trond Myklebust:
"Highlights include:
New features:
- RDMA client backchannel from Chuck
- Support for NFSv4.2 file CLONE using the btrfs ioctl
Bugfixes + cleanups:
- Move socket data receive out of the bottom halves and into a
workqueue
- Refactor NFSv4 error handling so synchronous and asynchronous RPC
handles errors identically.
- Fix a panic when blocks or object layouts reads return a bad data
length
- Fix nfsroot so it can handle a 1024 byte long path.
- Fix bad usage of page offset in bl_read_pagelist
- Various NFSv4 callback cleanups+fixes
- Fix GETATTR bitmap verification
- Support hexadecimal number for sunrpc debug sysctl files"
* tag 'nfs-for-4.4-1' of git://git.linux-nfs.org/projects/trondmy/linux-nfs: (53 commits)
Sunrpc: Supports hexadecimal number for sysctl files of sunrpc debug
nfs: Fix GETATTR bitmap verification
nfs: Remove unused xdr page offsets in getacl/setacl arguments
fs/nfs: remove unnecessary new_valid_dev check
SUNRPC: fix variable type
NFS: Enable client side NFSv4.1 backchannel to use other transports
pNFS/flexfiles: Add support for FF_FLAGS_NO_IO_THRU_MDS
pNFS/flexfiles: When mirrored, retry failed reads by switching mirrors
SUNRPC: Remove the TCP-only restriction in bc_svc_process()
svcrdma: Add backward direction service for RPC/RDMA transport
xprtrdma: Handle incoming backward direction RPC calls
xprtrdma: Add support for sending backward direction RPC replies
xprtrdma: Pre-allocate Work Requests for backchannel
xprtrdma: Pre-allocate backward rpc_rqst and send/receive buffers
SUNRPC: Abstract backchannel operations
xprtrdma: Saving IRQs no longer needed for rb_lock
xprtrdma: Remove reply tasklet
xprtrdma: Use workqueue to process RPC/RDMA replies
xprtrdma: Replace send and receive arrays
xprtrdma: Refactor reply handler error handling
...
- "Checksum offload support in user space" enablement
- Misc cxgb4 fixes, add T6 support
- Misc usnic fixes
- 32 bit build warning fixes
- Misc ocrdma fixes
- Multicast loopback prevention extension
- Extend the GID cache to store and return attributes of GIDs
- Misc iSER updates
- iSER clustering update
- Network NameSpace support for rdma CM
- Work Request cleanup series
- New Memory Registration API
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJWPO5UAAoJELgmozMOVy/dSCQP/iX2ImMZOS3VkOYKhLR3dSv8
4vTEiYIoAT1JEXiPpiabuuACwotcZcMRk9kZ0dcWmBoFusTzKJmoDOkgAYd95XqY
EsAyjqtzUGNNMjH5u5W+kdbaFdH9Ktq7IJvspRlJuvzC47Srax+qBxX01jrAkDgh
4PoA3hEa2KkvkDjY2Mhvk9EWd/uflO9Ky6o0D8jUQkWtEvKBRyDjQLk30oW6wHX9
pTWqww3dD0EXTrR+PDA88v2saKH1kZFU1Nt2eU8Bw+zlJM8hcX6U7PfRX0g3HT/J
o+7ejTdLPWFDH35gJOU+KE519f1JbwfRjPJCqbOC9IttBB7iHSbhcpQLpWv4JV1x
agdBeDA3TGQj3dHb2SkYMlWXCBp7q8UCbVGvvirTFzGSGU73sc6hhP+vCKvPQIlE
Ah5tUqD7Y3mOBjvuDeIzKMLXILd5d3cH+m7Laytrf5e7fJPmBRZyOkcMh0QVElyl
mKo+PFjghgeTFb405J7SDDw/vThVyN9HyIt7AGEzObaajzOOk9R1hkQr46XVy9TK
yi58fl85yQ2n6TWV6NRnvkQoMy/N2HAEuXk/7HtO0PabV5w3Lo0zvXB9SnVrrVEm
58FWRBYCWorVSdSacuDnPm0iz45WSRIb9G9sBlhEC93eXRq2rSBoy4RvyLeliHFH
hllyhNNolI6FJ64j07Xm
=bBIY
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dledford/rdma
Pull rdma updates from Doug Ledford:
"This is my initial round of 4.4 merge window patches. There are a few
other things I wish to get in for 4.4 that aren't in this pull, as
this represents what has gone through merge/build/run testing and not
what is the last few items for which testing is not yet complete.
- "Checksum offload support in user space" enablement
- Misc cxgb4 fixes, add T6 support
- Misc usnic fixes
- 32 bit build warning fixes
- Misc ocrdma fixes
- Multicast loopback prevention extension
- Extend the GID cache to store and return attributes of GIDs
- Misc iSER updates
- iSER clustering update
- Network NameSpace support for rdma CM
- Work Request cleanup series
- New Memory Registration API"
* tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dledford/rdma: (76 commits)
IB/core, cma: Make __attribute_const__ declarations sparse-friendly
IB/core: Remove old fast registration API
IB/ipath: Remove fast registration from the code
IB/hfi1: Remove fast registration from the code
RDMA/nes: Remove old FRWR API
IB/qib: Remove old FRWR API
iw_cxgb4: Remove old FRWR API
RDMA/cxgb3: Remove old FRWR API
RDMA/ocrdma: Remove old FRWR API
IB/mlx4: Remove old FRWR API support
IB/mlx5: Remove old FRWR API support
IB/srp: Dont allocate a page vector when using fast_reg
IB/srp: Remove srp_finish_mapping
IB/srp: Convert to new registration API
IB/srp: Split srp_map_sg
RDS/IW: Convert to new memory registration API
svcrdma: Port to new memory registration API
xprtrdma: Port to new memory registration API
iser-target: Port to new memory registration API
IB/iser: Port to new fast registration API
...
Forechannel transports get their own "bc_up" method to create an
endpoint for the backchannel service.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
[Anna Schumaker: Add forward declaration of struct net to xprt.h]
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
On NFSv4.1 mount points, the Linux NFS client uses this transport
endpoint to receive backward direction calls and route replies back
to the NFSv4.1 server.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Acked-by: "J. Bruce Fields" <bfields@fieldses.org>
Reviewed-by: Sagi Grimberg <sagig@mellanox.com>
Tested-By: Devesh Sharma <devesh.sharma@avagotech.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Introduce a code path in the rpcrdma_reply_handler() to catch
incoming backward direction RPC calls and route them to the ULP's
backchannel server.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Sagi Grimberg <sagig@mellanox.com>
Tested-By: Devesh Sharma <devesh.sharma@avagotech.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Backward direction RPC replies are sent via the client transport's
send_request method, the same way forward direction RPC calls are
sent.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Sagi Grimberg <sagig@mellanox.com>
Tested-By: Devesh Sharma <devesh.sharma@avagotech.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Pre-allocate extra send and receive Work Requests needed to handle
backchannel receives and sends.
The transport doesn't know how many extra WRs to pre-allocate until
the xprt_setup_backchannel() call, but that's long after the WRs are
allocated during forechannel setup.
So, use a fixed value for now.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Sagi Grimberg <sagig@mellanox.com>
Tested-By: Devesh Sharma <devesh.sharma@avagotech.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
xprtrdma's backward direction send and receive buffers are the same
size as the forechannel's inline threshold, and must be pre-
registered.
The consumer has no control over which receive buffer the adapter
chooses to catch an incoming backwards-direction call. Any receive
buffer can be used for either a forward reply or a backward call.
Thus both types of RPC message must all be the same size.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Sagi Grimberg <sagig@mellanox.com>
Tested-By: Devesh Sharma <devesh.sharma@avagotech.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Now that RPC replies are processed in a workqueue, there's no need
to disable IRQs when managing send and receive buffers. This saves
noticeable overhead per RPC.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Sagi Grimberg <sagig@mellanox.com>
Tested-By: Devesh Sharma <devesh.sharma@avagotech.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Clean up: The reply tasklet is no longer used.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Sagi Grimberg <sagig@mellanox.com>
Tested-By: Devesh Sharma <devesh.sharma@avagotech.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
The reply tasklet is fast, but it's single threaded. After reply
traffic saturates a single CPU, there's no more reply processing
capacity.
Replace the tasklet with a workqueue to spread reply handling across
all CPUs. This also moves RPC/RDMA reply handling out of the soft
IRQ context and into a context that allows sleeps.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Sagi Grimberg <sagig@mellanox.com>
Tested-By: Devesh Sharma <devesh.sharma@avagotech.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
The rb_send_bufs and rb_recv_bufs arrays are used to implement a
pair of stacks for keeping track of free rpcrdma_req and rpcrdma_rep
structs. Replace those arrays with free lists.
To allow more than 512 RPCs in-flight at once, each of these arrays
would be larger than a page (assuming 8-byte addresses and 4KB
pages). Allowing up to 64K in-flight RPCs (as TCP now does), each
buffer array would have to be 128 pages. That's an order-6
allocation. (Not that we're going there.)
A list is easier to expand dynamically. Instead of allocating a
larger array of pointers and copying the existing pointers to the
new array, simply append more buffers to each list.
This also makes it simpler to manage receive buffers that might
catch backwards-direction calls, or to post receive buffers in
bulk to amortize the overhead of ib_post_recv.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Sagi Grimberg <sagig@mellanox.com>
Reviewed-by: Devesh Sharma <devesh.sharma@avagotech.com>
Tested-By: Devesh Sharma <devesh.sharma@avagotech.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Clean up: The error cases in rpcrdma_reply_handler() almost never
execute. Ensure the compiler places them out of the hot path.
No behavior change expected.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Sagi Grimberg <sagig@mellanox.com>
Reviewed-by: Devesh Sharma <devesh.sharma@avagotech.com>
Tested-By: Devesh Sharma <devesh.sharma@avagotech.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Commit 8301a2c047 ("xprtrdma: Limit work done by completion
handler") was supposed to prevent xprtrdma's upcall handlers from
starving other softIRQ work by letting them return to the provider
before all CQEs have been polled.
The logic assumes the provider will call the upcall handler again
immediately if the CQ is re-armed while there are still queued CQEs.
This assumption is invalid. The IBTA spec says that after a CQ is
armed, the hardware must interrupt only when a new CQE is inserted.
xprtrdma can't rely on the provider calling again, even though some
providers do.
Therefore, leaving CQEs on queue makes sense only when there is
another mechanism that ensures all remaining CQEs are consumed in a
timely fashion. xprtrdma does not have such a mechanism. If a CQE
remains queued, the transport can wait forever to send the next RPC.
Finally, move the wcs array back onto the stack to ensure that the
poll array is always local to the CPU where the completion upcall is
running.
Fixes: 8301a2c047 ("xprtrdma: Limit work done by completion ...")
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Sagi Grimberg <sagig@mellanox.com>
Reviewed-by: Devesh Sharma <devesh.sharma@avagotech.com>
Tested-By: Devesh Sharma <devesh.sharma@avagotech.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
ib_req_notify_cq(IB_CQ_REPORT_MISSED_EVENTS) returns a positive
value if WCs were added to a CQ after the last completion upcall
but before the CQ has been re-armed.
Commit 7f23f6f6e3 ("xprtrmda: Reduce lock contention in
completion handlers") assumed that when ib_req_notify_cq() returned
a positive RC, the CQ had also been successfully re-armed, making
it safe to return control to the provider without losing any
completion signals. That is an invalid assumption.
Change both completion handlers to continue polling while
ib_req_notify_cq() returns a positive value.
Fixes: 7f23f6f6e3 ("xprtrmda: Reduce lock contention in ...")
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Sagi Grimberg <sagig@mellanox.com>
Reviewed-by: Devesh Sharma <devesh.sharma@avagotech.com>
Tested-By: Devesh Sharma <devesh.sharma@avagotech.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
After adding a swapfile on an NFS/RDMA mount and removing the
normal swap partition, I was able to push the NFS client well
into swap without any issue.
I forgot to swapoff the NFS file before rebooting. This pinned
the NFS mount and the IB core and provider, causing shutdown to
hang. I think this is expected and safe behavior. Probably
shutdown scripts should "swapoff -a" before unmounting any
filesystems.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Sagi Grimberg <sagig@mellanox.com>
Tested-By: Devesh Sharma <devesh.sharma@avagotech.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Unsignaled send WRs can get flushed as part of normal unmount, so don't
log them as warnings.
Signed-off-by: Steve Wise <swise@opengridcomputing.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Instead of maintaining a fastreg page list, keep an sg table
and convert an array of pages to a sg list. Then call ib_map_mr_sg
and construct ib_reg_wr.
Signed-off-by: Sagi Grimberg <sagig@mellanox.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Tested-by: Steve Wise <swise@opengridcomputing.com>
Tested-by: Selvin Xavier <selvin.xavier@avagotech.com>
Signed-off-by: Doug Ledford <dledford@redhat.com>
Instead of maintaining a fastreg page list, keep an sg table
and convert an array of pages to a sg list. Then call ib_map_mr_sg
and construct ib_reg_wr.
Signed-off-by: Sagi Grimberg <sagig@mellanox.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Tested-by: Steve Wise <swise@opengridcomputing.com>
Tested-by: Selvin Xavier <selvin.xavier@avagotech.com>
Reviewed-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Doug Ledford <dledford@redhat.com>
Add support for network namespaces in the ib_cma module. This is
accomplished by:
1. Adding network namespace parameter for rdma_create_id. This parameter is
used to populate the network namespace field in rdma_id_private.
rdma_create_id keeps a reference on the network namespace.
2. Using the network namespace from the rdma_id instead of init_net inside
of ib_cma, when listening on an ID and when looking for an ID for an
incoming request.
3. Decrementing the reference count for the appropriate network namespace
when calling rdma_destroy_id.
In order to preserve the current behavior init_net is passed when calling
from other modules.
Signed-off-by: Guy Shapiro <guysh@mellanox.com>
Signed-off-by: Haggai Eran <haggaie@mellanox.com>
Signed-off-by: Yotam Kenneth <yotamke@mellanox.com>
Signed-off-by: Shachar Raindel <raindel@mellanox.com>
Signed-off-by: Doug Ledford <dledford@redhat.com>
- Work around connection namespace lookup bug related to RoCE
- Change usnic license to Dual GPL/BSD (was intended to be that way
all along, but wasn't clear, permission from contributors was
chased down)
- Fix an issue between NFSoRDMA and mlx5 that could cause an oops
- Fix leak of sendonly multicast groups
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJWHoT/AAoJELgmozMOVy/deK4QALETCToLcR5RRDR+QleFUvby
FnP91Pu9zGOoiuP25FT5Ny0YAmTHd1KiDQBQHRe/NrYDCH2M/q8jFJSWZLwGrG6q
8GYc1ieozGQMZvId3ZJnqUJUTEyJu9QtpiFFZJYJHriP6OShP1GiHJ/XTN9dvJ/u
xcmViAYYIjjScjaY1MuYpxKITFwfZE0HtdvK7zzq+F9cpfmC//Zc0Po4V4o4Y9V3
14WgbWZyhehmECKwN95hIY1pLySadgcCxoeUDHclQ3efKLar4tEC3SOM2QZsnNRc
qlCHEZYeB5TRo0dF/2CYUMLfUHkMjnUpW2BiVDbQfmPio7lGUjh2SBAQjI5i1dEQ
Wg69JH1TV7BYfRiwe7n49P/BJ2vIhCR2UjQrHjilZ/h6DPSfKy29hVSvOzb5xLeJ
mwl/KSKxlfT2Z1SZy0yMlJfCm8tjPwf6WhOVwkFRAhYHD3Yf31EMVzD7gTtW2MXO
n5S80k5ccJlXniPWjaqerhjOZHmwHViBmHNlN4zlDCRZeT9IuKDj5mi31f7HC4gx
WqJtSjRxydpbGPKROHI4vrmfARPAKNrKhj8BiqxO5Cja+TiS2QeXXr+fbRwETrLS
TjXWNfS3Boy564AJ8Gfug2wfBcHwY+31Uv2a6nrMmKi+wwVexF/ENOb/x9WHZrVo
VqQVI2lUBH2LsmzadD9c
=usb1
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dledford/rdma
Pull rdma updates from Doug Ledford:
"We have four batched up patches for the current rc kernel.
Two of them are small fixes that are obvious.
One of them is larger than I would like for a late stage rc pull, but
we found an issue in the namespace lookup code related to RoCE and
this works around the issue for now (we allow a lookup with a
namespace to succeed on RoCE since RoCE namespaces aren't implemented
yet). This will go away in 4.4 when we put in support for namespaces
in RoCE devices.
The last one is large in terms of lines, but is all legal and no
functional changes. Cisco needed to update their files to be more
specific about their license. They had intended the files to be dual
licensed as GPL/BSD all along, and specified that in their module
license tag, but their file headers were not up to par. They
contacted all of the contributors to get agreement and then submitted
a patch to update the license headers in the files.
Summary:
- Work around connection namespace lookup bug related to RoCE
- Change usnic license to Dual GPL/BSD (was intended to be that way
all along, but wasn't clear, permission from contributors was
chased down)
- Fix an issue between NFSoRDMA and mlx5 that could cause an oops
- Fix leak of sendonly multicast groups"
* tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dledford/rdma:
IB/ipoib: For sendonly join free the multicast group on leave
IB/cma: Accept connection without a valid netdev on RoCE
xprtrdma: Don't require LOCAL_DMA_LKEY support for fastreg
usnic: add missing clauses to BSD license
bug.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJWHUj5AAoJECebzXlCjuG+KIoP/RW5zigAEKqUiD7ycKR91BxD
9Nt0fqTTrbkGJhKM1/DN4YEjogAHeFW5OnGiLQRUNI/qdy+I1Gyr1kgwGmCCVDt9
d8AhnxcnXR5SmsQHk7eeUd/rnODetf0bW5YJ8PfFbnC6cmM013nR9ujEccUuCl9M
hHTp+690Doab00PtWtsjmZv5d+eT1bktY/R2PuQhyQM2CKWh1u4FeNTd1lWE551D
b1wSvhAGMYVEsQv8+HICDrIQ8loGfH2gpBILERLM2yJlhN1IPU3RmNSAcQpZSaql
veJYVmHdpMACCLp0Dd3hwWKDYvcQ2lCqKk+Cpd0vLpvZ8J5OjCLC+a2dh0PRIYuf
pwFCvbWz6dn27/9eXEKbyT2JIeBIl4qwrFjfiRKlNX0c4HGKXaE2gJrY7bxnDxe1
BatAbEFZ+rxHyPmycaj3JdyOxafmw94XzbT8q2g7tmUCj+pvAI+Pbv6PlwN6W2r7
aGBZzgd8Y9pT6ZbCB0e413d/t5ulxwkt6vVz9Jze4gfcUrWcqHaqt7AadMl7obUx
AYPLAVGeHybdKlLvqv42IF2QM8ZhizM0+EnxkjfWLrsa7WbstWX5KLPpm3K80dM7
98p1ToNQDFcNU8WBZw8AkBpFz4j32RVOkvzWFWbhCo+T3is4BmP16uEEjH90aCCY
skQKMrq8J1ox33gz5gT7
=Pkuy
-----END PGP SIGNATURE-----
Merge tag 'nfsd-4.3-2' of git://linux-nfs.org/~bfields/linux
Pull nfsd fixes from Bruce Fields:
"Two nfsd fixes, one for an RDMA crash, one for a pnfs/block protocol
bug"
* tag 'nfsd-4.3-2' of git://linux-nfs.org/~bfields/linux:
svcrdma: Fix NFS server crash triggered by 1MB NFS WRITE
nfsd/blocklayout: accept any minlength
Now that the NFS server advertises a maximum payload size of 1MB
for RPC/RDMA again, it crashes in svc_process_common() when NFS
client sends a 1MB NFS WRITE on an NFS/RDMA mount.
The server has set up a 259 element array of struct page pointers
in rq_pages[] for each incoming request. The last element of the
array is NULL.
When an incoming request has been completely received,
rdma_read_complete() attempts to set the starting page of the
incoming page vector:
rqstp->rq_arg.pages = &rqstp->rq_pages[head->hdr_count];
and the page to use for the reply:
rqstp->rq_respages = &rqstp->rq_arg.pages[page_no];
But the value of page_no has already accounted for head->hdr_count.
Thus rq_respages now points past the end of the incoming pages.
For NFS WRITE operations smaller than the maximum, this is harmless.
But when the NFS WRITE operation is as large as the server's max
payload size, rq_respages now points at the last entry in rq_pages,
which is NULL.
Fixes: cc9a903d91 ('svcrdma: Change maximum server payload . . .')
BugLink: https://bugzilla.linux-nfs.org/show_bug.cgi?id=270
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Sagi Grimberg <sagig@dev.mellanox.co.il>
Reviewed-by: Steve Wise <swise@opengridcomputing.com>
Reviewed-by: Shirley Ma <shirley.ma@oracle.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
This patch split up struct ib_send_wr so that all non-trivial verbs
use their own structure which embedds struct ib_send_wr. This dramaticly
shrinks the size of a WR for most common operations:
sizeof(struct ib_send_wr) (old): 96
sizeof(struct ib_send_wr): 48
sizeof(struct ib_rdma_wr): 64
sizeof(struct ib_atomic_wr): 96
sizeof(struct ib_ud_wr): 88
sizeof(struct ib_fast_reg_wr): 88
sizeof(struct ib_bind_mw_wr): 96
sizeof(struct ib_sig_handover_wr): 80
And with Sagi's pending MR rework the fast registration WR will also be
down to a reasonable size:
sizeof(struct ib_fastreg_wr): 64
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Bart Van Assche <bart.vanassche@sandisk.com> [srp, srpt]
Reviewed-by: Chuck Lever <chuck.lever@oracle.com> [sunrpc]
Tested-by: Haggai Eran <haggaie@mellanox.com>
Tested-by: Sagi Grimberg <sagig@mellanox.com>
Tested-by: Steve Wise <swise@opengridcomputing.com>
There is no need to require LOCAL_DMA_LKEY support as the
PD allocation makes sure that there is a local_dma_lkey. Also
correctly set a return value in error path.
This caused a NULL pointer dereference in mlx5 which removed
the support for LOCAL_DMA_LKEY.
Fixes: bb6c96d728 ("xprtrdma: Replace global lkey with lkey local to PD")
Signed-off-by: Sagi Grimberg <sagig@mellanox.com>
Reviewed-by: Chuck Lever <chuck.lever@oracle.com>
Acked-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Signed-off-by: Doug Ledford <dledford@redhat.com>
The server rdma_read_chunk_lcl() and rdma_read_chunk_frmr() functions
were not taking into account the initial page_offset when determining
the rdma read length. This resulted in a read who's starting address
and length exceeded the base/bounds of the frmr.
The server gets an async error from the rdma device and kills the
connection, and the client then reconnects and resends. This repeats
indefinitely, and the application hangs.
Most work loads don't tickle this bug apparently, but one test hit it
every time: building the linux kernel on a 16 core node with 'make -j
16 O=/mnt/0' where /mnt/0 is a ramdisk mounted via NFSRDMA.
This bug seems to only be tripped with devices having small fastreg page
list depths. I didn't see it with mlx4, for instance.
Fixes: 0bf4828983 ('svcrdma: refactor marshalling logic')
Signed-off-by: Steve Wise <swise@opengridcomputing.com>
Tested-by: Chuck Lever <chuck.lever@oracle.com>
Cc: stable@vger.kernel.org
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
Otherwise a FRMR completion can cause a touch-after-free crash.
In xprt_rdma_destroy(), call rpcrdma_buffer_destroy() only after calling
rpcrdma_ep_destroy().
In rpcrdma_ep_destroy(), disconnect the cm_id first which should flush the
qp, then drain the cqs, then destroy the qp, and finally destroy the cqs.
Signed-off-by: Steve Wise <swise@opengridcomputing.com>
Tested-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
The core API has changed so that devices that do not have a global
DMA lkey automatically create an mr, per-PD, and make that lkey
available. The global DMA lkey interface is going away in favor of
the per-PD DMA lkey.
The per-PD DMA lkey is always available. Convert xprtrdma to use the
device's per-PD DMA lkey for regbufs, no matter which memory
registration scheme is in use.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Sagi Grimberg <sagig@mellanox.com>
Cc: linux-nfs <linux-nfs@vger.kernel.org>
Acked-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Signed-off-by: Doug Ledford <dledford@redhat.com>
- Create drivers/staging/rdma
- Move amso1100 driver to staging/rdma and schedule for deletion
- Move ipath driver to staging/rdma and schedule for deletion
- Add hfi1 driver to staging/rdma and set TODO for move to regular tree
- Initial support for namespaces to be used on RDMA devices
- Add RoCE GID table handling to the RDMA core caching code
- Infrastructure to support handling of devices with differing
read and write scatter gather capabilities
- Various iSER updates
- Kill off unsafe usage of global mr registrations
- Update SRP driver
- Misc. mlx4 driver updates
- Support for the mr_alloc verb
- Support for a netlink interface between kernel and user space cache
daemon to speed path record queries and route resolution
- Ininitial support for safe hot removal of verbs devices
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJV7v8wAAoJELgmozMOVy/d2dcP/3PXnGFPgFGJODKE6VCZtTvj
nooNXRKXjxv470UT5DiAX7SNcBxzzS7Zl/Lj+831H9iNXUyzuH31KtBOAZ3W03vZ
yXwCB2caOStSldTRSUUvPe2aIFPnyNmSpC4i6XcJLJMCFijKmxin5pAo8qE44BQU
yjhT+wC9P6LL5wZXsn/nFIMLjOFfu0WBFHNp3gs5j59paxlx5VeIAZk16aQZH135
m7YCyicwrS8iyWQl2bEXRMon2vlCHlX2RHmOJ4f/P5I0quNcGF2+d8Yxa+K1VyC5
zcb3OBezz+wZtvh16yhsDfSPqHWirljwID2VzOgRSzTJWvQjju8VkwHtkq6bYoBW
egIxGCHcGWsD0R5iBXLYr/tB+BmjbDObSm0AsR4+JvSShkeVA1IpeoO+19162ixE
n6CQnk2jCee8KXeIN4PoIKsjRSbIECM0JliWPLoIpuTuEhhpajftlSLgL5hf1dzp
HrSy6fXmmoRj7wlTa7DnYIC3X+ffwckB8/t1zMAm2sKnIFUTjtQXF7upNiiyWk4L
/T1QEzJ2bLQckQ9yY4v528SvBQwA4Dy1amIQB7SU8+2S//bYdUvhysWPkdKC4oOT
WlqS5PFDCI31MvNbbM3rUbMAD8eBAR8ACw9ZpGI/Rffm5FEX5W3LoxA8gfEBRuqt
30ZYFuW8evTL+YQcaV65
=EHLg
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dledford/rdma
Pull inifiniband/rdma updates from Doug Ledford:
"This is a fairly sizeable set of changes. I've put them through a
decent amount of testing prior to sending the pull request due to
that.
There are still a few fixups that I know are coming, but I wanted to
go ahead and get the big, sizable chunk into your hands sooner rather
than waiting for those last few fixups.
Of note is the fact that this creates what is intended to be a
temporary area in the drivers/staging tree specifically for some
cleanups and additions that are coming for the RDMA stack. We
deprecated two drivers (ipath and amso1100) and are waiting to hear
back if we can deprecate another one (ehca). We also put Intel's new
hfi1 driver into this area because it needs to be refactored and a
transfer library created out of the factored out code, and then it and
the qib driver and the soft-roce driver should all be modified to use
that library.
I expect drivers/staging/rdma to be around for three or four kernel
releases and then to go away as all of the work is completed and final
deletions of deprecated drivers are done.
Summary of changes for 4.3:
- Create drivers/staging/rdma
- Move amso1100 driver to staging/rdma and schedule for deletion
- Move ipath driver to staging/rdma and schedule for deletion
- Add hfi1 driver to staging/rdma and set TODO for move to regular
tree
- Initial support for namespaces to be used on RDMA devices
- Add RoCE GID table handling to the RDMA core caching code
- Infrastructure to support handling of devices with differing read
and write scatter gather capabilities
- Various iSER updates
- Kill off unsafe usage of global mr registrations
- Update SRP driver
- Misc mlx4 driver updates
- Support for the mr_alloc verb
- Support for a netlink interface between kernel and user space cache
daemon to speed path record queries and route resolution
- Ininitial support for safe hot removal of verbs devices"
* tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dledford/rdma: (136 commits)
IB/ipoib: Suppress warning for send only join failures
IB/ipoib: Clean up send-only multicast joins
IB/srp: Fix possible protection fault
IB/core: Move SM class defines from ib_mad.h to ib_smi.h
IB/core: Remove unnecessary defines from ib_mad.h
IB/hfi1: Add PSM2 user space header to header_install
IB/hfi1: Add CSRs for CONFIG_SDMA_VERBOSITY
mlx5: Fix incorrect wc pkey_index assignment for GSI messages
IB/mlx5: avoid destroying a NULL mr in reg_user_mr error flow
IB/uverbs: reject invalid or unknown opcodes
IB/cxgb4: Fix if statement in pick_local_ip6adddrs
IB/sa: Fix rdma netlink message flags
IB/ucma: HW Device hot-removal support
IB/mlx4_ib: Disassociate support
IB/uverbs: Enable device removal when there are active user space applications
IB/uverbs: Explicitly pass ib_dev to uverbs commands
IB/uverbs: Fix race between ib_uverbs_open and remove_one
IB/uverbs: Fix reference counting usage of event files
IB/core: Make ib_dealloc_pd return void
IB/srp: Create an insecure all physical rkey only if needed
...
Highlights include:
Stable patches:
- Fix atomicity of pNFS commit list updates
- Fix NFSv4 handling of open(O_CREAT|O_EXCL|O_RDONLY)
- nfs_set_pgio_error sometimes misses errors
- Fix a thinko in xs_connect()
- Fix borkage in _same_data_server_addrs_locked()
- Fix a NULL pointer dereference of migration recovery ops for v4.2 client
- Don't let the ctime override attribute barriers.
- Revert "NFSv4: Remove incorrect check in can_open_delegated()"
- Ensure flexfiles pNFS driver updates the inode after write finishes
- flexfiles must not pollute the attribute cache with attrbutes from the DS
- Fix a protocol error in layoutreturn
- Fix a protocol issue with NFSv4.1 CLOSE stateids
Bugfixes + cleanups
- pNFS blocks bugfixes from Christoph
- Various cleanups from Anna
- More fixes for delegation corner cases
- Don't fsync twice for O_SYNC/IS_SYNC files
- Fix pNFS and flexfiles layoutstats bugs
- pnfs/flexfiles: avoid duplicate tracking of mirror data
- pnfs: Fix layoutget/layoutreturn/return-on-close serialisation issues.
- pnfs/flexfiles: error handling retries a layoutget before fallback to MDS
Features:
- Full support for the OPEN NFS4_CREATE_EXCLUSIVE4_1 mode from Kinglong
- More RDMA client transport improvements from Chuck
- Removal of the deprecated ib_reg_phys_mr() and ib_rereg_phys_mr() verbs
from the SUNRPC, Lustre and core infiniband tree.
- Optimise away the close-to-open getattr if there is no cached data
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJV7chgAAoJEGcL54qWCgDyqJQP/3kto9VXnXcatC382jF9Pfj5
F55XeSnviOXH7CyiKA4nSBhnxg/sLuWOTpbkVI/4Y+VyWhLby9h+mtcKURHOlBnj
d5BFoPwaBVDnUiKlHFQDkRjIyxjj2Sb6/uEb2V/u3v+3znR5AZZ4lzFx4cD85oaz
mcru7yGiSxaQCIH6lHExcCEKXaDP5YdvS9YFsyQfv2976JSaQHM9ZG04E0v6MzTo
E5wwC4CLMKmhuX9kmQMj85jzs1ASAKZ3N7b4cApTIo6F8DCDH0vKQphq/nEQC497
ECjEs5/fpxtNJUpSBu0gT7G4LCiW3PzE7pHa+8bhbaAn9OzxIR5+qWujKsfGYQhO
Oomp3K9zO6omshAc5w4MkknPpbImjoZjGAj/q/6DbtrDpnD7DzOTirwYY2yX0CA8
qcL81uJUb8+j4jJj4RTO+lTUBItrM1XTqTSd/3eSMr5DDRVZj+ERZxh17TaxRBZL
YrbrLHxCHrcbdSbPlovyvY+BwjJUUFJRcOxGQXLmNYR9u92fF59rb53bzVyzcRRO
wBozzrNRCFL+fPgfNPLEapIb6VtExdM3rl2HYsJGckHj4DPQdnoB3ytIT9iEFZEN
+/rE14XEZte7kuH3OP4el2UsP/hVsm7A49mtwrkdbd7rxMWD6XfQUp8DAggWUEtI
1H6T7RC1Y6wsu0X1fnVz
=knJA
-----END PGP SIGNATURE-----
Merge tag 'nfs-for-4.3-1' of git://git.linux-nfs.org/projects/trondmy/linux-nfs
Pull NFS client updates from Trond Myklebust:
"Highlights include:
Stable patches:
- Fix atomicity of pNFS commit list updates
- Fix NFSv4 handling of open(O_CREAT|O_EXCL|O_RDONLY)
- nfs_set_pgio_error sometimes misses errors
- Fix a thinko in xs_connect()
- Fix borkage in _same_data_server_addrs_locked()
- Fix a NULL pointer dereference of migration recovery ops for v4.2
client
- Don't let the ctime override attribute barriers.
- Revert "NFSv4: Remove incorrect check in can_open_delegated()"
- Ensure flexfiles pNFS driver updates the inode after write finishes
- flexfiles must not pollute the attribute cache with attrbutes from
the DS
- Fix a protocol error in layoutreturn
- Fix a protocol issue with NFSv4.1 CLOSE stateids
Bugfixes + cleanups
- pNFS blocks bugfixes from Christoph
- Various cleanups from Anna
- More fixes for delegation corner cases
- Don't fsync twice for O_SYNC/IS_SYNC files
- Fix pNFS and flexfiles layoutstats bugs
- pnfs/flexfiles: avoid duplicate tracking of mirror data
- pnfs: Fix layoutget/layoutreturn/return-on-close serialisation
issues
- pnfs/flexfiles: error handling retries a layoutget before fallback
to MDS
Features:
- Full support for the OPEN NFS4_CREATE_EXCLUSIVE4_1 mode from
Kinglong
- More RDMA client transport improvements from Chuck
- Removal of the deprecated ib_reg_phys_mr() and ib_rereg_phys_mr()
verbs from the SUNRPC, Lustre and core infiniband tree.
- Optimise away the close-to-open getattr if there is no cached data"
* tag 'nfs-for-4.3-1' of git://git.linux-nfs.org/projects/trondmy/linux-nfs: (108 commits)
NFSv4: Respect the server imposed limit on how many changes we may cache
NFSv4: Express delegation limit in units of pages
Revert "NFS: Make close(2) asynchronous when closing NFS O_DIRECT files"
NFS: Optimise away the close-to-open getattr if there is no cached data
NFSv4.1/flexfiles: Clean up ff_layout_write_done_cb/ff_layout_commit_done_cb
NFSv4.1/flexfiles: Mark the layout for return in ff_layout_io_track_ds_error()
nfs: Remove unneeded checking of the return value from scnprintf
nfs: Fix truncated client owner id without proto type
NFSv4.1/flexfiles: Mark layout for return if the mirrors are invalid
NFSv4.1/flexfiles: RW layouts are valid only if all mirrors are valid
NFSv4.1/flexfiles: Fix incorrect usage of pnfs_generic_mark_devid_invalid()
NFSv4.1/flexfiles: Fix freeing of mirrors
NFSv4.1/pNFS: Don't request a minimal read layout beyond the end of file
NFSv4.1/pnfs: Handle LAYOUTGET return values correctly
NFSv4.1/pnfs: Don't ask for a read layout for an empty file.
NFSv4.1: Fix a protocol issue with CLOSE stateids
NFSv4.1/flexfiles: Don't mark the entire deviceid as bad for file errors
SUNRPC: Prevent SYN+SYNACK+RST storms
SUNRPC: xs_reset_transport must mark the connection as disconnected
NFSv4.1/pnfs: Ensure layoutreturn reserves space for the opaque payload
...
The majority of callers never check the return value, and even if they
did, they can't do anything about a failure.
All possible failure cases represent a bug in the caller, so just
WARN_ON inside the function instead.
This fixes a few random errors:
net/rd/iw.c infinite loops while it fails. (racing with EBUSY?)
This also lays the ground work to get rid of error return from the
drivers. Most drivers do not error, the few that do are broken since
it cannot be handled.
Since uverbs can legitimately make use of EBUSY, open code the
check.
Signed-off-by: Jason Gunthorpe <jgunthorpe@obsidianresearch.com>
Reviewed-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Doug Ledford <dledford@redhat.com>
Svcrdma was incorrectly allocating fastreg MRs and page lists using
RPCSVC_MAXPAGES, which can exceed the device capabilities. So limit
the depth to the minimum of RPCSVC_MAXPAGES and xprt->sc_frmr_pg_list_len.
Signed-off-by: Steve Wise <swise@opengridcomputing.com>
Signed-off-by: Doug Ledford <dledford@redhat.com>
Both commit 0380a3f375 ("svcrdma: Add a separate "max data segs"
macro for svcrdma") and commit 7e5be28827 ("svcrdma: advertise
the correct max payload") are incorrect. This commit reverts both
changes, restoring the server's maximum payload size to 1MB.
Commit 7e5be28827 based the server's maximum payload on the
_client's_ RPCRDMA_MAX_DATA_SEGS value. That was wrong.
Commit 0380a3f375 tried to fix this so that the client maximum
payload size could be raised without affecting the server, but
managed to confuse matters more on the server side.
More importantly, limiting the advertised maximum payload size was
meant to be a workaround, not the actual fix. We need to revisit
https://bugzilla.linux-nfs.org/show_bug.cgi?id=270
A Linux client on a platform with 64KB pages can overrun and crash
an x86_64 NFS/RDMA server when the r/wsize is 1MB. An x86/64 Linux
client seems to work fine using 1MB reads and writes when the Linux
server's maximum payload size is restored to 1MB.
BugLink: https://bugzilla.linux-nfs.org/show_bug.cgi?id=270
Fixes: 0380a3f375 ("svcrdma: Add a separate "max data segs" macro")
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
This is a rework of the following patch sent almost a year back:
http://www.mail-archive.com/linux-rdma%40vger.kernel.org/msg20730.html
In presence of active mount if someone tries to rmmod vendor-driver, the
command remains stuck forever waiting for destruction of all rdma-cm-id.
in worst case client can crash during shutdown with active mounts.
The existing code assumes that ia->ri_id->device cannot change during
the lifetime of a transport. xprtrdma do not have support for
DEVICE_REMOVAL event either. Lifting that assumption and adding support
for DEVICE_REMOVAL event is a long chain of work, and is in plan.
The community decided that preventing the hang right now is more
important than waiting for architectural changes.
Thus, this patch introduces a temporary workaround to acquire HCA driver
module reference count during the mount of a nfs-rdma mount point.
Signed-off-by: Devesh Sharma <devesh.sharma@avagotech.com>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Sagi Grimberg <sagig@dev.mellanox.co.il>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
RDMA_NOMSG type calls are less efficient than RDMA_MSG. Count NOMSG
calls so administrators can tell if they happen to be used more than
expected.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Devesh Sharma <devesh.sharma@avagotech.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
checkpatch.pl complained about the seq_printf() format string split
across lines and the use of %Lu.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Devesh Sharma <devesh.sharma@avagotech.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Repair how rpcrdma_marshal_req() chooses which RDMA message type
to use for large non-WRITE operations so that it picks RDMA_NOMSG
in the correct situations, and sets up the marshaling logic to
SEND only the RPC/RDMA header.
Large NFSv2 SYMLINK requests now use RDMA_NOMSG calls. The Linux NFS
server XDR decoder for NFSv2 SYMLINK does not handle having the
pathname argument arrive in a separate buffer. The decoder could be
fixed, but this is simpler and RDMA_NOMSG can be used in a variety
of other situations.
Ensure that the Linux client continues to use "RDMA_MSG + read
list" when sending large NFSv3 SYMLINK requests, which is more
efficient than using RDMA_NOMSG.
Large NFSv4 CREATE(NF4LNK) requests are changed to use "RDMA_MSG +
read list" just like NFSv3 (see Section 5 of RFC 5667). Before,
these did not work at all.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Devesh Sharma <devesh.sharma@avagotech.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Currently xprtrdma appends an extra chunk element to the RPC/RDMA
read chunk list of each NFSv4 WRITE compound. The extra element
contains the final GETATTR operation in the compound.
The result is an extra RDMA READ operation to transfer a very short
piece of each NFS WRITE compound (typically 16 bytes). This is
inefficient.
It is also incorrect.
The client is sending the trailing GETATTR at the same Position as
the preceding WRITE data payload. Whether or not RFC 5667 allows
the GETATTR to appear in a read chunk, RFC 5666 requires that these
two separate RPC arguments appear at two distinct Positions.
It can also be argued that the GETATTR operation is not bulk data,
and therefore RFC 5667 forbids its appearance in a read chunk at
all.
Although RFC 5667 is not precise about when using a read list with
NFSv4 COMPOUND is allowed, the intent is that only data arguments
not touched by NFS (ie, read and write payloads) are to be sent
using RDMA READ or WRITE.
The NFS client constructs GETATTR arguments itself, and therefore is
required to send the trailing GETATTR operation as additional inline
content, not as a data payload.
NB: This change is not backwards compatible. Some older servers do
not accept inline content following the read list. The Linux NFS
server should handle this content correctly as of commit
a97c331f9a ("svcrdma: Handle additional inline content").
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Devesh Sharma <devesh.sharma@avagotech.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Currently Linux always offers a reply chunk, even when the reply
can be sent inline (ie. is smaller than 1KB).
On the client, registering a memory region can be expensive. A
server may choose not to use the reply chunk, wasting the cost of
the registration.
This is a change only for RPC replies smaller than 1KB which the
server constructs in the RPC reply send buffer. Because the elements
of the reply must be XDR encoded, a copy-free data transfer has no
benefit in this case.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Sagi Grimberg <sagig@mellanox.com>
Tested-by: Devesh Sharma <devesh.sharma@avagotech.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
The client has been setting up a reply chunk for NFS READs that are
smaller than the inline threshold. This is not efficient: both the
server and client CPUs have to copy the reply's data payload into
and out of the memory region that is then transferred via RDMA.
Using the write list, the data payload is moved by the device and no
extra data copying is necessary.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Devesh Sharma <devesh.sharma@avagotech.com>
Reviewed-By: Sagi Grimberg <sagig@mellanox.com>
Tested-by: Devesh Sharma <devesh.sharma@avagotech.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
When the size of the RPC message is near the inline threshold (1KB),
the client would allow messages to be sent that were a few bytes too
large.
When marshaling RPC/RDMA requests, ensure the combined size of
RPC/RDMA header and RPC header do not exceed the inline threshold.
Endpoints typically reject RPC/RDMA messages that exceed the size
of their receive buffers.
The two server implementations I test with (Linux and Solaris) use
receive buffers that are larger than the client’s inline threshold.
Thus so far this has been benign, observed only by code inspection.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Devesh Sharma <devesh.sharma@avagotech.com>
Tested-by: Devesh Sharma <devesh.sharma@avagotech.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
RDMA_MSGP type calls insert a zero pad in the middle of the RPC
message to align the RPC request's data payload to the server's
alignment preferences. A server can then "page flip" the payload
into place to avoid a data copy in certain circumstances. However:
1. The client has to have a priori knowledge of the server's
preferred alignment
2. Requests eligible for RDMA_MSGP are requests that are small
enough to have been sent inline, and convey a data payload
at the _end_ of the RPC message
Today 1. is done with a sysctl, and is a global setting that is
copied during mount. Linux does not support CCP to query the
server's preferences (RFC 5666, Section 6).
A small-ish NFSv3 WRITE might use RDMA_MSGP, but no NFSv4
compound fits bullet 2.
Thus the Linux client currently leaves RDMA_MSGP disabled. The
Linux server handles RDMA_MSGP, but does not use any special
page flipping, so it confers no benefit.
Clean up the marshaling code by removing the logic that constructs
RDMA_MSGP type calls. This also reduces the maximum send iovec size
from four to just two elements.
/proc/sys/sunrpc/rdma_inline_write_padding is a kernel API, and
thus is left in place.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Devesh Sharma <devesh.sharma@avagotech.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Untangle the end of rpcrdma_ia_open() by moving DMA MR set-up, which
is different for each registration method, to the .ro_open functions.
This is refactoring only. No behavior change is expected.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Devesh Sharma <devesh.sharma@avagotech.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
All HCA providers have an ib_get_dma_mr() verb. Thus
rpcrdma_ia_open() will either grab the device's local_dma_key if one
is available, or it will call ib_get_dma_mr(). If ib_get_dma_mr()
fails, rpcrdma_ia_open() fails and no transport is created.
Therefore execution never reaches the ib_reg_phys_mr() call site in
rpcrdma_register_internal(), so it can be removed.
The remaining logic in rpcrdma_{de}register_internal() is folded
into rpcrdma_{alloc,free}_regbuf().
This is clean up only. No behavior change is expected.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Devesh Sharma <devesh.sharma@avagotech.com>
Reviewed-By: Sagi Grimberg <sagig@mellanox.com>
Tested-by: Devesh Sharma <devesh.sharma@avagotech.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
PHYSICAL memory registration uses a single rkey for all of the
client's memory, thus is insecure. It is still useful in some cases
for testing.
Retain the ability to select PHYSICAL memory registration capability
via /proc/sys/sunrpc/rdma_memreg_strategy, but don't fall back to it
if the HCA does not support FRWR or FMR.
This means amso1100 no longer works out of the box with NFS/RDMA.
When using amso1100 HCAs, set the memreg_strategy sysctl to 6 before
performing NFS/RDMA mounts.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Devesh Sharma <devesh.sharma@avagotech.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
The point of larger rsize and wsize is to reduce the per-byte cost
of memory registration and deregistration. Modern HCAs can typically
handle a megabyte or more with a single registration operation.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Devesh Sharma <devesh.sharma@avagotech.com>
Reviewed-By: Sagi Grimberg <sagig@mellanox.com>
Tested-by: Devesh Sharma <devesh.sharma@avagotech.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
In particular, recognize when an IPv6 connection is bound.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Devesh Sharma <devesh.sharma@avagotech.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Commit 0bf4828983 ("svcrdma: refactor marshalling logic") removed
the last call site for svc_rdma_fastreg().
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
Kernel coding conventions frown upon having large nontrivial
functions in header files, and the preference these days is to
allow the compiler to make inlining decisions if possible.
As these functions are re-homed into a .c file, be sure that
comparisons with fields in struct rpcrdma_msg are with be32
constants.
This is a refactoring change; no behavior change is intended.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
The Linux NFS server returns garbage in the data payload of inline
NFS/RDMA READ replies. These are READs of under 1000 bytes or so
where the client has not provided either a reply chunk or a write
list.
The NFS server delivers the data payload for an NFS READ reply to
the transport in an xdr_buf page list. If the NFS client did not
provide a reply chunk or a write list, send_reply() is supposed to
set up a separate sge for the page containing the READ data, and
another sge for XDR padding if needed, then post all of the sges via
a single SEND Work Request.
The problem is send_reply() does not advance through the xdr_buf
when setting up scatter/gather entries for SEND WR. It always calls
dma_map_xdr with xdr_off set to zero. When there's more than one
sge, dma_map_xdr() sets up the SEND sge's so they all point to the
xdr_buf's head.
The current Linux NFS/RDMA client always provides a reply chunk or
a write list when performing an NFS READ over RDMA. Therefore, it
does not exercise this particular case. The Linux server has never
had to use more than one extra sge for building RPC/RDMA replies
with a Linux client.
However, an NFS/RDMA client _is_ allowed to send small NFS READs
without setting up a write list or reply chunk. The NFS READ reply
fits entirely within the inline reply buffer in this case. This is
perhaps a more efficient way of performing NFS READs that the Linux
NFS/RDMA client may some day adopt.
Fixes: b432e6b3d9 ('svcrdma: Change DMA mapping logic to . . .')
BugLink: https://bugzilla.linux-nfs.org/show_bug.cgi?id=285
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
When removing underlying RDMA device, the rmmod will hang forever if there
are any outstanding NFS/RDMA client mounts. The outstanding NFS/RDMA counts
could also prevent the server from shutting down. Further debugging shows
that the existing connections are not teared down and resource are not
released when receiving RDMA_CM_EVENT_DEVICE_REMOVAL event. It seems the
original code missing svc_xprt_put() in RDMA_CM_EVENT_REMOVAL event handler
thus svc_xprt_free is never invoked to release the existing connection
resources.
The patch has been passed removing, adding device back and forth without
stopping NFS/RDMA service. This will also allow a device to be unplugged
and swapped out without shutting down NFS service.
BugLink: https://bugzilla.linux-nfs.org/show_bug.cgi?id=252
Signed-off-by: Shirley Ma <shirley.ma@oracle.com>
Reviewed-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
Highlights include:
Stable patches:
- Fix a crash in the NFSv4 file locking code.
- Fix an fsync() regression, where we were failing to retry I/O in some
circumstances.
- Fix an infinite loop in NFSv4.0 OPEN stateid recovery
- Fix a memory leak when an attempted pnfs fails.
- Fix a memory leak in the backchannel code
- Large hostnames were not supported correctly in NFSv4.1
- Fix a pNFS/flexfiles bug that was impeding error reporting on I/O.
- Fix a couple of credential issues in pNFS/flexfiles
Bugfixes + cleanups:
- Open flag sanity checks in the NFSv4 atomic open codepath
- More NFSv4 delegation related bugfixes
- Various NFSv4.1 backchannel bugfixes and cleanups
- Fix the NFS swap socket code
- Various cleanups of the NFSv4 SETCLIENTID and EXCHANGE_ID code
- Fix a UDP transport deadlock issue
Features:
- More RDMA client transport improvements
- NFSv4.2 LAYOUTSTATS functionality for pnfs flexfiles.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJVlWQgAAoJEGcL54qWCgDyXtcP/2Y3HJ9xu5qU3Bo/jzCAw4E1
jPPMSFAz4kqy/LGoslyc1cNDEiKGzJYWU8TtCGI3KAyNxb6n3pT1mEE1tvIsSdis
D8bpV13M452PPpZYrBawIf4+OuohXmuYHpFiVNSpLbH3Uo7dthvFFnbqCGaGlnqY
rXYZHAnx637OGBcJsT4AXCUz12ILvxMYRnqwW6Xn+j9JmwR1coQX3v8W8e7SMf6i
J+zOny7Uetjrg1U9C9uQB6ZvIoxUMo9QOVmtGCwsBl8lM3fLmzaQfcUf9fm76pMT
yTrKJs4jBLvVf00bRHFDv9EHWCy97oqCkeQEw1EY2lnxp/lmM5SiI4zQqjbf0QTW
5VQScT1MK6xwHoUbuI/sYdXXR8KGDVT1xCFFHUNcg69CvgqdgWslPQY7xLJMvUJZ
vBWfWDd8ppdCw2ZVX4ae/bnhfc+/mVh4wRPF7tgVAjT0pobBV9xMOeMkF4mo76Wa
pvo/nTRMt68hpESVSvq9dYEMVhy5haqFhPrSbyAGOpT4SE2V3RCCZQfhu15TMKdW
BdvItG+mdAVPbIHqhx7vRdAudcOEZKyxbFA+l3E5FyCAXLV7XS3M8CEl3P1w7gmm
Ccr8DW9abKFJf1RAKdX3stexIoJLGTwciSMR5smsbup/xNcx/fRgx2f1w31JMPxb
kG3Izfk25w9uGSsbR39D
=AREr
-----END PGP SIGNATURE-----
Merge tag 'nfs-for-4.2-1' of git://git.linux-nfs.org/projects/trondmy/linux-nfs
Pull NFS client updates from Trond Myklebust:
"Highlights include:
Stable patches:
- Fix a crash in the NFSv4 file locking code.
- Fix an fsync() regression, where we were failing to retry I/O in
some circumstances.
- Fix an infinite loop in NFSv4.0 OPEN stateid recovery
- Fix a memory leak when an attempted pnfs fails.
- Fix a memory leak in the backchannel code
- Large hostnames were not supported correctly in NFSv4.1
- Fix a pNFS/flexfiles bug that was impeding error reporting on I/O.
- Fix a couple of credential issues in pNFS/flexfiles
Bugfixes + cleanups:
- Open flag sanity checks in the NFSv4 atomic open codepath
- More NFSv4 delegation related bugfixes
- Various NFSv4.1 backchannel bugfixes and cleanups
- Fix the NFS swap socket code
- Various cleanups of the NFSv4 SETCLIENTID and EXCHANGE_ID code
- Fix a UDP transport deadlock issue
Features:
- More RDMA client transport improvements
- NFSv4.2 LAYOUTSTATS functionality for pnfs flexfiles"
* tag 'nfs-for-4.2-1' of git://git.linux-nfs.org/projects/trondmy/linux-nfs: (87 commits)
nfs: Remove invalid tk_pid from debug message
nfs: Remove invalid NFS_ATTR_FATTR_V4_REFERRAL checking in nfs4_get_rootfh
nfs: Drop bad comment in nfs41_walk_client_list()
nfs: Remove unneeded micro checking of CONFIG_PROC_FS
nfs: Don't setting FILE_CREATED flags always
nfs: Use remove_proc_subtree() instead remove_proc_entry()
nfs: Remove unused argument in nfs_server_set_fsinfo()
nfs: Fix a memory leak when meeting an unsupported state protect
nfs: take extra reference to fl->fl_file when running a LOCKU operation
NFSv4: When returning a delegation, don't reclaim an incompatible open mode.
NFSv4.2: LAYOUTSTATS is optional to implement
NFSv4.2: Fix up a decoding error in layoutstats
pNFS/flexfiles: Fix the reset of struct pgio_header when resending
pNFS/flexfiles: Turn off layoutcommit for servers that don't need it
pnfs/flexfiles: protect ktime manipulation with mirror lock
nfs: provide pnfs_report_layoutstat when NFS42 is disabled
nfs: verify open flags before allowing open
nfs: always update creds in mirror, even when we have an already connected ds
nfs: fix potential credential leak in ff_layout_update_mirror_cred
pnfs/flexfiles: report layoutstat regularly
...
Pull nfsd updates from Bruce Fields:
"A relatively quiet cycle, with a mix of cleanup and smaller bugfixes"
* 'for-4.2' of git://linux-nfs.org/~bfields/linux: (24 commits)
sunrpc: use sg_init_one() in krb5_rc4_setup_enc/seq_key()
nfsd: wrap too long lines in nfsd4_encode_read
nfsd: fput rd_file from XDR encode context
nfsd: take struct file setup fully into nfs4_preprocess_stateid_op
nfsd: refactor nfs4_preprocess_stateid_op
nfsd: clean up raparams handling
nfsd: use swap() in sort_pacl_range()
rpcrdma: Merge svcrdma and xprtrdma modules into one
svcrdma: Add a separate "max data segs macro for svcrdma
svcrdma: Replace GFP_KERNEL in a loop with GFP_NOFAIL
svcrdma: Keep rpcrdma_msg fields in network byte-order
svcrdma: Fix byte-swapping in svc_rdma_sendto.c
nfsd: Update callback sequnce id only CB_SEQUENCE success
nfsd: Reset cb_status in nfsd4_cb_prepare() at retrying
svcrdma: Remove svc_rdma_xdr_decode_deferred_req()
SUNRPC: Move EXPORT_SYMBOL for svc_process
uapi/nfs: Add NFSv4.1 ACL definitions
nfsd: Remove dead declarations
nfsd: work around a gcc-5.1 warning
nfsd: Checking for acl support does not require fetching any acls
...
These patches continue to build up for improving the rsize and wsize that the
NFS client uses when talking over RDMA. In addition, these patches also add
in scalability enhancements and other bugfixes.
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iQIcBAABCAAGBQJVey8qAAoJENfLVL+wpUDroT4P/3lwspXwdxS6VZWsW1VpNtdV
V1KKd5D+TkpBpz/ih9GdOVaBZijaHpb6XtMReh8xuh0KI893iYmsmLoyhMTPJMsU
6sjUDEv8IFrXwlRKldX1KEfBvNgR0czCNiha6O+YsV5Az08+zr57ahyGKmLUzMxo
4XzPZbwnb5fxvgmBgENUU33g+xXGsXDbsdzLvKW3UGcPU2x6PGOTLr5vP7lQkwxE
20d9ak8xQeRUk0hsmRM4fAebzcluD1o3PLIFQBEhh0Gqm1VGtSCkr9o493gT5TgM
/+XrU7B8OnbdJ1B4f/y4Bz4RucfKzyRuXMpulrnK1hL7QIiZLqiph7UrTel/ajcD
0us9PImNwXPo8tMz7Wjw2XMQplndHB3FG3M3lXlJGHlXvCI7F0yjm21AP4SeetOm
kxL24Qiyi7l/S7JJxHqNlOc0b8kpVLohBZm6yee9w4r/JUPnynUqfnXCHLjIp/5W
F1hzbCUATyfKrSs7VKO0hCQHfntigPEhRmyfoyXRAXzl5LnR1XqD6Wah3a3pwXn+
mEquUd6fKRHIIvJ8cKU6KtykkhRHg1sR/z1mw2ZEW/2PCd0cb+8+WN7X/fQqEN+u
+VQSo7oPp38SHdsyozuUUyukN5qHptTMSrNZL+LI7J8/0+BuRuIvW0nojViapc51
LOUlcgqRdUlIvmn754Yo
=N1tO
-----END PGP SIGNATURE-----
Merge tag 'nfs-rdma-for-4.2' of git://git.linux-nfs.org/projects/anna/nfs-rdma
NFS: NFSoRDMA Client Changes
These patches continue to build up for improving the rsize and wsize that the
NFS client uses when talking over RDMA. In addition, these patches also add
in scalability enhancements and other bugfixes.
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
* tag 'nfs-rdma-for-4.2' of git://git.linux-nfs.org/projects/anna/nfs-rdma: (142 commits)
xprtrdma: Reduce per-transport MR allocation
xprtrdma: Stack relief in fmr_op_map()
xprtrdma: Split rb_lock
xprtrdma: Remove rpcrdma_ia::ri_memreg_strategy
xprtrdma: Remove ->ro_reset
xprtrdma: Remove unused LOCAL_INV recovery logic
xprtrdma: Acquire MRs in rpcrdma_register_external()
xprtrdma: Introduce an FRMR recovery workqueue
xprtrdma: Acquire FMRs in rpcrdma_fmr_register_external()
xprtrdma: Introduce helpers for allocating MWs
xprtrdma: Use ib_device pointer safely
xprtrdma: Remove rr_func
xprtrdma: Replace rpcrdma_rep::rr_buffer with rr_rxprt
xprtrdma: Warn when there are orphaned IB objects
...
Currently, ib_create_cq uses cqe and comp_vecotr instead
of the extendible ib_cq_init_attr struct.
Earlier patches already changed the vendors to work with
ib_cq_init_attr. This patch changes the consumers too.
Signed-off-by: Matan Barak <matanb@mellanox.com>
Signed-off-by: Or Gerlitz <ogerlitz@mellanox.com>
Signed-off-by: Doug Ledford <dledford@redhat.com>
Reduce resource consumption per-transport to make way for increasing
the credit limit and maximum r/wsize. Pre-allocate fewer MRs.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Steve Wise <swise@opengridcomputing.com>
Reviewed-by: Sagi Grimberg <sagig@mellanox.com>
Reviewed-by: Devesh Sharma <devesh.sharma@avagotech.com>
Tested-By: Devesh Sharma <devesh.sharma@avagotech.com>
Reviewed-by: Doug Ledford <dledford@redhat.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
fmr_op_map() declares a 64 element array of u64 in automatic
storage. This is 512 bytes (8 * 64) on the stack.
Instead, when FMR memory registration is in use, pre-allocate a
physaddr array for each rpcrdma_mw.
This is a pre-requisite for increasing the r/wsize maximum for
FMR on platforms with 4KB pages.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Steve Wise <swise@opengridcomputing.com>
Reviewed-by: Sagi Grimberg <sagig@mellanox.com>
Reviewed-by: Devesh Sharma <devesh.sharma@avagotech.com>
Tested-By: Devesh Sharma <devesh.sharma@avagotech.com>
Reviewed-by: Doug Ledford <dledford@redhat.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
/proc/lock_stat showed contention between rpcrdma_buffer_get/put
and the MR allocation functions during I/O intensive workloads.
Now that MRs are no longer allocated in rpcrdma_buffer_get(),
there's no reason the rb_mws list has to be managed using the
same lock as the send/receive buffers. Split that lock. The
new lock does not need to disable interrupts because buffer
get/put is never called in an interrupt context.
struct rpcrdma_buffer is re-arranged to ensure rb_mwlock and rb_mws
are always in a different cacheline than rb_lock and the buffer
pointers.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Steve Wise <swise@opengridcomputing.com>
Reviewed-by: Sagi Grimberg <sagig@mellanox.com>
Tested-By: Devesh Sharma <devesh.sharma@avagotech.com>
Reviewed-by: Doug Ledford <dledford@redhat.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
An RPC can exit at any time. When it does so, xprt_rdma_free() is
called, and it calls ->op_unmap().
If ->ro_reset() is running due to a transport disconnect, the two
methods can race while processing the same rpcrdma_mw. The results
are unpredictable.
Because of this, in previous patches I've altered ->ro_map() to
handle MR reset. ->ro_reset() is no longer needed and can be
removed.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Steve Wise <swise@opengridcomputing.com>
Reviewed-by: Sagi Grimberg <sagig@mellanox.com>
Reviewed-by: Devesh Sharma <devesh.sharma@avagotech.com>
Tested-By: Devesh Sharma <devesh.sharma@avagotech.com>
Reviewed-by: Doug Ledford <dledford@redhat.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Acquiring 64 MRs in rpcrdma_buffer_get() while holding the buffer
pool lock is expensive, and unnecessary because most modern adapters
can transfer 100s of KBs of payload using just a single MR.
Instead, acquire MRs one-at-a-time as chunks are registered, and
return them to rb_mws immediately during deregistration.
Note: commit 539431a437 ("xprtrdma: Don't invalidate FRMRs if
registration fails") is reverted: There is now a valid case where
registration can fail (with -ENOMEM) but the QP is still in RTS.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Steve Wise <swise@opengridcomputing.com>
Tested-By: Devesh Sharma <devesh.sharma@avagotech.com>
Reviewed-by: Doug Ledford <dledford@redhat.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
After a transport disconnect, FRMRs can be left in an undetermined
state. In particular, the MR's rkey is no good.
Currently, FRMRs are fixed up by the transport connect worker, but
that can race with ->ro_unmap if an RPC happens to exit while the
transport connect worker is running.
A better way of dealing with broken FRMRs is to detect them before
they are re-used by ->ro_map. Such FRMRs are either already invalid
or are owned by the sending RPC, and thus no race with ->ro_unmap
is possible.
Introduce a mechanism for handing broken FRMRs to a workqueue to be
reset in a context that is appropriate for allocating resources
(ie. an ib_alloc_fast_reg_mr() API call).
This mechanism is not yet used, but will be in subsequent patches.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Steve Wise <swise@opengridcomputing.com>
Reviewed-By: Devesh Sharma <devesh.sharma@avagotech.com>
Tested-By: Devesh Sharma <devesh.sharma@avagotech.com>
Reviewed-by: Doug Ledford <dledford@redhat.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Acquiring 64 FMRs in rpcrdma_buffer_get() while holding the buffer
pool lock is expensive, and unnecessary because FMR mode can
transfer up to a 1MB payload using just a single ib_fmr.
Instead, acquire ib_fmrs one-at-a-time as chunks are registered, and
return them to rb_mws immediately during deregistration.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Steve Wise <swise@opengridcomputing.com>
Tested-By: Devesh Sharma <devesh.sharma@avagotech.com>
Reviewed-by: Doug Ledford <dledford@redhat.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
We eventually want to handle allocating MWs one at a time, as
needed, instead of grabbing 64 and throwing them at each RPC in the
pipeline.
Add a helper for grabbing an MW off rb_mws, and a helper for
returning an MW to rb_mws. These will be used in a subsequent patch.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Steve Wise <swise@opengridcomputing.com>
Reviewed-by: Sagi Grimberg <sagig@mellanox.com>
Tested-By: Devesh Sharma <devesh.sharma@avagotech.com>
Reviewed-by: Doug Ledford <dledford@redhat.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
The connect worker can replace ri_id, but prevents ri_id->device
from changing during the lifetime of a transport instance. The old
ID is kept around until a new ID is created and the ->device is
confirmed to be the same.
Cache a copy of ri_id->device in rpcrdma_ia and in rpcrdma_rep.
The cached copy can be used safely in code that does not serialize
with the connect worker.
Other code can use it to save an extra address generation (one
pointer dereference instead of two).
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Steve Wise <swise@opengridcomputing.com>
Tested-By: Devesh Sharma <devesh.sharma@avagotech.com>
Reviewed-by: Doug Ledford <dledford@redhat.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
A posted rpcrdma_rep never has rr_func set to anything but
rpcrdma_reply_handler.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-By: Devesh Sharma <devesh.sharma@avagotech.com>
Reviewed-by: Doug Ledford <dledford@redhat.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Clean up: Instead of carrying a pointer to the buffer pool and
the rpc_xprt, carry a pointer to the controlling rpcrdma_xprt.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Steve Wise <swise@opengridcomputing.com>
Reviewed-by: Sagi Grimberg <sagig@mellanox.com>
Tested-By: Devesh Sharma <devesh.sharma@avagotech.com>
Reviewed-by: Doug Ledford <dledford@redhat.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
WARN during transport destruction if ib_dealloc_pd() fails. This is
a sign that xprtrdma orphaned one or more RDMA API objects at some
point, which can pin lower layer kernel modules and cause shutdown
to hang.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Steve Wise <swise@opengridcomputing.com>
Reviewed-by: Sagi Grimberg <sagig@mellanox.com>
Reviewed-by: Devesh Sharma <devesh.sharma@avagotech.com>
Tested-By: Devesh Sharma <devesh.sharma@avagotech.com>
Reviewed-by: Doug Ledford <dledford@redhat.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
It has been exceptionally useful to exercise the logic that handles
local immediate errors and RDMA connection loss. To enable
developers to test this regularly and repeatably, add logic to
simulate connection loss every so often.
Fault injection is disabled by default. It is enabled with
$ sudo echo xxx > /sys/kernel/debug/sunrpc/inject_fault/disconnect
where "xxx" is a large positive number of transport method calls
before a disconnect. A value of several thousand is usually a good
number that allows reasonable forward progress while still causing a
lot of connection drops.
These hooks are disabled when SUNRPC_DEBUG is turned off.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
RDMA xprts don't have a sock_xprt, but an rdma_xprt, so the
xs_swapper_enable/disable functions will likely oops when fed an RDMA
xprt. Turn these functions into rpc_xprt_ops so that that doesn't
occur. For now the RDMA versions are no-ops that just return -EINVAL
on an attempt to swapon.
Cc: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Jeff Layton <jeff.layton@primarydata.com>
Reviewed-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
Bi-directional RPC support means code in svcrdma.ko invokes a bit of
code in xprtrdma.ko, and vice versa. To avoid loader/linker loops,
merge the server and client side modules together into a single
module.
When backchannel capabilities are added, the combined module will
register all needed transport capabilities so that Upper Layer
consumers automatically have everything needed to create a
bi-directional transport connection.
Module aliases are added for backwards compatibility with user
space, which still may expect svcrdma.ko or xprtrdma.ko to be
present.
This commit reverts commit 2e8c12e1b7 ("xprtrdma: add separate
Kconfig options for NFSoRDMA client and server support") and
provides a single CONFIG option for enabling the new module.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
The server and client maximum are architecturally independent.
Allow changing one without affecting the other.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
At the 2015 LSF/MM, it was requested that memory allocation
call sites that request GFP_KERNEL allocations in a loop should be
annotated with __GFP_NOFAIL.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
Fields in struct rpcrdma_msg are __be32. Don't byte-swap these
fields when decoding RPC calls and then swap them back for the
reply. For the most part, they can be left alone.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>