2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-15 09:03:59 +08:00
Commit Graph

11 Commits

Author SHA1 Message Date
Borislav Petkov
e6d7bc0bdf x86/build: Use the single-argument OUTPUT_FORMAT() linker script command
The various x86 linker scripts use the three-argument linker script
command variant OUTPUT_FORMAT(DEFAULT, BIG, LITTLE) which specifies
three object file formats when the -EL and -EB linker command line
options are used. When -EB is specified, OUTPUT_FORMAT issues the BIG
object file format, when -EL, LITTLE, respectively, and when neither is
specified, DEFAULT.

However, those -E[LB] options are not used by arch/x86/ so switch to the
simple OUTPUT_FORMAT(BFDNAME) macro variant.

No functional changes.

Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: x86@kernel.org
Link: https://lkml.kernel.org/r/20190109181531.27513-1-bp@alien8.de
2019-01-16 12:21:53 +01:00
Greg Kroah-Hartman
b24413180f License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.

By default all files without license information are under the default
license of the kernel, which is GPL version 2.

Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier.  The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.

This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.

How this work was done:

Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
 - file had no licensing information it it.
 - file was a */uapi/* one with no licensing information in it,
 - file was a */uapi/* one with existing licensing information,

Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.

The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne.  Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.

The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed.  Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.

Criteria used to select files for SPDX license identifier tagging was:
 - Files considered eligible had to be source code files.
 - Make and config files were included as candidates if they contained >5
   lines of source
 - File already had some variant of a license header in it (even if <5
   lines).

All documentation files were explicitly excluded.

The following heuristics were used to determine which SPDX license
identifiers to apply.

 - when both scanners couldn't find any license traces, file was
   considered to have no license information in it, and the top level
   COPYING file license applied.

   For non */uapi/* files that summary was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0                                              11139

   and resulted in the first patch in this series.

   If that file was a */uapi/* path one, it was "GPL-2.0 WITH
   Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0 WITH Linux-syscall-note                        930

   and resulted in the second patch in this series.

 - if a file had some form of licensing information in it, and was one
   of the */uapi/* ones, it was denoted with the Linux-syscall-note if
   any GPL family license was found in the file or had no licensing in
   it (per prior point).  Results summary:

   SPDX license identifier                            # files
   ---------------------------------------------------|------
   GPL-2.0 WITH Linux-syscall-note                       270
   GPL-2.0+ WITH Linux-syscall-note                      169
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
   LGPL-2.1+ WITH Linux-syscall-note                      15
   GPL-1.0+ WITH Linux-syscall-note                       14
   ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
   LGPL-2.0+ WITH Linux-syscall-note                       4
   LGPL-2.1 WITH Linux-syscall-note                        3
   ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
   ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1

   and that resulted in the third patch in this series.

 - when the two scanners agreed on the detected license(s), that became
   the concluded license(s).

 - when there was disagreement between the two scanners (one detected a
   license but the other didn't, or they both detected different
   licenses) a manual inspection of the file occurred.

 - In most cases a manual inspection of the information in the file
   resulted in a clear resolution of the license that should apply (and
   which scanner probably needed to revisit its heuristics).

 - When it was not immediately clear, the license identifier was
   confirmed with lawyers working with the Linux Foundation.

 - If there was any question as to the appropriate license identifier,
   the file was flagged for further research and to be revisited later
   in time.

In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.

Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights.  The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.

Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.

In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.

Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
 - a full scancode scan run, collecting the matched texts, detected
   license ids and scores
 - reviewing anything where there was a license detected (about 500+
   files) to ensure that the applied SPDX license was correct
 - reviewing anything where there was no detection but the patch license
   was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
   SPDX license was correct

This produced a worksheet with 20 files needing minor correction.  This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.

These .csv files were then reviewed by Greg.  Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected.  This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.)  Finally Greg ran the script using the .csv files to
generate the patches.

Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-02 11:10:55 +01:00
Yinghai Lu
974f221c84 x86/boot: Move compressed kernel to the end of the decompression buffer
This change makes later calculations about where the kernel is located
easier to reason about. To better understand this change, we must first
clarify what 'VO' and 'ZO' are. These values were introduced in commits
by hpa:

  77d1a49995 ("x86, boot: make symbols from the main vmlinux available")
  37ba7ab5e3 ("x86, boot: make kernel_alignment adjustable; new bzImage fields")

Specifically:

All names prefixed with 'VO_':

 - relate to the uncompressed kernel image

 - the size of the VO image is: VO__end-VO__text ("VO_INIT_SIZE" define)

All names prefixed with 'ZO_':

 - relate to the bootable compressed kernel image (boot/compressed/vmlinux),
   which is composed of the following memory areas:
     - head text
     - compressed kernel (VO image and relocs table)
     - decompressor code

 - the size of the ZO image is: ZO__end - ZO_startup_32 ("ZO_INIT_SIZE" define, though see below)

The 'INIT_SIZE' value is used to find the larger of the two image sizes:

 #define ZO_INIT_SIZE    (ZO__end - ZO_startup_32 + ZO_z_extract_offset)
 #define VO_INIT_SIZE    (VO__end - VO__text)

 #if ZO_INIT_SIZE > VO_INIT_SIZE
 # define INIT_SIZE ZO_INIT_SIZE
 #else
 # define INIT_SIZE VO_INIT_SIZE
 #endif

The current code uses extract_offset to decide where to position the
copied ZO (i.e. ZO starts at extract_offset). (This is why ZO_INIT_SIZE
currently includes the extract_offset.)

Why does z_extract_offset exist? It's needed because we are trying to minimize
the amount of RAM used for the whole act of creating an uncompressed, executable,
properly relocation-linked kernel image in system memory. We do this so that
kernels can be booted on even very small systems.

To achieve the goal of minimal memory consumption we have implemented an in-place
decompression strategy: instead of cleanly separating the VO and ZO images and
also allocating some memory for the decompression code's runtime needs, we instead
create this elaborate layout of memory buffers where the output (decompressed)
stream, as it progresses, overlaps with and destroys the input (compressed)
stream. This can only be done safely if the ZO image is placed to the end of the
VO range, plus a certain amount of safety distance to make sure that when the last
bytes of the VO range are decompressed, the compressed stream pointer is safely
beyond the end of the VO range.

z_extract_offset is calculated in arch/x86/boot/compressed/mkpiggy.c during
the build process, at a point when we know the exact compressed and
uncompressed size of the kernel images and can calculate this safe minimum
offset value. (Note that the mkpiggy.c calculation is not perfect, because
we don't know the decompressor used at that stage, so the z_extract_offset
calculation is necessarily imprecise and is mostly based on gzip internals -
we'll improve that in the next patch.)

When INIT_SIZE is bigger than VO_INIT_SIZE (uncommon but possible),
the copied ZO occupies the memory from extract_offset to the end of
decompression buffer. It overlaps with the soon-to-be-uncompressed kernel
like this:

                            |-----compressed kernel image------|
                            V                                  V
0                       extract_offset                      +INIT_SIZE
|-----------|---------------|-------------------------|--------|
            |               |                         |        |
          VO__text      startup_32 of ZO          VO__end    ZO__end
            ^                                         ^
            |-------uncompressed kernel image---------|

When INIT_SIZE is equal to VO_INIT_SIZE (likely) there's still space
left from end of ZO to the end of decompressing buffer, like below.

                            |-compressed kernel image-|
                            V                         V
0                       extract_offset                      +INIT_SIZE
|-----------|---------------|-------------------------|--------|
            |               |                         |        |
          VO__text      startup_32 of ZO          ZO__end    VO__end
            ^                                                  ^
            |------------uncompressed kernel image-------------|

To simplify calculations and avoid special cases, it is cleaner to
always place the compressed kernel image in memory so that ZO__end
is at the end of the decompression buffer, instead of placing t at
the start of extract_offset as is currently done.

This patch adds BP_init_size (which is the INIT_SIZE as passed in from
the boot_params) into asm-offsets.c to make it visible to the assembly
code.

Then when moving the ZO, it calculates the starting position of
the copied ZO (via BP_init_size and the ZO run size) so that the VO__end
will be at the end of the decompression buffer. To make the position
calculation safe, the end of ZO is page aligned (and a comment is added
to the existing VO alignment for good measure).

Signed-off-by: Yinghai Lu <yinghai@kernel.org>
[ Rewrote changelog and comments. ]
Signed-off-by: Kees Cook <keescook@chromium.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: lasse.collin@tukaani.org
Link: http://lkml.kernel.org/r/1461888548-32439-3-git-send-email-keescook@chromium.org
[ Rewrote the changelog some more. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-04-29 11:03:29 +02:00
H. Peter Anvin
22a57f5896 x86, setup: Allow global variables and functions in the decompressor
In order for global variables and functions to work in the
decompressor, we need to fix up the GOT in assembly code.

Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
LKML-Reference: <4C57382E.8050501@zytor.com>
2010-08-02 15:34:44 -07:00
Denys Vlasenko
041d5f94c4 Rename .rodata.compressed to .rodata..compressed.
Signed-off-by: Denys Vlasenko <vda.linux@googlemail.com>
Signed-off-by: Michal Marek <mmarek@suse.cz>
2010-03-03 11:26:00 +01:00
Jan Beulich
350f8f5631 x86: Eliminate redundant/contradicting cache line size config options
Rather than having X86_L1_CACHE_BYTES and X86_L1_CACHE_SHIFT
(with inconsistent defaults), just having the latter suffices as
the former can be easily calculated from it.

To be consistent, also change X86_INTERNODE_CACHE_BYTES to
X86_INTERNODE_CACHE_SHIFT, and set it to 7 (128 bytes) for NUMA
to account for last level cache line size (which here matters
more than L1 cache line size).

Finally, make sure the default value for X86_L1_CACHE_SHIFT,
when X86_GENERIC is selected, is being seen before that for the
individual CPU model options (other than on x86-64, where
GENERIC_CPU is part of the choice construct, X86_GENERIC is a
separate option on ix86).

Signed-off-by: Jan Beulich <jbeulich@novell.com>
Acked-by: Ravikiran Thirumalai <kiran@scalex86.org>
Acked-by: Nick Piggin <npiggin@suse.de>
LKML-Reference: <4AFD5710020000780001F8F0@vpn.id2.novell.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-11-19 04:58:34 +01:00
Tim Abbott
1dc818c1c5 x86: convert compressed loader to use __HEAD and HEAD_TEXT macros.
This has the consequence of changing the section name use for head
code from ".text.head" to ".head.text".

Linus suggested that we merge the ".text.head" section with ".text"
(presumably while preserving the fact that the head code starts at 0).
When I tried this it caused the kernel to not boot.

Signed-off-by: Tim Abbott <tabbott@ksplice.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Sam Ravnborg <sam@ravnborg.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
2009-09-18 10:21:49 -07:00
H. Peter Anvin
5b11f1cee5 x86, boot: straighten out ranges to copy/zero in compressed/head*.S
Both on 32 and 64 bits, we copy all the way up to the end of bss,
except that on 64 bits there is a hack to avoid copying on top of the
page tables.  There is no point in copying bss at all, especially
since we are just about to zero it all anyway.

To clean up and unify the handling, we now do:

  - copy from startup_32 to _bss.
  - zero from _bss to _ebss.
  - the _ebss symbol is aligned to an 8-byte boundary.
  - the page tables are moved to a separate section.

Use _bss as the copy endpoint since _edata may be misaligned.

[ Impact: cleanup, trivial performance improvement ]

Signed-off-by: H. Peter Anvin <hpa@zytor.com>
2009-05-08 17:18:10 -07:00
H. Peter Anvin
0b4eb462da x86, boot: align the .bss section in the decompressor
Aligning the .bss section makes it trivial to use large operation
sizes for moving the initialized sections and clearing the .bss.
The alignment chosen (L1 cache) is somewhat arbitrary, but should be
large enough to avoid all known performance traps and small enough to
not cause troubles.

[ Impact: trivial performance enhancement, future patch prep	]

Signed-off-by: H. Peter Anvin <hpa@zytor.com>
2009-05-08 17:16:21 -07:00
Sam Ravnborg
83c4832683 x86: boot/compressed/vmlinux.lds.S: fix build of bzImage with 64 bit compiler
Jesper reported that he saw following build issue:

 > ld:arch/x86/boot/compressed/vmlinux.lds:9: syntax error
 > make[2]: *** [arch/x86/boot/compressed/vmlinux] Error 1
 > make[1]: *** [arch/x86/boot/compressed/vmlinux] Error 2
 > make: *** [bzImage] Error 2

CPP defines the symbol "i386" to "1".
Undefine this to fix it.

[ Impact: build fix with certain tool chains ]

Reported-by: Jesper Dangaard Brouer <jdb@comx.dk>
Signed-off-by: Sam Ravnborg <sam@ravnborg.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
LKML-Reference: <alpine.LFD.2.00.0904260958190.3101@localhost.localdomain>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-04-30 12:36:50 +02:00
Linus Torvalds
51b26ada79 x86: unify arch/x86/boot/compressed/vmlinux_*.lds
Look at the:

	diff -u arch/x86/boot/compressed/vmlinux_*.lds

output and realize that they're basially exactly the same except for
trivial naming differences, and the fact that the 64-bit version has a
"pgtable" thing.

So unify them.

There's some trivial cleanup there (make the output format a Kconfig thing
rather than doing #ifdef's for it, and unify both 32-bit and 64-bit BSS
end to "_ebss", where 32-bit used to use the traditional "_end"), but
other than that it's really very mindless and straigt conversion.

For example, I think we should aim to remove "startup_32" vs "startup_64",
and just call it "startup", and get rid of one more difference. I didn't
do that.

Also, notice the comment in the unified vmlinux.lds.S talks about
"head_64" and "startup_32" which is an odd and incorrect mix, but that was
actually what the old 64-bit only lds file had, so the confusion isn't
new, and now that mixing is arguably more accurate thanks to the
vmlinux.lds.S file being shared between the two cases ;)

[ Impact: cleanup, unification ]

Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Acked-by: Sam Ravnborg <sam@ravnborg.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-04-27 06:35:24 +02:00