mirror of
https://github.com/edk2-porting/linux-next.git
synced 2024-12-22 20:23:57 +08:00
70216e18e5
2112 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Mathieu Desnoyers
|
70216e18e5 |
membarrier: Provide core serializing command, *_SYNC_CORE
Provide core serializing membarrier command to support memory reclaim by JIT. Each architecture needs to explicitly opt into that support by documenting in their architecture code how they provide the core serializing instructions required when returning from the membarrier IPI, and after the scheduler has updated the curr->mm pointer (before going back to user-space). They should then select ARCH_HAS_MEMBARRIER_SYNC_CORE to enable support for that command on their architecture. Architectures selecting this feature need to either document that they issue core serializing instructions when returning to user-space, or implement their architecture-specific sync_core_before_usermode(). Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andrea Parri <parri.andrea@gmail.com> Cc: Andrew Hunter <ahh@google.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Avi Kivity <avi@scylladb.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Boqun Feng <boqun.feng@gmail.com> Cc: Dave Watson <davejwatson@fb.com> Cc: David Sehr <sehr@google.com> Cc: Greg Hackmann <ghackmann@google.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Maged Michael <maged.michael@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Will Deacon <will.deacon@arm.com> Cc: linux-api@vger.kernel.org Cc: linux-arch@vger.kernel.org Link: http://lkml.kernel.org/r/20180129202020.8515-9-mathieu.desnoyers@efficios.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Mathieu Desnoyers
|
c5f58bd58f |
membarrier: Provide GLOBAL_EXPEDITED command
Allow expedited membarrier to be used for data shared between processes through shared memory. Processes wishing to receive the membarriers register with MEMBARRIER_CMD_REGISTER_GLOBAL_EXPEDITED. Those which want to issue membarrier invoke MEMBARRIER_CMD_GLOBAL_EXPEDITED. This allows extremely simple kernel-level implementation: we have almost everything we need with the PRIVATE_EXPEDITED barrier code. All we need to do is to add a flag in the mm_struct that will be used to check whether we need to send the IPI to the current thread of each CPU. There is a slight downside to this approach compared to targeting specific shared memory users: when performing a membarrier operation, all registered "global" receivers will get the barrier, even if they don't share a memory mapping with the sender issuing MEMBARRIER_CMD_GLOBAL_EXPEDITED. This registration approach seems to fit the requirement of not disturbing processes that really deeply care about real-time: they simply should not register with MEMBARRIER_CMD_REGISTER_GLOBAL_EXPEDITED. In order to align the membarrier command names, the "MEMBARRIER_CMD_SHARED" command is renamed to "MEMBARRIER_CMD_GLOBAL", keeping an alias of MEMBARRIER_CMD_SHARED to MEMBARRIER_CMD_GLOBAL for UAPI header backward compatibility. Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andrea Parri <parri.andrea@gmail.com> Cc: Andrew Hunter <ahh@google.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Avi Kivity <avi@scylladb.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Boqun Feng <boqun.feng@gmail.com> Cc: Dave Watson <davejwatson@fb.com> Cc: David Sehr <sehr@google.com> Cc: Greg Hackmann <ghackmann@google.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Maged Michael <maged.michael@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Will Deacon <will.deacon@arm.com> Cc: linux-api@vger.kernel.org Link: http://lkml.kernel.org/r/20180129202020.8515-5-mathieu.desnoyers@efficios.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Mathieu Desnoyers
|
306e060435 |
membarrier: Document scheduler barrier requirements
Document the membarrier requirement on having a full memory barrier in __schedule() after coming from user-space, before storing to rq->curr. It is provided by smp_mb__after_spinlock() in __schedule(). Document that membarrier requires a full barrier on transition from kernel thread to userspace thread. We currently have an implicit barrier from atomic_dec_and_test() in mmdrop() that ensures this. The x86 switch_mm_irqs_off() full barrier is currently provided by many cpumask update operations as well as write_cr3(). Document that write_cr3() provides this barrier. Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andrea Parri <parri.andrea@gmail.com> Cc: Andrew Hunter <ahh@google.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Avi Kivity <avi@scylladb.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Boqun Feng <boqun.feng@gmail.com> Cc: Dave Watson <davejwatson@fb.com> Cc: David Sehr <sehr@google.com> Cc: Greg Hackmann <ghackmann@google.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Maged Michael <maged.michael@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Will Deacon <will.deacon@arm.com> Cc: linux-api@vger.kernel.org Link: http://lkml.kernel.org/r/20180129202020.8515-4-mathieu.desnoyers@efficios.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Mathieu Desnoyers
|
3ccfebedd8 |
powerpc, membarrier: Skip memory barrier in switch_mm()
Allow PowerPC to skip the full memory barrier in switch_mm(), and only issue the barrier when scheduling into a task belonging to a process that has registered to use expedited private. Threads targeting the same VM but which belong to different thread groups is a tricky case. It has a few consequences: It turns out that we cannot rely on get_nr_threads(p) to count the number of threads using a VM. We can use (atomic_read(&mm->mm_users) == 1 && get_nr_threads(p) == 1) instead to skip the synchronize_sched() for cases where the VM only has a single user, and that user only has a single thread. It also turns out that we cannot use for_each_thread() to set thread flags in all threads using a VM, as it only iterates on the thread group. Therefore, test the membarrier state variable directly rather than relying on thread flags. This means membarrier_register_private_expedited() needs to set the MEMBARRIER_STATE_PRIVATE_EXPEDITED flag, issue synchronize_sched(), and only then set MEMBARRIER_STATE_PRIVATE_EXPEDITED_READY which allows private expedited membarrier commands to succeed. membarrier_arch_switch_mm() now tests for the MEMBARRIER_STATE_PRIVATE_EXPEDITED flag. Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alan Stern <stern@rowland.harvard.edu> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andrea Parri <parri.andrea@gmail.com> Cc: Andrew Hunter <ahh@google.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Avi Kivity <avi@scylladb.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Boqun Feng <boqun.feng@gmail.com> Cc: Dave Watson <davejwatson@fb.com> Cc: David Sehr <sehr@google.com> Cc: Greg Hackmann <ghackmann@google.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Maged Michael <maged.michael@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Will Deacon <will.deacon@arm.com> Cc: linux-api@vger.kernel.org Cc: linux-arch@vger.kernel.org Cc: linuxppc-dev@lists.ozlabs.org Link: http://lkml.kernel.org/r/20180129202020.8515-3-mathieu.desnoyers@efficios.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Linus Torvalds
|
af8c5e2d60 |
Merge branch 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar: "The main changes in this cycle were: - Implement frequency/CPU invariance and OPP selection for SCHED_DEADLINE (Juri Lelli) - Tweak the task migration logic for better multi-tasking workload scalability (Mel Gorman) - Misc cleanups, fixes and improvements" * 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: sched/deadline: Make bandwidth enforcement scale-invariant sched/cpufreq: Move arch_scale_{freq,cpu}_capacity() outside of #ifdef CONFIG_SMP sched/cpufreq: Remove arch_scale_freq_capacity()'s 'sd' parameter sched/cpufreq: Always consider all CPUs when deciding next freq sched/cpufreq: Split utilization signals sched/cpufreq: Change the worker kthread to SCHED_DEADLINE sched/deadline: Move CPU frequency selection triggering points sched/cpufreq: Use the DEADLINE utilization signal sched/deadline: Implement "runtime overrun signal" support sched/fair: Only immediately migrate tasks due to interrupts if prev and target CPUs share cache sched/fair: Correct obsolete comment about cpufreq_update_util() sched/fair: Remove impossible condition from find_idlest_group_cpu() sched/cpufreq: Don't pass flags to sugov_set_iowait_boost() sched/cpufreq: Initialize sg_cpu->flags to 0 sched/fair: Consider RT/IRQ pressure in capacity_spare_wake() sched/fair: Use 'unsigned long' for utilization, consistently sched/core: Rework and clarify prepare_lock_switch() sched/fair: Remove unused 'curr' parameter from wakeup_gran sched/headers: Constify object_is_on_stack() |
||
Linus Torvalds
|
d772794637 |
Merge branch 'core-rcu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull RCU updates from Ingo Molnar: "The main RCU changes in this cycle were: - Updates to use cond_resched() instead of cond_resched_rcu_qs() where feasible (currently everywhere except in kernel/rcu and in kernel/torture.c). Also a couple of fixes to avoid sending IPIs to offline CPUs. - Updates to simplify RCU's dyntick-idle handling. - Updates to remove almost all uses of smp_read_barrier_depends() and read_barrier_depends(). - Torture-test updates. - Miscellaneous fixes" * 'core-rcu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (72 commits) torture: Save a line in stutter_wait(): while -> for torture: Eliminate torture_runnable and perf_runnable torture: Make stutter less vulnerable to compilers and races locking/locktorture: Fix num reader/writer corner cases locking/locktorture: Fix rwsem reader_delay torture: Place all torture-test modules in one MAINTAINERS group rcutorture/kvm-build.sh: Skip build directory check rcutorture: Simplify functions.sh include path rcutorture: Simplify logging rcutorture/kvm-recheck-*: Improve result directory readability check rcutorture/kvm.sh: Support execution from any directory rcutorture/kvm.sh: Use consistent help text for --qemu-args rcutorture/kvm.sh: Remove unused variable, `alldone` rcutorture: Remove unused script, config2frag.sh rcutorture/configinit: Fix build directory error message rcutorture: Preempt RCU-preempt readers more vigorously torture: Reduce #ifdefs for preempt_schedule() rcu: Remove have_rcu_nocb_mask from tree_plugin.h rcu: Add comment giving debug strategy for double call_rcu() tracing, rcu: Hide trace event rcu_nocb_wake when not used ... |
||
Peter Zijlstra
|
ce48c14649 |
sched/core: Fix cpu.max vs. cpuhotplug deadlock
Tejun reported the following cpu-hotplug lock (percpu-rwsem) read recursion: tg_set_cfs_bandwidth() get_online_cpus() cpus_read_lock() cfs_bandwidth_usage_inc() static_key_slow_inc() cpus_read_lock() Reported-by: Tejun Heo <tj@kernel.org> Tested-by: Tejun Heo <tj@kernel.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20180122215328.GP3397@worktop Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Josh Snyder
|
c96f5471ce |
delayacct: Account blkio completion on the correct task
Before commit: |
||
Linus Torvalds
|
67549d46d4 |
Merge branch 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler fixes from Ingo Molnar: "A Kconfig fix, a build fix and a membarrier bug fix" * 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: membarrier: Disable preemption when calling smp_call_function_many() sched/isolation: Make CONFIG_CPU_ISOLATION=y depend on SMP or COMPILE_TEST ia64, sched/cputime: Fix build error if CONFIG_VIRT_CPU_ACCOUNTING_NATIVE=y |
||
Juri Lelli
|
07881166a8 |
sched/deadline: Make bandwidth enforcement scale-invariant
Apply frequency and CPU scale-invariance correction factor to bandwidth enforcement (similar to what we already do to fair utilization tracking). Each delta_exec gets scaled considering current frequency and maximum CPU capacity; which means that the reservation runtime parameter (that need to be specified profiling the task execution at max frequency on biggest capacity core) gets thus scaled accordingly. Signed-off-by: Juri Lelli <juri.lelli@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Claudio Scordino <claudio@evidence.eu.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Luca Abeni <luca.abeni@santannapisa.it> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Viresh Kumar <viresh.kumar@linaro.org> Cc: alessio.balsini@arm.com Cc: bristot@redhat.com Cc: dietmar.eggemann@arm.com Cc: joelaf@google.com Cc: juri.lelli@redhat.com Cc: mathieu.poirier@linaro.org Cc: morten.rasmussen@arm.com Cc: patrick.bellasi@arm.com Cc: rjw@rjwysocki.net Cc: rostedt@goodmis.org Cc: tkjos@android.com Cc: tommaso.cucinotta@santannapisa.it Cc: vincent.guittot@linaro.org Link: http://lkml.kernel.org/r/20171204102325.5110-9-juri.lelli@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Juri Lelli
|
7e1a9208f6 |
sched/cpufreq: Move arch_scale_{freq,cpu}_capacity() outside of #ifdef CONFIG_SMP
Currently, frequency and cpu capacity scaling is only performed on CONFIG_SMP systems (as CFS PELT signals are only present for such systems). However, other scheduling classes want to do freq/cpu scaling, and for !CONFIG_SMP configurations as well. arch_scale_freq_capacity() is useful to implement frequency scaling even on !CONFIG_SMP platforms, so we simply move it outside CONFIG_SMP ifdeffery. Even if arch_scale_cpu_capacity() is not useful on !CONFIG_SMP platforms, we make a default implementation available for such configurations anyway to simplify scheduler code doing CPU scale invariance. Signed-off-by: Juri Lelli <juri.lelli@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: alessio.balsini@arm.com Cc: bristot@redhat.com Cc: claudio@evidence.eu.com Cc: dietmar.eggemann@arm.com Cc: joelaf@google.com Cc: juri.lelli@redhat.com Cc: luca.abeni@santannapisa.it Cc: mathieu.poirier@linaro.org Cc: morten.rasmussen@arm.com Cc: patrick.bellasi@arm.com Cc: rjw@rjwysocki.net Cc: tkjos@android.com Cc: tommaso.cucinotta@santannapisa.it Cc: vincent.guittot@linaro.org Cc: viresh.kumar@linaro.org Link: http://lkml.kernel.org/r/20171204102325.5110-8-juri.lelli@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Juri Lelli
|
7673c8a4c7 |
sched/cpufreq: Remove arch_scale_freq_capacity()'s 'sd' parameter
The 'sd' parameter is never used in arch_scale_freq_capacity() (and it's hard to see where information coming from scheduling domains might help doing frequency invariance scaling). Remove it; also in anticipation of moving arch_scale_freq_capacity() outside CONFIG_SMP. Signed-off-by: Juri Lelli <juri.lelli@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: alessio.balsini@arm.com Cc: bristot@redhat.com Cc: claudio@evidence.eu.com Cc: dietmar.eggemann@arm.com Cc: joelaf@google.com Cc: juri.lelli@redhat.com Cc: luca.abeni@santannapisa.it Cc: mathieu.poirier@linaro.org Cc: morten.rasmussen@arm.com Cc: patrick.bellasi@arm.com Cc: rjw@rjwysocki.net Cc: rostedt@goodmis.org Cc: tkjos@android.com Cc: tommaso.cucinotta@santannapisa.it Cc: vincent.guittot@linaro.org Cc: viresh.kumar@linaro.org Link: http://lkml.kernel.org/r/20171204102325.5110-7-juri.lelli@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Juri Lelli
|
0fa7d181f1 |
sched/cpufreq: Always consider all CPUs when deciding next freq
No assumption can be made upon the rate at which frequency updates get triggered, as there are scheduling policies (like SCHED_DEADLINE) which don't trigger them so frequently. Remove such assumption from the code, by always considering SCHED_DEADLINE utilization signal as not stale. Signed-off-by: Juri Lelli <juri.lelli@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Viresh Kumar <viresh.kumar@linaro.org> Cc: Claudio Scordino <claudio@evidence.eu.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Luca Abeni <luca.abeni@santannapisa.it> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: alessio.balsini@arm.com Cc: bristot@redhat.com Cc: dietmar.eggemann@arm.com Cc: joelaf@google.com Cc: juri.lelli@redhat.com Cc: mathieu.poirier@linaro.org Cc: morten.rasmussen@arm.com Cc: patrick.bellasi@arm.com Cc: rjw@rjwysocki.net Cc: rostedt@goodmis.org Cc: tkjos@android.com Cc: tommaso.cucinotta@santannapisa.it Cc: vincent.guittot@linaro.org Link: http://lkml.kernel.org/r/20171204102325.5110-6-juri.lelli@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Juri Lelli
|
d18be45dbf |
sched/cpufreq: Split utilization signals
To be able to treat utilization signals of different scheduling classes in different ways (e.g., CFS signal might be stale while DEADLINE signal is never stale by design) we need to split sugov_cpu::util signal in two: util_cfs and util_dl. This patch does that by also changing sugov_get_util() parameter list. After this change, aggregation of the different signals has to be performed by sugov_get_util() users (so that they can decide what to do with the different signals). Suggested-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Signed-off-by: Juri Lelli <juri.lelli@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Viresh Kumar <viresh.kumar@linaro.org> Cc: Claudio Scordino <claudio@evidence.eu.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Luca Abeni <luca.abeni@santannapisa.it> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: alessio.balsini@arm.com Cc: bristot@redhat.com Cc: dietmar.eggemann@arm.com Cc: joelaf@google.com Cc: juri.lelli@redhat.com Cc: mathieu.poirier@linaro.org Cc: morten.rasmussen@arm.com Cc: patrick.bellasi@arm.com Cc: rjw@rjwysocki.net Cc: rostedt@goodmis.org Cc: tkjos@android.com Cc: tommaso.cucinotta@santannapisa.it Cc: vincent.guittot@linaro.org Link: http://lkml.kernel.org/r/20171204102325.5110-5-juri.lelli@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Juri Lelli
|
794a56ebd9 |
sched/cpufreq: Change the worker kthread to SCHED_DEADLINE
Worker kthread needs to be able to change frequency for all other threads. Make it special, just under STOP class. Signed-off-by: Juri Lelli <juri.lelli@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Claudio Scordino <claudio@evidence.eu.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Luca Abeni <luca.abeni@santannapisa.it> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Viresh Kumar <viresh.kumar@linaro.org> Cc: alessio.balsini@arm.com Cc: bristot@redhat.com Cc: dietmar.eggemann@arm.com Cc: joelaf@google.com Cc: juri.lelli@redhat.com Cc: mathieu.poirier@linaro.org Cc: morten.rasmussen@arm.com Cc: patrick.bellasi@arm.com Cc: rjw@rjwysocki.net Cc: rostedt@goodmis.org Cc: tkjos@android.com Cc: tommaso.cucinotta@santannapisa.it Cc: vincent.guittot@linaro.org Link: http://lkml.kernel.org/r/20171204102325.5110-4-juri.lelli@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Juri Lelli
|
e0367b1267 |
sched/deadline: Move CPU frequency selection triggering points
Since SCHED_DEADLINE doesn't track utilization signal (but reserves a fraction of CPU bandwidth to tasks admitted to the system), there is no point in evaluating frequency changes during each tick event. Move frequency selection triggering points to where running_bw changes. Co-authored-by: Claudio Scordino <claudio@evidence.eu.com> Signed-off-by: Juri Lelli <juri.lelli@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Viresh Kumar <viresh.kumar@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Luca Abeni <luca.abeni@santannapisa.it> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: alessio.balsini@arm.com Cc: bristot@redhat.com Cc: dietmar.eggemann@arm.com Cc: joelaf@google.com Cc: juri.lelli@redhat.com Cc: mathieu.poirier@linaro.org Cc: morten.rasmussen@arm.com Cc: patrick.bellasi@arm.com Cc: rjw@rjwysocki.net Cc: rostedt@goodmis.org Cc: tkjos@android.com Cc: tommaso.cucinotta@santannapisa.it Cc: vincent.guittot@linaro.org Link: http://lkml.kernel.org/r/20171204102325.5110-3-juri.lelli@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Juri Lelli
|
d4edd662ac |
sched/cpufreq: Use the DEADLINE utilization signal
SCHED_DEADLINE tracks active utilization signal with a per dl_rq variable named running_bw. Make use of that to drive CPU frequency selection: add up FAIR and DEADLINE contribution to get the required CPU capacity to handle both requirements (while RT still selects max frequency). Co-authored-by: Claudio Scordino <claudio@evidence.eu.com> Signed-off-by: Juri Lelli <juri.lelli@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Viresh Kumar <viresh.kumar@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Luca Abeni <luca.abeni@santannapisa.it> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: alessio.balsini@arm.com Cc: bristot@redhat.com Cc: dietmar.eggemann@arm.com Cc: joelaf@google.com Cc: juri.lelli@redhat.com Cc: mathieu.poirier@linaro.org Cc: morten.rasmussen@arm.com Cc: patrick.bellasi@arm.com Cc: rjw@rjwysocki.net Cc: rostedt@goodmis.org Cc: tkjos@android.com Cc: tommaso.cucinotta@santannapisa.it Cc: vincent.guittot@linaro.org Link: http://lkml.kernel.org/r/20171204102325.5110-2-juri.lelli@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Juri Lelli
|
34be39305a |
sched/deadline: Implement "runtime overrun signal" support
This patch adds the possibility of getting the delivery of a SIGXCPU signal whenever there is a runtime overrun. The request is done through the sched_flags field within the sched_attr structure. Forward port of https://lkml.org/lkml/2009/10/16/170 Tested-by: Mathieu Poirier <mathieu.poirier@linaro.org> Signed-off-by: Juri Lelli <juri.lelli@gmail.com> Signed-off-by: Claudio Scordino <claudio@evidence.eu.com> Signed-off-by: Luca Abeni <luca.abeni@santannapisa.it> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tommaso Cucinotta <tommaso.cucinotta@sssup.it> Link: http://lkml.kernel.org/r/1513077024-25461-1-git-send-email-claudio@evidence.eu.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Mel Gorman
|
7332dec055 |
sched/fair: Only immediately migrate tasks due to interrupts if prev and target CPUs share cache
If waking from an idle CPU due to an interrupt then it's possible that the waker task will be pulled to wake on the current CPU. Unfortunately, depending on the type of interrupt and IRQ configuration, there may not be a strong relationship between the CPU an interrupt was delivered on and the CPU a task was running on. For example, the interrupts could all be delivered to CPUs on one particular node due to the machine topology or IRQ affinity configuration. Another example is an interrupt for an IO completion which can be delivered to any CPU where there is no guarantee the data is either cache hot or even local. This patch was motivated by the observation that an IO workload was being pulled cross-node on a frequent basis when IO completed. From a wakeup latency perspective, it's still useful to know that an idle CPU is immediately available for use but lets only consider an automatic migration if the CPUs share cache to limit damage due to NUMA migrations. Migrations may still occur if wake_affine_weight determines it's appropriate. These are the throughput results for dbench running on ext4 comparing 4.15-rc3 and this patch on a 2-socket machine where interrupts due to IO completions can happen on any CPU. 4.15.0-rc3 4.15.0-rc3 vanilla lessmigrate Hmean 1 854.64 ( 0.00%) 865.01 ( 1.21%) Hmean 2 1229.60 ( 0.00%) 1274.44 ( 3.65%) Hmean 4 1591.81 ( 0.00%) 1628.08 ( 2.28%) Hmean 8 1845.04 ( 0.00%) 1831.80 ( -0.72%) Hmean 16 2038.61 ( 0.00%) 2091.44 ( 2.59%) Hmean 32 2327.19 ( 0.00%) 2430.29 ( 4.43%) Hmean 64 2570.61 ( 0.00%) 2568.54 ( -0.08%) Hmean 128 2481.89 ( 0.00%) 2499.28 ( 0.70%) Stddev 1 14.31 ( 0.00%) 5.35 ( 62.65%) Stddev 2 21.29 ( 0.00%) 11.09 ( 47.92%) Stddev 4 7.22 ( 0.00%) 6.80 ( 5.92%) Stddev 8 26.70 ( 0.00%) 9.41 ( 64.76%) Stddev 16 22.40 ( 0.00%) 20.01 ( 10.70%) Stddev 32 45.13 ( 0.00%) 44.74 ( 0.85%) Stddev 64 93.10 ( 0.00%) 93.18 ( -0.09%) Stddev 128 184.28 ( 0.00%) 177.85 ( 3.49%) Note the small increase in throughput for low thread counts but also note that the standard deviation for each sample during the test run is lower. The throughput figures for dbench can be misleading so the benchmark is actually modified to time the latency of the processing of one load file with many samples taken. The difference in latency is 4.15.0-rc3 4.15.0-rc3 vanilla lessmigrate Amean 1 21.71 ( 0.00%) 21.47 ( 1.08%) Amean 2 30.89 ( 0.00%) 29.58 ( 4.26%) Amean 4 47.54 ( 0.00%) 46.61 ( 1.97%) Amean 8 82.71 ( 0.00%) 82.81 ( -0.12%) Amean 16 149.45 ( 0.00%) 145.01 ( 2.97%) Amean 32 265.49 ( 0.00%) 248.43 ( 6.42%) Amean 64 463.23 ( 0.00%) 463.55 ( -0.07%) Amean 128 933.97 ( 0.00%) 935.50 ( -0.16%) Stddev 1 1.58 ( 0.00%) 1.54 ( 2.26%) Stddev 2 2.84 ( 0.00%) 2.95 ( -4.15%) Stddev 4 6.78 ( 0.00%) 6.85 ( -0.99%) Stddev 8 16.85 ( 0.00%) 16.37 ( 2.85%) Stddev 16 41.59 ( 0.00%) 41.04 ( 1.32%) Stddev 32 111.05 ( 0.00%) 105.11 ( 5.35%) Stddev 64 285.94 ( 0.00%) 288.01 ( -0.72%) Stddev 128 803.39 ( 0.00%) 809.73 ( -0.79%) It's a small improvement which is not surprising given that migrations that migrate to a different node as not that common. However, it is noticeable in the CPU migration statistics which are reduced by 24%. There was a query for v1 of this patch about NAS so here are the results for C-class using MPI for parallelisation on the same machine nas-mpi 4.15.0-rc3 4.15.0-rc3 vanilla noirq Time cg.C 24.25 ( 0.00%) 23.17 ( 4.45%) Time ep.C 8.22 ( 0.00%) 8.29 ( -0.85%) Time ft.C 22.67 ( 0.00%) 20.34 ( 10.28%) Time is.C 1.42 ( 0.00%) 1.47 ( -3.52%) Time lu.C 55.62 ( 0.00%) 54.81 ( 1.46%) Time mg.C 7.93 ( 0.00%) 7.91 ( 0.25%) 4.15.0-rc3 4.15.0-rc3 vanilla noirq-v1r1 User 3799.96 3748.34 System 672.10 626.15 Elapsed 91.91 79.49 lu.C sees a small gain, ft.C a large gain and ep.C and is.C see small regressions but in terms of absolute time, the difference is small and likely within run-to-run variance. System CPU usage is slightly reduced. schbench from Facebook was also requested. This is a bit of a mixed bag but it's important to note that this workload should not be heavily impacted by wakeups from interrupt context. 4.15.0-rc3 4.15.0-rc3 vanilla noirq-v1r1 Lat 50.00th-qrtle-1 41.00 ( 0.00%) 41.00 ( 0.00%) Lat 75.00th-qrtle-1 42.00 ( 0.00%) 42.00 ( 0.00%) Lat 90.00th-qrtle-1 43.00 ( 0.00%) 44.00 ( -2.33%) Lat 95.00th-qrtle-1 44.00 ( 0.00%) 46.00 ( -4.55%) Lat 99.00th-qrtle-1 57.00 ( 0.00%) 58.00 ( -1.75%) Lat 99.50th-qrtle-1 59.00 ( 0.00%) 59.00 ( 0.00%) Lat 99.90th-qrtle-1 67.00 ( 0.00%) 78.00 ( -16.42%) Lat 50.00th-qrtle-2 40.00 ( 0.00%) 51.00 ( -27.50%) Lat 75.00th-qrtle-2 45.00 ( 0.00%) 56.00 ( -24.44%) Lat 90.00th-qrtle-2 53.00 ( 0.00%) 59.00 ( -11.32%) Lat 95.00th-qrtle-2 57.00 ( 0.00%) 61.00 ( -7.02%) Lat 99.00th-qrtle-2 67.00 ( 0.00%) 71.00 ( -5.97%) Lat 99.50th-qrtle-2 69.00 ( 0.00%) 74.00 ( -7.25%) Lat 99.90th-qrtle-2 83.00 ( 0.00%) 77.00 ( 7.23%) Lat 50.00th-qrtle-4 51.00 ( 0.00%) 51.00 ( 0.00%) Lat 75.00th-qrtle-4 57.00 ( 0.00%) 56.00 ( 1.75%) Lat 90.00th-qrtle-4 60.00 ( 0.00%) 59.00 ( 1.67%) Lat 95.00th-qrtle-4 62.00 ( 0.00%) 62.00 ( 0.00%) Lat 99.00th-qrtle-4 73.00 ( 0.00%) 72.00 ( 1.37%) Lat 99.50th-qrtle-4 76.00 ( 0.00%) 74.00 ( 2.63%) Lat 99.90th-qrtle-4 85.00 ( 0.00%) 78.00 ( 8.24%) Lat 50.00th-qrtle-8 54.00 ( 0.00%) 58.00 ( -7.41%) Lat 75.00th-qrtle-8 59.00 ( 0.00%) 62.00 ( -5.08%) Lat 90.00th-qrtle-8 65.00 ( 0.00%) 66.00 ( -1.54%) Lat 95.00th-qrtle-8 67.00 ( 0.00%) 70.00 ( -4.48%) Lat 99.00th-qrtle-8 78.00 ( 0.00%) 79.00 ( -1.28%) Lat 99.50th-qrtle-8 81.00 ( 0.00%) 80.00 ( 1.23%) Lat 99.90th-qrtle-8 116.00 ( 0.00%) 83.00 ( 28.45%) Lat 50.00th-qrtle-16 65.00 ( 0.00%) 64.00 ( 1.54%) Lat 75.00th-qrtle-16 77.00 ( 0.00%) 71.00 ( 7.79%) Lat 90.00th-qrtle-16 83.00 ( 0.00%) 82.00 ( 1.20%) Lat 95.00th-qrtle-16 87.00 ( 0.00%) 87.00 ( 0.00%) Lat 99.00th-qrtle-16 95.00 ( 0.00%) 96.00 ( -1.05%) Lat 99.50th-qrtle-16 99.00 ( 0.00%) 103.00 ( -4.04%) Lat 99.90th-qrtle-16 104.00 ( 0.00%) 122.00 ( -17.31%) Lat 50.00th-qrtle-32 71.00 ( 0.00%) 73.00 ( -2.82%) Lat 75.00th-qrtle-32 91.00 ( 0.00%) 92.00 ( -1.10%) Lat 90.00th-qrtle-32 108.00 ( 0.00%) 107.00 ( 0.93%) Lat 95.00th-qrtle-32 118.00 ( 0.00%) 115.00 ( 2.54%) Lat 99.00th-qrtle-32 134.00 ( 0.00%) 129.00 ( 3.73%) Lat 99.50th-qrtle-32 138.00 ( 0.00%) 133.00 ( 3.62%) Lat 99.90th-qrtle-32 149.00 ( 0.00%) 146.00 ( 2.01%) Lat 50.00th-qrtle-39 83.00 ( 0.00%) 81.00 ( 2.41%) Lat 75.00th-qrtle-39 105.00 ( 0.00%) 102.00 ( 2.86%) Lat 90.00th-qrtle-39 120.00 ( 0.00%) 119.00 ( 0.83%) Lat 95.00th-qrtle-39 129.00 ( 0.00%) 128.00 ( 0.78%) Lat 99.00th-qrtle-39 153.00 ( 0.00%) 149.00 ( 2.61%) Lat 99.50th-qrtle-39 166.00 ( 0.00%) 156.00 ( 6.02%) Lat 99.90th-qrtle-39 12304.00 ( 0.00%) 12848.00 ( -4.42%) When heavily loaded (e.g. 99.50th-qrtle-39 indicates 39 threads), there are small gains in many cases. Otherwise it depends on the quartile used where it can be bad -- e.g. 75.00th-qrtle-2. However, even these results are probably a co-incidence. For this workload, much depends on what node the threads get placed on and their relative locality and not wakeups from interrupt context. A larger component on how it behaves would be automatic NUMA balancing where a fault incurred to measure locality would be a much larger contributer to latency than the wakeup path. This is the results from an almost identical machine that happened to run the same test. They only differ in terms of storage which is irrelevant for this test. 4.15.0-rc3 4.15.0-rc3 vanilla noirq-v1r1 Lat 50.00th-qrtle-1 41.00 ( 0.00%) 41.00 ( 0.00%) Lat 75.00th-qrtle-1 42.00 ( 0.00%) 42.00 ( 0.00%) Lat 90.00th-qrtle-1 44.00 ( 0.00%) 43.00 ( 2.27%) Lat 95.00th-qrtle-1 53.00 ( 0.00%) 45.00 ( 15.09%) Lat 99.00th-qrtle-1 59.00 ( 0.00%) 58.00 ( 1.69%) Lat 99.50th-qrtle-1 60.00 ( 0.00%) 59.00 ( 1.67%) Lat 99.90th-qrtle-1 86.00 ( 0.00%) 61.00 ( 29.07%) Lat 50.00th-qrtle-2 52.00 ( 0.00%) 41.00 ( 21.15%) Lat 75.00th-qrtle-2 57.00 ( 0.00%) 46.00 ( 19.30%) Lat 90.00th-qrtle-2 60.00 ( 0.00%) 53.00 ( 11.67%) Lat 95.00th-qrtle-2 62.00 ( 0.00%) 57.00 ( 8.06%) Lat 99.00th-qrtle-2 73.00 ( 0.00%) 68.00 ( 6.85%) Lat 99.50th-qrtle-2 74.00 ( 0.00%) 71.00 ( 4.05%) Lat 99.90th-qrtle-2 90.00 ( 0.00%) 75.00 ( 16.67%) Lat 50.00th-qrtle-4 57.00 ( 0.00%) 52.00 ( 8.77%) Lat 75.00th-qrtle-4 60.00 ( 0.00%) 58.00 ( 3.33%) Lat 90.00th-qrtle-4 62.00 ( 0.00%) 62.00 ( 0.00%) Lat 95.00th-qrtle-4 65.00 ( 0.00%) 65.00 ( 0.00%) Lat 99.00th-qrtle-4 76.00 ( 0.00%) 75.00 ( 1.32%) Lat 99.50th-qrtle-4 77.00 ( 0.00%) 77.00 ( 0.00%) Lat 99.90th-qrtle-4 87.00 ( 0.00%) 81.00 ( 6.90%) Lat 50.00th-qrtle-8 59.00 ( 0.00%) 57.00 ( 3.39%) Lat 75.00th-qrtle-8 63.00 ( 0.00%) 62.00 ( 1.59%) Lat 90.00th-qrtle-8 66.00 ( 0.00%) 67.00 ( -1.52%) Lat 95.00th-qrtle-8 68.00 ( 0.00%) 70.00 ( -2.94%) Lat 99.00th-qrtle-8 79.00 ( 0.00%) 80.00 ( -1.27%) Lat 99.50th-qrtle-8 80.00 ( 0.00%) 84.00 ( -5.00%) Lat 99.90th-qrtle-8 84.00 ( 0.00%) 90.00 ( -7.14%) Lat 50.00th-qrtle-16 65.00 ( 0.00%) 65.00 ( 0.00%) Lat 75.00th-qrtle-16 77.00 ( 0.00%) 75.00 ( 2.60%) Lat 90.00th-qrtle-16 84.00 ( 0.00%) 83.00 ( 1.19%) Lat 95.00th-qrtle-16 88.00 ( 0.00%) 87.00 ( 1.14%) Lat 99.00th-qrtle-16 97.00 ( 0.00%) 96.00 ( 1.03%) Lat 99.50th-qrtle-16 100.00 ( 0.00%) 104.00 ( -4.00%) Lat 99.90th-qrtle-16 110.00 ( 0.00%) 126.00 ( -14.55%) Lat 50.00th-qrtle-32 70.00 ( 0.00%) 71.00 ( -1.43%) Lat 75.00th-qrtle-32 92.00 ( 0.00%) 94.00 ( -2.17%) Lat 90.00th-qrtle-32 110.00 ( 0.00%) 110.00 ( 0.00%) Lat 95.00th-qrtle-32 121.00 ( 0.00%) 118.00 ( 2.48%) Lat 99.00th-qrtle-32 135.00 ( 0.00%) 137.00 ( -1.48%) Lat 99.50th-qrtle-32 140.00 ( 0.00%) 146.00 ( -4.29%) Lat 99.90th-qrtle-32 150.00 ( 0.00%) 160.00 ( -6.67%) Lat 50.00th-qrtle-39 80.00 ( 0.00%) 71.00 ( 11.25%) Lat 75.00th-qrtle-39 102.00 ( 0.00%) 91.00 ( 10.78%) Lat 90.00th-qrtle-39 118.00 ( 0.00%) 108.00 ( 8.47%) Lat 95.00th-qrtle-39 128.00 ( 0.00%) 117.00 ( 8.59%) Lat 99.00th-qrtle-39 149.00 ( 0.00%) 133.00 ( 10.74%) Lat 99.50th-qrtle-39 160.00 ( 0.00%) 139.00 ( 13.12%) Lat 99.90th-qrtle-39 13808.00 ( 0.00%) 4920.00 ( 64.37%) Despite being nearly identical, it showed a variety of major gains so I'm not convinced that heavy emphasis should be placed on this particular workload in terms of evaluating this particular patch. Further evidence of this is the fact that testing on a UMA machine showed small gains/losses even though the patch should be a no-op on UMA. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20171219085947.13136-2-mgorman@techsingularity.net Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Joel Fernandes
|
9783be2c0e |
sched/fair: Correct obsolete comment about cpufreq_update_util()
Since the remote cpufreq callback work, the cpufreq_update_util() call can happen from remote CPUs. The comment about local CPUs is thus obsolete. Update it accordingly. Signed-off-by: Joel Fernandes <joelaf@google.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Viresh Kumar <viresh.kumar@linaro.org> Cc: Android Kernel <kernel-team@android.com> Cc: Atish Patra <atish.patra@oracle.com> Cc: Chris Redpath <Chris.Redpath@arm.com> Cc: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: EAS Dev <eas-dev@lists.linaro.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Josef Bacik <jbacik@fb.com> Cc: Juri Lelli <juri.lelli@arm.com> Cc: Len Brown <lenb@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Morten Ramussen <morten.rasmussen@arm.com> Cc: Patrick Bellasi <patrick.bellasi@arm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rafael J. Wysocki <rjw@rjwysocki.net> Cc: Rohit Jain <rohit.k.jain@oracle.com> Cc: Saravana Kannan <skannan@quicinc.com> Cc: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com> Cc: Steve Muckle <smuckle@google.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vikram Mulukutla <markivx@codeaurora.org> Cc: Vincent Guittot <vincent.guittot@linaro.org> Link: http://lkml.kernel.org/r/20171215153944.220146-2-joelaf@google.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Joel Fernandes
|
18cec7e0dd |
sched/fair: Remove impossible condition from find_idlest_group_cpu()
find_idlest_group_cpu() goes through CPUs of a group previous selected by find_idlest_group(). find_idlest_group() returns NULL if the local group is the selected one and doesn't execute find_idlest_group_cpu if the group to which 'cpu' belongs to is chosen. So we're always guaranteed to call find_idlest_group_cpu() with a group to which 'cpu' is non-local. This makes one of the conditions in find_idlest_group_cpu() an impossible one, which we can get rid off. Signed-off-by: Joel Fernandes <joelaf@google.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Brendan Jackman <brendan.jackman@arm.com> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Cc: Android Kernel <kernel-team@android.com> Cc: Atish Patra <atish.patra@oracle.com> Cc: Chris Redpath <Chris.Redpath@arm.com> Cc: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: EAS Dev <eas-dev@lists.linaro.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Josef Bacik <jbacik@fb.com> Cc: Juri Lelli <juri.lelli@arm.com> Cc: Len Brown <lenb@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Morten Ramussen <morten.rasmussen@arm.com> Cc: Patrick Bellasi <patrick.bellasi@arm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rafael J. Wysocki <rjw@rjwysocki.net> Cc: Rohit Jain <rohit.k.jain@oracle.com> Cc: Saravana Kannan <skannan@quicinc.com> Cc: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com> Cc: Steve Muckle <smuckle@google.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vikram Mulukutla <markivx@codeaurora.org> Cc: Viresh Kumar <viresh.kumar@linaro.org> Link: http://lkml.kernel.org/r/20171215153944.220146-3-joelaf@google.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Viresh Kumar
|
5083452f8c |
sched/cpufreq: Don't pass flags to sugov_set_iowait_boost()
We are already passing sg_cpu as argument to sugov_set_iowait_boost() helper and the same can be used to retrieve the flags value. Get rid of the redundant argument. Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rafael Wysocki <rjw@rjwysocki.net> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vincent Guittot <vincent.guittot@linaro.org> Cc: dietmar.eggemann@arm.com Cc: joelaf@google.com Cc: juri.lelli@redhat.com Cc: morten.rasmussen@arm.com Cc: tkjos@android.com Link: http://lkml.kernel.org/r/4ec5562b1a87e146ebab11fb5dde1ca9c763a7fb.1513158452.git.viresh.kumar@linaro.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Viresh Kumar
|
6257e70478 |
sched/cpufreq: Initialize sg_cpu->flags to 0
Initializing sg_cpu->flags to SCHED_CPUFREQ_RT has no obvious benefit. The flags field wouldn't be used until the utilization update handler is called for the first time, and once that is called we will overwrite flags anyway. Initialize it to 0. Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Juri Lelli <juri.lelli@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rafael Wysocki <rjw@rjwysocki.net> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vincent Guittot <vincent.guittot@linaro.org> Cc: dietmar.eggemann@arm.com Cc: joelaf@google.com Cc: morten.rasmussen@arm.com Cc: tkjos@android.com Link: http://lkml.kernel.org/r/763feda6424ced8486b25a0c52979634e6104478.1513158452.git.viresh.kumar@linaro.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Joel Fernandes
|
f453ae2200 |
sched/fair: Consider RT/IRQ pressure in capacity_spare_wake()
capacity_spare_wake() in the slow path influences choice of idlest groups, as we search for groups with maximum spare capacity. In scenarios where RT pressure is high, a sub optimal group can be chosen and hurt performance of the task being woken up. Fix this by using capacity_of() instead of capacity_orig_of() in capacity_spare_wake(). Tests results from improvements with this change are below. More tests were also done by myself and Matt Fleming to ensure no degradation in different benchmarks. 1) Rohit ran barrier.c test (details below) with following improvements: ------------------------------------------------------------------------ This was Rohit's original use case for a patch he posted at [1] however from his recent tests he showed my patch can replace his slow path changes [1] and there's no need to selectively scan/skip CPUs in find_idlest_group_cpu in the slow path to get the improvement he sees. barrier.c (open_mp code) as a micro-benchmark. It does a number of iterations and barrier sync at the end of each for loop. Here barrier,c is running in along with ping on CPU 0 and 1 as: 'ping -l 10000 -q -s 10 -f hostX' barrier.c can be found at: http://www.spinics.net/lists/kernel/msg2506955.html Following are the results for the iterations per second with this micro-benchmark (higher is better), on a 44 core, 2 socket 88 Threads Intel x86 machine: +--------+------------------+---------------------------+ |Threads | Without patch | With patch | | | | | +--------+--------+---------+-----------------+---------+ | | Mean | Std Dev | Mean | Std Dev | +--------+--------+---------+-----------------+---------+ |1 | 539.36 | 60.16 | 572.54 (+6.15%) | 40.95 | |2 | 481.01 | 19.32 | 530.64 (+10.32%)| 56.16 | |4 | 474.78 | 22.28 | 479.46 (+0.99%) | 18.89 | |8 | 450.06 | 24.91 | 447.82 (-0.50%) | 12.36 | |16 | 436.99 | 22.57 | 441.88 (+1.12%) | 7.39 | |32 | 388.28 | 55.59 | 429.4 (+10.59%)| 31.14 | |64 | 314.62 | 6.33 | 311.81 (-0.89%) | 11.99 | +--------+--------+---------+-----------------+---------+ 2) ping+hackbench test on bare-metal sever (by Rohit) ----------------------------------------------------- Here hackbench is running in threaded mode along with, running ping on CPU 0 and 1 as: 'ping -l 10000 -q -s 10 -f hostX' This test is running on 2 socket, 20 core and 40 threads Intel x86 machine: Number of loops is 10000 and runtime is in seconds (Lower is better). +--------------+-----------------+--------------------------+ |Task Groups | Without patch | With patch | | +-------+---------+----------------+---------+ |(Groups of 40)| Mean | Std Dev | Mean | Std Dev | +--------------+-------+---------+----------------+---------+ |1 | 0.851 | 0.007 | 0.828 (+2.77%)| 0.032 | |2 | 1.083 | 0.203 | 1.087 (-0.37%)| 0.246 | |4 | 1.601 | 0.051 | 1.611 (-0.62%)| 0.055 | |8 | 2.837 | 0.060 | 2.827 (+0.35%)| 0.031 | |16 | 5.139 | 0.133 | 5.107 (+0.63%)| 0.085 | |25 | 7.569 | 0.142 | 7.503 (+0.88%)| 0.143 | +--------------+-------+---------+----------------+---------+ [1] https://patchwork.kernel.org/patch/9991635/ Matt Fleming also ran several different hackbench tests and cyclic test to santiy-check that the patch doesn't harm other usecases. Tested-by: Matt Fleming <matt@codeblueprint.co.uk> Tested-by: Rohit Jain <rohit.k.jain@oracle.com> Signed-off-by: Joel Fernandes <joelaf@google.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Atish Patra <atish.patra@oracle.com> Cc: Brendan Jackman <brendan.jackman@arm.com> Cc: Chris Redpath <Chris.Redpath@arm.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Juri Lelli <juri.lelli@arm.com> Cc: Len Brown <lenb@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Morten Ramussen <morten.rasmussen@arm.com> Cc: Patrick Bellasi <patrick.bellasi@arm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rafael J. Wysocki <rjw@rjwysocki.net> Cc: Saravana Kannan <skannan@quicinc.com> Cc: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com> Cc: Steve Muckle <smuckle@google.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vikram Mulukutla <markivx@codeaurora.org> Cc: Viresh Kumar <viresh.kumar@linaro.org> Link: http://lkml.kernel.org/r/20171214212158.188190-1-joelaf@google.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Patrick Bellasi
|
f01415fdbf |
sched/fair: Use 'unsigned long' for utilization, consistently
Utilization and capacity are tracked as 'unsigned long', however some functions using them return an 'int' which is ultimately assigned back to 'unsigned long' variables. Since there is not scope on using a different and signed type, consolidate the signature of functions returning utilization to always use the native type. This change improves code consistency, and it also benefits code paths where utilizations should be clamped by avoiding further type conversions or ugly type casts. Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Chris Redpath <chris.redpath@arm.com> Reviewed-by: Brendan Jackman <brendan.jackman@arm.com> Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Joel Fernandes <joelaf@google.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Morten Rasmussen <morten.rasmussen@arm.com> Cc: Paul Turner <pjt@google.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Todd Kjos <tkjos@android.com> Cc: Vincent Guittot <vincent.guittot@linaro.org> Cc: Viresh Kumar <viresh.kumar@linaro.org> Link: http://lkml.kernel.org/r/20171205171018.9203-2-patrick.bellasi@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
rodrigosiqueira
|
31cb1bc0dc |
sched/core: Rework and clarify prepare_lock_switch()
The prepare_lock_switch() function has an unused parameter, and also the function name was not descriptive. To improve readability and remove the extra parameter, do the following changes: * Move prepare_lock_switch() from kernel/sched/sched.h to kernel/sched/core.c, rename it to prepare_task(), and remove the unused parameter. * Split the smp_store_release() out from finish_lock_switch() to a function named finish_task. * Comments ajdustments. Signed-off-by: Rodrigo Siqueira <rodrigosiqueiramelo@gmail.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20171215140603.gxe5i2y6fg5ojfpp@smtp.gmail.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Ingo Molnar
|
cb1f34ddcc |
Merge branch 'sched/urgent' into sched/core, to pick up fixes
Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Mathieu Desnoyers
|
541676078b |
membarrier: Disable preemption when calling smp_call_function_many()
smp_call_function_many() requires disabling preemption around the call. Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: <stable@vger.kernel.org> # v4.14+ Cc: Andrea Parri <parri.andrea@gmail.com> Cc: Andrew Hunter <ahh@google.com> Cc: Avi Kivity <avi@scylladb.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Boqun Feng <boqun.feng@gmail.com> Cc: Dave Watson <davejwatson@fb.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Maged Michael <maged.michael@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Paul E . McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20171215192310.25293-1-mathieu.desnoyers@efficios.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Ingo Molnar
|
527187d285 |
locking/lockdep: Remove cross-release leftovers
There's two cross-release leftover facilities: - the crossrelease_hist_*() irq-tracing callbacks (NOPs currently) - the complete_release_commit() callback (NOP as well) Remove them. Cc: David Sterba <dsterba@suse.com> Cc: Byungchul Park <byungchul.park@lge.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Ingo Molnar
|
475c5ee193 |
Merge branch 'for-mingo' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu into core/rcu
Pull RCU updates from Paul E. McKenney: - Updates to use cond_resched() instead of cond_resched_rcu_qs() where feasible (currently everywhere except in kernel/rcu and in kernel/torture.c). Also a couple of fixes to avoid sending IPIs to offline CPUs. - Updates to simplify RCU's dyntick-idle handling. - Updates to remove almost all uses of smp_read_barrier_depends() and read_barrier_depends(). - Miscellaneous fixes. - Torture-test updates. Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Joel Fernandes
|
466a2b42d6 |
cpufreq: schedutil: Use idle_calls counter of the remote CPU
Since the recent remote cpufreq callback work, its possible that a cpufreq
update is triggered from a remote CPU. For single policies however, the current
code uses the local CPU when trying to determine if the remote sg_cpu entered
idle or is busy. This is incorrect. To remedy this, compare with the nohz tick
idle_calls counter of the remote CPU.
Fixes:
|
||
Steven Rostedt
|
f73c52a5bc |
sched/rt: Do not pull from current CPU if only one CPU to pull
Daniel Wagner reported a crash on the BeagleBone Black SoC.
This is a single CPU architecture, and does not have a functional
arch_send_call_function_single_ipi() implementation which can crash
the kernel if that is called.
As it only has one CPU, it shouldn't be called, but if the kernel is
compiled for SMP, the push/pull RT scheduling logic now calls it for
irq_work if the one CPU is overloaded, it can use that function to call
itself and crash the kernel.
Ideally, we should disable the SCHED_FEAT(RT_PUSH_IPI) if the system
only has a single CPU. But SCHED_FEAT is a constant if sched debugging
is turned off. Another fix can also be used, and this should also help
with normal SMP machines. That is, do not initiate the pull code if
there's only one RT overloaded CPU, and that CPU happens to be the
current CPU that is scheduling in a lower priority task.
Even on a system with many CPUs, if there's many RT tasks waiting to
run on a single CPU, and that CPU schedules in another RT task of lower
priority, it will initiate the PULL logic in case there's a higher
priority RT task on another CPU that is waiting to run. But if there is
no other CPU with waiting RT tasks, it will initiate the RT pull logic
on itself (as it still has RT tasks waiting to run). This is a wasted
effort.
Not only does this help with SMP code where the current CPU is the only
one with RT overloaded tasks, it should also solve the issue that
Daniel encountered, because it will prevent the PULL logic from
executing, as there's only one CPU on the system, and the check added
here will cause it to exit the RT pull code.
Reported-by: Daniel Wagner <wagi@monom.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-rt-users <linux-rt-users@vger.kernel.org>
Cc: stable@vger.kernel.org
Fixes:
|
||
Randy Dunlap
|
2064a5ab04 |
sched/core: Fix kernel-doc warnings after code movement
Fix the following kernel-doc warnings after code restructuring:
../kernel/sched/core.c:5113: warning: No description found for parameter 't'
../kernel/sched/core.c:5113: warning: Excess function parameter 'interval' description in 'sched_rr_get_interval'
get rid of set_fs()")
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes:
|
||
Cheng Jian
|
a555e9d86e |
sched/fair: Remove unused 'curr' parameter from wakeup_gran
The first parameter of wakeup_gran(), 'curr', is unnecessary now. Signed-off-by: Cheng Jian <cj.chengjian@huawei.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: huawei.libin@huawei.com Cc: xiexiuqi@huawei.com Link: http://lkml.kernel.org/r/1512653443-179848-1-git-send-email-cj.chengjian@huawei.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Vincent Guittot
|
a4c3c04974 |
sched/fair: Update and fix the runnable propagation rule
Unlike running, the runnable part can't be directly propagated through the hierarchy when we migrate a task. The main reason is that runnable time can be shared with other sched_entities that stay on the rq and this runnable time will also remain on prev cfs_rq and must not be removed. Instead, we can estimate what should be the new runnable of the prev cfs_rq and check that this estimation stay in a possible range. The prop_runnable_sum is a good estimation when adding runnable_sum but fails most often when we remove it. Instead, we could use the formula below instead: gcfs_rq's runnable_sum = gcfs_rq->avg.load_sum / gcfs_rq->load.weight which assumes that tasks are equally runnable which is not true but easy to compute. Beside these estimates, we have several simple rules that help us to filter out wrong ones: - ge->avg.runnable_sum <= than LOAD_AVG_MAX - ge->avg.runnable_sum >= ge->avg.running_sum (ge->avg.util_sum << LOAD_AVG_MAX) - ge->avg.runnable_sum can't increase when we detach a task The effect of these fixes is better cgroups balancing. Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Ben Segall <bsegall@google.com> Cc: Chris Mason <clm@fb.com> Cc: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Josef Bacik <josef@toxicpanda.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Morten Rasmussen <morten.rasmussen@arm.com> Cc: Paul Turner <pjt@google.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Tejun Heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Yuyang Du <yuyang.du@intel.com> Link: http://lkml.kernel.org/r/1510842112-21028-1-git-send-email-vincent.guittot@linaro.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Omar Sandoval
|
c6b9d9a330 |
sched/wait: Fix add_wait_queue() behavioral change
The following cleanup commit:
|
||
Paul E. McKenney
|
2fe2582649 |
sched: Stop switched_to_rt() from sending IPIs to offline CPUs
The rcutorture test suite occasionally provokes a splat due to invoking rt_mutex_lock() which needs to boost the priority of a task currently sitting on a runqueue that belongs to an offline CPU: WARNING: CPU: 0 PID: 12 at /home/paulmck/public_git/linux-rcu/arch/x86/kernel/smp.c:128 native_smp_send_reschedule+0x37/0x40 Modules linked in: CPU: 0 PID: 12 Comm: rcub/7 Not tainted 4.14.0-rc4+ #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Ubuntu-1.8.2-1ubuntu1 04/01/2014 task: ffff9ed3de5f8cc0 task.stack: ffffbbf80012c000 RIP: 0010:native_smp_send_reschedule+0x37/0x40 RSP: 0018:ffffbbf80012fd10 EFLAGS: 00010082 RAX: 000000000000002f RBX: ffff9ed3dd9cb300 RCX: 0000000000000004 RDX: 0000000080000004 RSI: 0000000000000086 RDI: 00000000ffffffff RBP: ffffbbf80012fd10 R08: 000000000009da7a R09: 0000000000007b9d R10: 0000000000000001 R11: ffffffffbb57c2cd R12: 000000000000000d R13: ffff9ed3de5f8cc0 R14: 0000000000000061 R15: ffff9ed3ded59200 FS: 0000000000000000(0000) GS:ffff9ed3dea00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00000000080686f0 CR3: 000000001b9e0000 CR4: 00000000000006f0 Call Trace: resched_curr+0x61/0xd0 switched_to_rt+0x8f/0xa0 rt_mutex_setprio+0x25c/0x410 task_blocks_on_rt_mutex+0x1b3/0x1f0 rt_mutex_slowlock+0xa9/0x1e0 rt_mutex_lock+0x29/0x30 rcu_boost_kthread+0x127/0x3c0 kthread+0x104/0x140 ? rcu_report_unblock_qs_rnp+0x90/0x90 ? kthread_create_on_node+0x40/0x40 ret_from_fork+0x22/0x30 Code: f0 00 0f 92 c0 84 c0 74 14 48 8b 05 34 74 c5 00 be fd 00 00 00 ff 90 a0 00 00 00 5d c3 89 fe 48 c7 c7 a0 c6 fc b9 e8 d5 b5 06 00 <0f> ff 5d c3 0f 1f 44 00 00 8b 05 a2 d1 13 02 85 c0 75 38 55 48 But the target task's priority has already been adjusted, so the only purpose of switched_to_rt() invoking resched_curr() is to wake up the CPU running some task that needs to be preempted by the boosted task. But the CPU is offline, which presumably means that the task must be migrated to some other CPU, and that this other CPU will undertake any needed preemption at the time of migration. Because the runqueue lock is held when resched_curr() is invoked, we know that the boosted task cannot go anywhere, so it is not necessary to invoke resched_curr() in this particular case. This commit therefore makes switched_to_rt() refrain from invoking resched_curr() when the target CPU is offline. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> |
||
Paul E. McKenney
|
a0982dfa03 |
sched: Stop resched_cpu() from sending IPIs to offline CPUs
The rcutorture test suite occasionally provokes a splat due to invoking resched_cpu() on an offline CPU: WARNING: CPU: 2 PID: 8 at /home/paulmck/public_git/linux-rcu/arch/x86/kernel/smp.c:128 native_smp_send_reschedule+0x37/0x40 Modules linked in: CPU: 2 PID: 8 Comm: rcu_preempt Not tainted 4.14.0-rc4+ #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Ubuntu-1.8.2-1ubuntu1 04/01/2014 task: ffff902ede9daf00 task.stack: ffff96c50010c000 RIP: 0010:native_smp_send_reschedule+0x37/0x40 RSP: 0018:ffff96c50010fdb8 EFLAGS: 00010096 RAX: 000000000000002e RBX: ffff902edaab4680 RCX: 0000000000000003 RDX: 0000000080000003 RSI: 0000000000000000 RDI: 00000000ffffffff RBP: ffff96c50010fdb8 R08: 0000000000000000 R09: 0000000000000001 R10: 0000000000000000 R11: 00000000299f36ae R12: 0000000000000001 R13: ffffffff9de64240 R14: 0000000000000001 R15: ffffffff9de64240 FS: 0000000000000000(0000) GS:ffff902edfc80000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00000000f7d4c642 CR3: 000000001e0e2000 CR4: 00000000000006e0 Call Trace: resched_curr+0x8f/0x1c0 resched_cpu+0x2c/0x40 rcu_implicit_dynticks_qs+0x152/0x220 force_qs_rnp+0x147/0x1d0 ? sync_rcu_exp_select_cpus+0x450/0x450 rcu_gp_kthread+0x5a9/0x950 kthread+0x142/0x180 ? force_qs_rnp+0x1d0/0x1d0 ? kthread_create_on_node+0x40/0x40 ret_from_fork+0x27/0x40 Code: 14 01 0f 92 c0 84 c0 74 14 48 8b 05 14 4f f4 00 be fd 00 00 00 ff 90 a0 00 00 00 5d c3 89 fe 48 c7 c7 38 89 ca 9d e8 e5 56 08 00 <0f> ff 5d c3 0f 1f 44 00 00 8b 05 52 9e 37 02 85 c0 75 38 55 48 ---[ end trace 26df9e5df4bba4ac ]--- This splat cannot be generated by expedited grace periods because they always invoke resched_cpu() on the current CPU, which is good because expedited grace periods require that resched_cpu() unconditionally succeed. However, other parts of RCU can tolerate resched_cpu() acting as a no-op, at least as long as it doesn't happen too often. This commit therefore makes resched_cpu() invoke resched_curr() only if the CPU is either online or is the current CPU. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> |
||
Linus Torvalds
|
93f30c73ec |
Merge branch 'misc.compat' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull compat and uaccess updates from Al Viro: - {get,put}_compat_sigset() series - assorted compat ioctl stuff - more set_fs() elimination - a few more timespec64 conversions - several removals of pointless access_ok() in places where it was followed only by non-__ variants of primitives * 'misc.compat' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (24 commits) coredump: call do_unlinkat directly instead of sys_unlink fs: expose do_unlinkat for built-in callers ext4: take handling of EXT4_IOC_GROUP_ADD into a helper, get rid of set_fs() ipmi: get rid of pointless access_ok() pi433: sanitize ioctl cxlflash: get rid of pointless access_ok() mtdchar: get rid of pointless access_ok() r128: switch compat ioctls to drm_ioctl_kernel() selection: get rid of field-by-field copyin VT_RESIZEX: get rid of field-by-field copyin i2c compat ioctls: move to ->compat_ioctl() sched_rr_get_interval(): move compat to native, get rid of set_fs() mips: switch to {get,put}_compat_sigset() sparc: switch to {get,put}_compat_sigset() s390: switch to {get,put}_compat_sigset() ppc: switch to {get,put}_compat_sigset() parisc: switch to {get,put}_compat_sigset() get_compat_sigset() get rid of {get,put}_compat_itimerspec() io_getevents: Use timespec64 to represent timeouts ... |
||
Linus Torvalds
|
487e2c9f44 |
AFS development
-----BEGIN PGP SIGNATURE----- iQIVAwUAWgm9V/Sw1s6N8H32AQK5mQ//QGUDZLXsUPCtq0XJq0V+r4MUjNp9tCZR htiuNrEkHSyPpYgCcQ2Aqdl9kndwVXcE7lWT99mp/a0zwNAsp9GOGVhCXUd5R86G XlrBuUYVvBJk18tDsUNWdjRQ0gMHgQSlEnEbsaGiU1bVrpXatI9hL8qoeO78Iy7+ eaJUQLCuCVJq7qMQGhC0hg338vmHVeYhnViXIxq+HFjsMmR9IVanuK+sQr6NSJxS F6RkPxBUPWkRVMHmxTLWj/XSHZwtwu+Mnc/UFYsAPLKEbY0cIohsI8EgfE8U7geU yRVnu3MIOXUXUrZizj9SwVYWdJfneRlINqMbHIO8QXMKR38tnQ0C2/7bgBsXiNPv YdiAyeqL4nM+JthV/rgA3hWgupwBlSb4ubclTphDNxMs5MBIUIK3XUt9GOXDDUZz 2FT/FdrphM2UORaI2AEOi4Q0/nHdin+3rld8fjV0Ree/TPNXwcrOmvy8yGnxFCEp 5b7YLwKrffZGnnS965dhZlnFR6hjndmzFgHdyRrJwc80hXi1Q/+W4F19MoYkkoVK G/gLvD3FbmygmFnjCik9TjUrro6vQxo56H/TuWgHTvYriNGH+D/D7EGUwg4GiXZZ +7vrNw660uXmZiu9i0YacCRyD8lvm7QpmWLb+uHwzfsBE1+C8UetyQ+egSWVdWJO KwPspygWXD4= =3vy0 -----END PGP SIGNATURE----- Merge tag 'afs-next-20171113' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs Pull AFS updates from David Howells: "kAFS filesystem driver overhaul. The major points of the overhaul are: (1) Preliminary groundwork is laid for supporting network-namespacing of kAFS. The remainder of the namespacing work requires some way to pass namespace information to submounts triggered by an automount. This requires something like the mount overhaul that's in progress. (2) sockaddr_rxrpc is used in preference to in_addr for holding addresses internally and add support for talking to the YFS VL server. With this, kAFS can do everything over IPv6 as well as IPv4 if it's talking to servers that support it. (3) Callback handling is overhauled to be generally passive rather than active. 'Callbacks' are promises by the server to tell us about data and metadata changes. Callbacks are now checked when we next touch an inode rather than actively going and looking for it where possible. (4) File access permit caching is overhauled to store the caching information per-inode rather than per-directory, shared over subordinate files. Whilst older AFS servers only allow ACLs on directories (shared to the files in that directory), newer AFS servers break that restriction. To improve memory usage and to make it easier to do mass-key removal, permit combinations are cached and shared. (5) Cell database management is overhauled to allow lighter locks to be used and to make cell records autonomous state machines that look after getting their own DNS records and cleaning themselves up, in particular preventing races in acquiring and relinquishing the fscache token for the cell. (6) Volume caching is overhauled. The afs_vlocation record is got rid of to simplify things and the superblock is now keyed on the cell and the numeric volume ID only. The volume record is tied to a superblock and normal superblock management is used to mediate the lifetime of the volume fscache token. (7) File server record caching is overhauled to make server records independent of cells and volumes. A server can be in multiple cells (in such a case, the administrator must make sure that the VL services for all cells correctly reflect the volumes shared between those cells). Server records are now indexed using the UUID of the server rather than the address since a server can have multiple addresses. (8) File server rotation is overhauled to handle VMOVED, VBUSY (and similar), VOFFLINE and VNOVOL indications and to handle rotation both of servers and addresses of those servers. The rotation will also wait and retry if the server says it is busy. (9) Data writeback is overhauled. Each inode no longer stores a list of modified sections tagged with the key that authorised it in favour of noting the modified region of a page in page->private and storing a list of keys that made modifications in the inode. This simplifies things and allows other keys to be used to actually write to the server if a key that made a modification becomes useless. (10) Writable mmap() is implemented. This allows a kernel to be build entirely on AFS. Note that Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998)" * tag 'afs-next-20171113' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs: (35 commits) afs: Protect call->state changes against signals afs: Trace page dirty/clean afs: Implement shared-writeable mmap afs: Get rid of the afs_writeback record afs: Introduce a file-private data record afs: Use a dynamic port if 7001 is in use afs: Fix directory read/modify race afs: Trace the sending of pages afs: Trace the initiation and completion of client calls afs: Fix documentation on # vs % prefix in mount source specification afs: Fix total-length calculation for multiple-page send afs: Only progress call state at end of Tx phase from rxrpc callback afs: Make use of the YFS service upgrade to fully support IPv6 afs: Overhaul volume and server record caching and fileserver rotation afs: Move server rotation code into its own file afs: Add an address list concept afs: Overhaul cell database management afs: Overhaul permit caching afs: Overhaul the callback handling afs: Rename struct afs_call server member to cm_server ... |
||
Linus Torvalds
|
22714a2ba4 |
Merge branch 'for-4.15' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup
Pull cgroup updates from Tejun Heo: "Cgroup2 cpu controller support is finally merged. - Basic cpu statistics support to allow monitoring by default without the CPU controller enabled. - cgroup2 cpu controller support. - /sys/kernel/cgroup files to help dealing with new / optional features" * 'for-4.15' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: cgroup: export list of cgroups v2 features using sysfs cgroup: export list of delegatable control files using sysfs cgroup: mark @cgrp __maybe_unused in cpu_stat_show() MAINTAINERS: relocate cpuset.c cgroup, sched: Move basic cpu stats from cgroup.stat to cpu.stat sched: Implement interface for cgroup unified hierarchy sched: Misc preps for cgroup unified hierarchy interface sched/cputime: Add dummy cputime_adjust() implementation for CONFIG_VIRT_CPU_ACCOUNTING_NATIVE cgroup: statically initialize init_css_set->dfl_cgrp cgroup: Implement cgroup2 basic CPU usage accounting cpuacct: Introduce cgroup_account_cputime[_field]() sched/cputime: Expose cputime_adjust() |
||
Linus Torvalds
|
bd2cd7d5a8 |
Power management updates for v4.15-rc1
- Relocate the OPP (Operating Performance Points) framework to its own directory under drivers/ and add support for power domain performance states to it (Viresh Kumar). - Modify the PM core, the PCI bus type and the ACPI PM domain to support power management driver flags allowing device drivers to specify their capabilities and preferences regarding the handling of devices with enabled runtime PM during system suspend/resume and clean up that code somewhat (Rafael Wysocki, Ulf Hansson). - Add frequency-invariant accounting support to the task scheduler on ARM and ARM64 (Dietmar Eggemann). - Fix PM QoS device resume latency framework to prevent "no restriction" requests from overriding requests with specific requirements and drop the confusing PM_QOS_FLAG_REMOTE_WAKEUP device PM QoS flag (Rafael Wysocki). - Drop legacy class suspend/resume operations from the PM core and drop legacy bus type suspend and resume callbacks from ARM/locomo (Rafael Wysocki). - Add min/max frequency support to devfreq and clean it up somewhat (Chanwoo Choi). - Rework wakeup support in the generic power domains (genpd) framework and update some of its users accordingly (Geert Uytterhoeven). - Convert timers in the PM core to use timer_setup() (Kees Cook). - Add support for exposing the SLP_S0 (Low Power S0 Idle) residency counter based on the LPIT ACPI table on Intel platforms (Srinivas Pandruvada). - Add per-CPU PM QoS resume latency support to the ladder cpuidle governor (Ramesh Thomas). - Fix a deadlock between the wakeup notify handler and the notifier removal in the ACPI core (Ville Syrjälä). - Fix a cpufreq schedutil governor issue causing it to use stale cached frequency values sometimes (Viresh Kumar). - Fix an issue in the system suspend core support code causing wakeup events detection to fail in some cases (Rajat Jain). - Fix the generic power domains (genpd) framework to prevent the PM core from using the direct-complete optimization with it as that is guaranteed to fail (Ulf Hansson). - Fix a minor issue in the cpuidle core and clean it up a bit (Gaurav Jindal, Nicholas Piggin). - Fix and clean up the intel_idle and ARM cpuidle drivers (Jason Baron, Len Brown, Leo Yan). - Fix a couple of minor issues in the OPP framework and clean it up (Arvind Yadav, Fabio Estevam, Sudeep Holla, Tobias Jordan). - Fix and clean up some cpufreq drivers and fix a minor issue in the cpufreq statistics code (Arvind Yadav, Bhumika Goyal, Fabio Estevam, Gautham Shenoy, Gustavo Silva, Marek Szyprowski, Masahiro Yamada, Robert Jarzmik, Zumeng Chen). - Fix minor issues in the system suspend and hibernation core, in power management documentation and in the AVS (Adaptive Voltage Scaling) framework (Helge Deller, Himanshu Jha, Joe Perches, Rafael Wysocki). - Fix some issues in the cpupower utility and document that Shuah Khan is going to maintain it going forward (Prarit Bhargava, Shuah Khan). -----BEGIN PGP SIGNATURE----- Version: GnuPG v2 iQIcBAABCAAGBQJaCg2eAAoJEILEb/54YlRxGhAP/26D5TvfQ65wtf2W0Gas/tsP +24SzCLQO2GWalhbOXZbXhnBn/eCovKB6T8VB0V7Bff0VcUOK9szmBu9hOBJfXGN ec2oYKtWPwqzkgPfbqjZhQTp5EXg/dmWYOhAMA7HLMv7oVZqoRZ/MNOJPooXAmQj NEVWj3Eap0anic0ZgGMN4FaIMF6CHP2rAheqWQVXihhXpjIOWrJCjEoPZfbH1bFC +zd9Batd3rq+eZ5dYxg+znpYcZi69kmPw+KASYsaWTJzNjYbR+VLOxqzx7Icdgbz 4glwWNe7lZGCAj+BIKGaHN5CR/fAXqkPvJ8csn6qISyUJ1Gph6otRfvuUaK58F4T 1Rmcj+mGXgJBcjaQGmVQIITKD6drBW/l50MJlze5JUM4A7VM2Di/cctgoWmOJsnO 2f6D6PYGuW0Fe8uUVGki/ddApXvoTGbEx+ncQ5+At+mLMKJwYfND9h2stOkCcrTy k4Pr+XpVU9hXwYVX3a1Au41bFQiXYwguxD1TH1LaY3liAWXvo0qNc/Ib6mW8e7pL wqPoe2/yxgVw5rsQPcKxVxAFFgjAAIdU3Xw44ETTPN315CLOoiuZgWkeTrnYCdix DaBWu1VN9tU5U6FWBlWXDb06i5qvSo3aYzLnSBC6fm7qX2SuDxGiQTcyOQ7H1NiQ d1wzhgObW98N7rZRaByu =QTnx -----END PGP SIGNATURE----- Merge tag 'pm-4.15-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm Pull power management updates from Rafael Wysocki: "There are no real big ticket items here this time. The most noticeable change is probably the relocation of the OPP (Operating Performance Points) framework to its own directory under drivers/ as it has grown big enough for that. Also Viresh is now going to maintain it and send pull requests for it to me, so you will see this change in the git history going forward (but still not right now). Another noticeable set of changes is the modifications of the PM core, the PCI subsystem and the ACPI PM domain to allow of more integration between system-wide suspend/resume and runtime PM. For now it's just a way to avoid resuming devices from runtime suspend unnecessarily during system suspend (if the driver sets a flag to indicate its readiness for that) and in the works is an analogous mechanism to allow devices to stay suspended after system resume. In addition to that, we have some changes related to supporting frequency-invariant CPU utilization metrics in the scheduler and in the schedutil cpufreq governor on ARM and changes to add support for device performance states to the generic power domains (genpd) framework. The rest is mostly fixes and cleanups of various sorts. Specifics: - Relocate the OPP (Operating Performance Points) framework to its own directory under drivers/ and add support for power domain performance states to it (Viresh Kumar). - Modify the PM core, the PCI bus type and the ACPI PM domain to support power management driver flags allowing device drivers to specify their capabilities and preferences regarding the handling of devices with enabled runtime PM during system suspend/resume and clean up that code somewhat (Rafael Wysocki, Ulf Hansson). - Add frequency-invariant accounting support to the task scheduler on ARM and ARM64 (Dietmar Eggemann). - Fix PM QoS device resume latency framework to prevent "no restriction" requests from overriding requests with specific requirements and drop the confusing PM_QOS_FLAG_REMOTE_WAKEUP device PM QoS flag (Rafael Wysocki). - Drop legacy class suspend/resume operations from the PM core and drop legacy bus type suspend and resume callbacks from ARM/locomo (Rafael Wysocki). - Add min/max frequency support to devfreq and clean it up somewhat (Chanwoo Choi). - Rework wakeup support in the generic power domains (genpd) framework and update some of its users accordingly (Geert Uytterhoeven). - Convert timers in the PM core to use timer_setup() (Kees Cook). - Add support for exposing the SLP_S0 (Low Power S0 Idle) residency counter based on the LPIT ACPI table on Intel platforms (Srinivas Pandruvada). - Add per-CPU PM QoS resume latency support to the ladder cpuidle governor (Ramesh Thomas). - Fix a deadlock between the wakeup notify handler and the notifier removal in the ACPI core (Ville Syrjälä). - Fix a cpufreq schedutil governor issue causing it to use stale cached frequency values sometimes (Viresh Kumar). - Fix an issue in the system suspend core support code causing wakeup events detection to fail in some cases (Rajat Jain). - Fix the generic power domains (genpd) framework to prevent the PM core from using the direct-complete optimization with it as that is guaranteed to fail (Ulf Hansson). - Fix a minor issue in the cpuidle core and clean it up a bit (Gaurav Jindal, Nicholas Piggin). - Fix and clean up the intel_idle and ARM cpuidle drivers (Jason Baron, Len Brown, Leo Yan). - Fix a couple of minor issues in the OPP framework and clean it up (Arvind Yadav, Fabio Estevam, Sudeep Holla, Tobias Jordan). - Fix and clean up some cpufreq drivers and fix a minor issue in the cpufreq statistics code (Arvind Yadav, Bhumika Goyal, Fabio Estevam, Gautham Shenoy, Gustavo Silva, Marek Szyprowski, Masahiro Yamada, Robert Jarzmik, Zumeng Chen). - Fix minor issues in the system suspend and hibernation core, in power management documentation and in the AVS (Adaptive Voltage Scaling) framework (Helge Deller, Himanshu Jha, Joe Perches, Rafael Wysocki). - Fix some issues in the cpupower utility and document that Shuah Khan is going to maintain it going forward (Prarit Bhargava, Shuah Khan)" * tag 'pm-4.15-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (88 commits) tools/power/cpupower: add libcpupower.so.0.0.1 to .gitignore tools/power/cpupower: Add 64 bit library detection intel_idle: Graceful probe failure when MWAIT is disabled cpufreq: schedutil: Reset cached_raw_freq when not in sync with next_freq freezer: Fix typo in freezable_schedule_timeout() comment PM / s2idle: Clear the events_check_enabled flag cpufreq: stats: Handle the case when trans_table goes beyond PAGE_SIZE cpufreq: arm_big_little: make cpufreq_arm_bL_ops structures const cpufreq: arm_big_little: make function arguments and structure pointer const cpuidle: Avoid assignment in if () argument cpuidle: Clean up cpuidle_enable_device() error handling a bit ACPI / PM: Fix acpi_pm_notifier_lock vs flush_workqueue() deadlock PM / Domains: Fix genpd to deal with drivers returning 1 from ->prepare() cpuidle: ladder: Add per CPU PM QoS resume latency support PM / QoS: Fix device resume latency framework PM / domains: Rework governor code to be more consistent PM / Domains: Remove gpd_dev_ops.active_wakeup() callback soc: rockchip: power-domain: Use GENPD_FLAG_ACTIVE_WAKEUP soc: mediatek: Use GENPD_FLAG_ACTIVE_WAKEUP ARM: shmobile: pm-rmobile: Use GENPD_FLAG_ACTIVE_WAKEUP ... |
||
Linus Torvalds
|
3e2014637c |
Merge branch 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar: "The main updates in this cycle were: - Group balancing enhancements and cleanups (Brendan Jackman) - Move CPU isolation related functionality into its separate kernel/sched/isolation.c file, with related 'housekeeping_*()' namespace and nomenclature et al. (Frederic Weisbecker) - Improve the interactive/cpu-intense fairness calculation (Josef Bacik) - Improve the PELT code and related cleanups (Peter Zijlstra) - Improve the logic of pick_next_task_fair() (Uladzislau Rezki) - Improve the RT IPI based balancing logic (Steven Rostedt) - Various micro-optimizations: - better !CONFIG_SCHED_DEBUG optimizations (Patrick Bellasi) - better idle loop (Cheng Jian) - ... plus misc fixes, cleanups and updates" * 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (54 commits) sched/core: Optimize sched_feat() for !CONFIG_SCHED_DEBUG builds sched/sysctl: Fix attributes of some extern declarations sched/isolation: Document isolcpus= boot parameter flags, mark it deprecated sched/isolation: Add basic isolcpus flags sched/isolation: Move isolcpus= handling to the housekeeping code sched/isolation: Handle the nohz_full= parameter sched/isolation: Introduce housekeeping flags sched/isolation: Split out new CONFIG_CPU_ISOLATION=y config from CONFIG_NO_HZ_FULL sched/isolation: Rename is_housekeeping_cpu() to housekeeping_cpu() sched/isolation: Use its own static key sched/isolation: Make the housekeeping cpumask private sched/isolation: Provide a dynamic off-case to housekeeping_any_cpu() sched/isolation, watchdog: Use housekeeping_cpumask() instead of ad-hoc version sched/isolation: Move housekeeping related code to its own file sched/idle: Micro-optimize the idle loop sched/isolcpus: Fix "isolcpus=" boot parameter handling when !CONFIG_CPUMASK_OFFSTACK x86/tsc: Append the 'tsc=' description for the 'tsc=unstable' boot parameter sched/rt: Simplify the IPI based RT balancing logic block/ioprio: Use a helper to check for RT prio sched/rt: Add a helper to test for a RT task ... |
||
Linus Torvalds
|
8e9a2dba86 |
Merge branch 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull core locking updates from Ingo Molnar: "The main changes in this cycle are: - Another attempt at enabling cross-release lockdep dependency tracking (automatically part of CONFIG_PROVE_LOCKING=y), this time with better performance and fewer false positives. (Byungchul Park) - Introduce lockdep_assert_irqs_enabled()/disabled() and convert open-coded equivalents to lockdep variants. (Frederic Weisbecker) - Add down_read_killable() and use it in the VFS's iterate_dir() method. (Kirill Tkhai) - Convert remaining uses of ACCESS_ONCE() to READ_ONCE()/WRITE_ONCE(). Most of the conversion was Coccinelle driven. (Mark Rutland, Paul E. McKenney) - Get rid of lockless_dereference(), by strengthening Alpha atomics, strengthening READ_ONCE() with smp_read_barrier_depends() and thus being able to convert users of lockless_dereference() to READ_ONCE(). (Will Deacon) - Various micro-optimizations: - better PV qspinlocks (Waiman Long), - better x86 barriers (Michael S. Tsirkin) - better x86 refcounts (Kees Cook) - ... plus other fixes and enhancements. (Borislav Petkov, Juergen Gross, Miguel Bernal Marin)" * 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (70 commits) locking/x86: Use LOCK ADD for smp_mb() instead of MFENCE rcu: Use lockdep to assert IRQs are disabled/enabled netpoll: Use lockdep to assert IRQs are disabled/enabled timers/posix-cpu-timers: Use lockdep to assert IRQs are disabled/enabled sched/clock, sched/cputime: Use lockdep to assert IRQs are disabled/enabled irq_work: Use lockdep to assert IRQs are disabled/enabled irq/timings: Use lockdep to assert IRQs are disabled/enabled perf/core: Use lockdep to assert IRQs are disabled/enabled x86: Use lockdep to assert IRQs are disabled/enabled smp/core: Use lockdep to assert IRQs are disabled/enabled timers/hrtimer: Use lockdep to assert IRQs are disabled/enabled timers/nohz: Use lockdep to assert IRQs are disabled/enabled workqueue: Use lockdep to assert IRQs are disabled/enabled irq/softirqs: Use lockdep to assert IRQs are disabled/enabled locking/lockdep: Add IRQs disabled/enabled assertion APIs: lockdep_assert_irqs_enabled()/disabled() locking/pvqspinlock: Implement hybrid PV queued/unfair locks locking/rwlocks: Fix comments x86/paravirt: Set up the virt_spin_lock_key after static keys get initialized block, locking/lockdep: Assign a lock_class per gendisk used for wait_for_completion() workqueue: Remove now redundant lock acquisitions wrt. workqueue flushes ... |
||
Linus Torvalds
|
6098850e7e |
Merge branch 'core-rcu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull RCU updates from Ingo Molnar: "The main changes in this cycle are: - Documentation updates - RCU CPU stall-warning updates - Torture-test updates - Miscellaneous fixes Size wise the biggest updates are to documentation. Excluding documentation most of the code increase comes from a single commit which expands debugging" * 'core-rcu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (24 commits) srcu: Add parameters to SRCU docbook comments doc: Rewrite confusing statement about memory barriers memory-barriers.txt: Fix typo in pairing example rcu/segcblist: Include rcupdate.h rcu: Add extended-quiescent-state testing advice rcu: Suppress lockdep false-positive ->boost_mtx complaints rcu: Do not include rtmutex_common.h unconditionally torture: Provide TMPDIR environment variable to specify tmpdir rcutorture: Dump writer stack if stalled rcutorture: Add interrupt-disable capability to stall-warning tests rcu: Suppress RCU CPU stall warnings while dumping trace rcu: Turn off tracing before dumping trace rcu: Make RCU CPU stall warnings check for irq-disabled CPUs sched,rcu: Make cond_resched() provide RCU quiescent state sched: Make resched_cpu() unconditional irq_work: Map irq_work_on_queue() to irq_work_on() in !SMP rcu: Create call_rcu_tasks() kthread at boot time rcu: Fix up pending cbs check in rcu_prepare_for_idle memory-barriers: Rework multicopy-atomicity section memory-barriers: Replace uses of "transitive" ... |
||
David Howells
|
5e4def2038 |
Pass mode to wait_on_atomic_t() action funcs and provide default actions
Make wait_on_atomic_t() pass the TASK_* mode onto its action function as an extra argument and make it 'unsigned int throughout. Also, consolidate a bunch of identical action functions into a default function that can do the appropriate thing for the mode. Also, change the argument name in the bit_wait*() function declarations to reflect the fact that it's the mode and not the bit number. [Peter Z gives this a grudging ACK, but thinks that the whole atomic_t wait should be done differently, though he's not immediately sure as to how] Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Peter Zijlstra <peterz@infradead.org> cc: Ingo Molnar <mingo@kernel.org> |
||
Rafael J. Wysocki
|
28da43956b |
Merge branches 'pm-cpufreq-sched' and 'pm-opp'
* pm-cpufreq-sched: cpufreq: schedutil: Reset cached_raw_freq when not in sync with next_freq * pm-opp: PM / OPP: Add dev_pm_opp_{un}register_get_pstate_helper() PM / OPP: Support updating performance state of device's power domain PM / OPP: add missing of_node_put() for of_get_cpu_node() PM / OPP: Rename dev_pm_opp_register_put_opp_helper() PM / OPP: Add missing of_node_put(np) PM / OPP: Move error message to debug level PM / OPP: Use snprintf() to avoid kasprintf() and kfree() PM / OPP: Move the OPP directory out of power/ |
||
Patrick Bellasi
|
765cc3a4b2 |
sched/core: Optimize sched_feat() for !CONFIG_SCHED_DEBUG builds
When the kernel is compiled with !CONFIG_SCHED_DEBUG support, we expect that
all SCHED_FEAT are turned into compile time constants being propagated
to support compiler optimizations.
Specifically, we expect that code blocks like this:
if (sched_feat(FEATURE_NAME) [&& <other_conditions>]) {
/* FEATURE CODE */
}
are turned into dead-code in case FEATURE_NAME defaults to FALSE, and thus
being removed by the compiler from the finale image.
For this mechanism to properly work it's required for the compiler to
have full access, from each translation unit, to whatever is the value
defined by the sched_feat macro. This macro is defined as:
#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
and thus, the compiler can optimize that code only if the value of
sysctl_sched_features is visible within each translation unit.
Since:
|
||
Rafael J. Wysocki
|
e029b9bf12 |
Merge branch 'pm-cpufreq-sched'
* pm-cpufreq-sched: cpufreq: schedutil: Examine the correct CPU when we update util |
||
Viresh Kumar
|
07458f6a51 |
cpufreq: schedutil: Reset cached_raw_freq when not in sync with next_freq
'cached_raw_freq' is used to get the next frequency quickly but should
always be in sync with sg_policy->next_freq. There is a case where it is
not and in such cases it should be reset to avoid switching to incorrect
frequencies.
Consider this case for example:
- policy->cur is 1.2 GHz (Max)
- New request comes for 780 MHz and we store that in cached_raw_freq.
- Based on 780 MHz, we calculate the effective frequency as 800 MHz.
- We then see the CPU wasn't idle recently and choose to keep the next
freq as 1.2 GHz.
- Now we have cached_raw_freq is 780 MHz and sg_policy->next_freq is
1.2 GHz.
- Now if the utilization doesn't change in then next request, then the
next target frequency will still be 780 MHz and it will match with
cached_raw_freq. But we will choose 1.2 GHz instead of 800 MHz here.
Fixes:
|