Use pci_pcie_cap() instead of pci_find_capability() to get PCIe capability
offset in pciehp driver. This avoids unnecessary search in PCI
configuration space. This patch also removes 'cap_base' field in
struct controller, that was used to hold PCIe capability offset by
pciehp itself.
Signed-off-by: Kenji Kaneshige <kaneshige.kenji@jp.fujitsu.com>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Since PCIe downstream port has only one slot at most, we don't need
'slot_list' linked list to manage multiple slots under the port.
Acked-by: Alex Chiang <achiang@hp.com>
Signed-off-by: Kenji Kaneshige <kaneshige.kenji@jp.fujitsu.com>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
acpi_pci_detect_ejectable() goes through effort to convert its
struct pci_bus arg to an acpi_handle, but every time we use this
interface, we already have the handle available.
So let's just use the handle instead of converting back and forth.
Reviewed-by: Kenji Kaneshige <kaneshige.kenji@jp.fujitsu.com>
Tested-by: Kenji Kaneshige <kaneshige.kenji@jp.fujitsu.com>
Signed-off-by: Alex Chiang <achiang@hp.com>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Error handling code following a kmalloc should free the allocated data.
Since the subsequent code that could provoke an error does not use the
allocated data, the allocation is just moved below it.
The semantic match that finds the problem is as follows:
(http://www.emn.fr/x-info/coccinelle/)
// <smpl>
@r exists@
local idexpression x;
statement S;
expression E;
identifier f,l;
position p1,p2;
expression *ptr != NULL;
@@
(
if ((x@p1 = \(kmalloc\|kzalloc\|kcalloc\)(...)) == NULL) S
|
x@p1 = \(kmalloc\|kzalloc\|kcalloc\)(...);
...
if (x == NULL) S
)
<... when != x
when != if (...) { <+...x...+> }
x->f = E
...>
(
return \(0\|<+...x...+>\|ptr\);
|
return@p2 ...;
)
@script:python@
p1 << r.p1;
p2 << r.p2;
@@
print "* file: %s kmalloc %s return %s" % (p1[0].file,p1[0].line,p2[0].line)
// </smpl>
Signed-off-by: Julia Lawall <julia@diku.dk>
Reviewed-by: Matthew Wilcox <willy@linux.intel.com>
Reviewed-by: Kenji Kaneshige <kaneshige.kenji@jp.fujitsu.com>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
The PCI Express port driver uses 'struct pcie_port_service_id' for
matching port service devices and drivers, but this structure
contains fields that duplicate information from the port device
itself (vendor, device, subvendor, subdevice) and fields that are not
used by any existing port service driver (class, class_mask,
drvier_data). Also, both existing port service drivers (AER and
PCIe HP) don't even use the vendor and device fields for device
matching. Therefore 'struct pcie_port_service_id' can be removed
altogether and the only useful members of it (port_type, service) can
be introduced directly into the port service device and port service
driver structures. That simplifies the code quite a bit and reduces
its size.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
The second argument of the ->probe() callback in
struct pcie_port_service_driver is unnecessary and never used.
Remove it.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Some ACPI related PCI hotplug code can be shared among PCI hotplug
drivers. This patch introduces the following functions in
drivers/pci/hotplug/acpi_pcihp.c to share the code, and changes
acpiphp and pciehp to use them.
- int acpi_pci_detect_ejectable(struct pci_bus *pbus)
This checks if the specified PCI bus has ejectable slots.
- int acpi_pci_check_ejectable(struct pci_bus *pbus, acpi_handle handle)
This checks if the specified handle is ejectable ACPI PCI slot. The
'pbus' parameter is needed to check if 'handle' is PCI related ACPI
object.
This patch also introduces the following inline function in
include/linux/pci-acpi.h, which is useful to get ACPI handle of the
PCI bridge from struct pci_bus of the bridge's secondary bus.
- static inline acpi_handle acpi_pci_get_bridge_handle(struct pci_bus *pbus)
This returns ACPI handle of the PCI bridge which generates PCI bus
specified by 'pbus'.
Signed-off-by: Kenji Kaneshige <kaneshige.kenji@jp.fujitsu.com>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
ACPI based hot-pluggable PCIe slot detection logic was added to
prevent the problem non hot-pluggable PCIe slot was detected as
hot-pluggable. The slot detection logic can be selected through
'pciehp_detect_mode', but it would be better if it is selected
automatically.
This patch adds 'auto' option for 'pciehp_detect_mode'. When it is
specified, pciehp judges which 'acpi' or 'pcie' should be used. It
seems that the physical slot number is duplicated among some slots on
most of the platforms with the above-mentioned problem. So 'auto' mode
uses this information to judge which 'acpi' or 'pcie' should be
used. That is, if duplicated physical slot numbers are detected,
'acpi' mode is used. This method is not perfect, but it's realistic.
Signed-off-by: Kenji Kaneshige <kaneshige.kenji@jp.fujitsu.com>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
There is a problem that some non hot-pluggable PCIe slots are detected
as hot-pluggable by pciehp on some platforms. The immediate cause of
this problem is that hot-plug capable bit in the Slot Capabilities
register is set even for non hot-pluggable slots on those platforms.
It seems a BIOS/hardware problem, but we need workaround about that.
Some of those platforms define hot-pluggable PCIe slots on ACPI
namespace properly, while hot-plug capable bit in the Slot
Capabilities register is set improperly. So using ACPI namespace
information in pciehp to detect PCIe hot-pluggable slots would be a
workaround.
This patch adds 'pciehp_detect_mode' module option. When 'acpi' is
specified, pciehp uses ACPI namespace information to detect PCIe
hot-pluggable slots.
Signed-off-by: Kenji Kaneshige <kaneshige.kenji@jp.fujitsu.com>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>