2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-23 04:34:11 +08:00
Commit Graph

6 Commits

Author SHA1 Message Date
Chris Metcalf
6727ad9e20 nmi_backtrace: generate one-line reports for idle cpus
When doing an nmi backtrace of many cores, most of which are idle, the
output is a little overwhelming and very uninformative.  Suppress
messages for cpus that are idling when they are interrupted and just
emit one line, "NMI backtrace for N skipped: idling at pc 0xNNN".

We do this by grouping all the cpuidle code together into a new
.cpuidle.text section, and then checking the address of the interrupted
PC to see if it lies within that section.

This commit suitably tags x86 and tile idle routines, and only adds in
the minimal framework for other architectures.

Link: http://lkml.kernel.org/r/1472487169-14923-5-git-send-email-cmetcalf@mellanox.com
Signed-off-by: Chris Metcalf <cmetcalf@mellanox.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Thompson <daniel.thompson@linaro.org> [arm]
Tested-by: Petr Mladek <pmladek@suse.com>
Cc: Aaron Tomlin <atomlin@redhat.com>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-07 18:46:30 -07:00
Chris Metcalf
6776648952 nmi_backtrace: do a local dump_stack() instead of a self-NMI
Currently on arm there is code that checks whether it should call
dump_stack() explicitly, to avoid trying to raise an NMI when the
current context is not preemptible by the backtrace IPI.  Similarly, the
forthcoming arch/tile support uses an IPI mechanism that does not
support generating an NMI to self.

Accordingly, move the code that guards this case into the generic
mechanism, and invoke it unconditionally whenever we want a backtrace of
the current cpu.  It seems plausible that in all cases, dump_stack()
will generate better information than generating a stack from the NMI
handler.  The register state will be missing, but that state is likely
not particularly helpful in any case.

Or, if we think it is helpful, we should be capturing and emitting the
current register state in all cases when regs == NULL is passed to
nmi_cpu_backtrace().

Link: http://lkml.kernel.org/r/1472487169-14923-3-git-send-email-cmetcalf@mellanox.com
Signed-off-by: Chris Metcalf <cmetcalf@mellanox.com>
Tested-by: Daniel Thompson <daniel.thompson@linaro.org> [arm]
Reviewed-by: Petr Mladek <pmladek@suse.com>
Acked-by: Aaron Tomlin <atomlin@redhat.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-07 18:46:30 -07:00
Chris Metcalf
9a01c3ed5c nmi_backtrace: add more trigger_*_cpu_backtrace() methods
Patch series "improvements to the nmi_backtrace code" v9.

This patch series modifies the trigger_xxx_backtrace() NMI-based remote
backtracing code to make it more flexible, and makes a few small
improvements along the way.

The motivation comes from the task isolation code, where there are
scenarios where we want to be able to diagnose a case where some cpu is
about to interrupt a task-isolated cpu.  It can be helpful to see both
where the interrupting cpu is, and also an approximation of where the
cpu that is being interrupted is.  The nmi_backtrace framework allows us
to discover the stack of the interrupted cpu.

I've tested that the change works as desired on tile, and build-tested
x86, arm, mips, and sparc64.  For x86 I confirmed that the generic
cpuidle stuff as well as the architecture-specific routines are in the
new cpuidle section.  For arm, mips, and sparc I just build-tested it
and made sure the generic cpuidle routines were in the new cpuidle
section, but I didn't attempt to figure out which the platform-specific
idle routines might be.  That might be more usefully done by someone
with platform experience in follow-up patches.

This patch (of 4):

Currently you can only request a backtrace of either all cpus, or all
cpus but yourself.  It can also be helpful to request a remote backtrace
of a single cpu, and since we want that, the logical extension is to
support a cpumask as the underlying primitive.

This change modifies the existing lib/nmi_backtrace.c code to take a
cpumask as its basic primitive, and modifies the linux/nmi.h code to use
the new "cpumask" method instead.

The existing clients of nmi_backtrace (arm and x86) are converted to
using the new cpumask approach in this change.

The other users of the backtracing API (sparc64 and mips) are converted
to use the cpumask approach rather than the all/allbutself approach.
The mips code ignored the "include_self" boolean but with this change it
will now also dump a local backtrace if requested.

Link: http://lkml.kernel.org/r/1472487169-14923-2-git-send-email-cmetcalf@mellanox.com
Signed-off-by: Chris Metcalf <cmetcalf@mellanox.com>
Tested-by: Daniel Thompson <daniel.thompson@linaro.org> [arm]
Reviewed-by: Aaron Tomlin <atomlin@redhat.com>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: David Miller <davem@davemloft.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-07 18:46:30 -07:00
Petr Mladek
42a0bb3f71 printk/nmi: generic solution for safe printk in NMI
printk() takes some locks and could not be used a safe way in NMI
context.

The chance of a deadlock is real especially when printing stacks from
all CPUs.  This particular problem has been addressed on x86 by the
commit a9edc88093 ("x86/nmi: Perform a safe NMI stack trace on all
CPUs").

The patchset brings two big advantages.  First, it makes the NMI
backtraces safe on all architectures for free.  Second, it makes all NMI
messages almost safe on all architectures (the temporary buffer is
limited.  We still should keep the number of messages in NMI context at
minimum).

Note that there already are several messages printed in NMI context:
WARN_ON(in_nmi()), BUG_ON(in_nmi()), anything being printed out from MCE
handlers.  These are not easy to avoid.

This patch reuses most of the code and makes it generic.  It is useful
for all messages and architectures that support NMI.

The alternative printk_func is set when entering and is reseted when
leaving NMI context.  It queues IRQ work to copy the messages into the
main ring buffer in a safe context.

__printk_nmi_flush() copies all available messages and reset the buffer.
Then we could use a simple cmpxchg operations to get synchronized with
writers.  There is also used a spinlock to get synchronized with other
flushers.

We do not longer use seq_buf because it depends on external lock.  It
would be hard to make all supported operations safe for a lockless use.
It would be confusing and error prone to make only some operations safe.

The code is put into separate printk/nmi.c as suggested by Steven
Rostedt.  It needs a per-CPU buffer and is compiled only on
architectures that call nmi_enter().  This is achieved by the new
HAVE_NMI Kconfig flag.

The are MN10300 and Xtensa architectures.  We need to clean up NMI
handling there first.  Let's do it separately.

The patch is heavily based on the draft from Peter Zijlstra, see

  https://lkml.org/lkml/2015/6/10/327

[arnd@arndb.de: printk-nmi: use %zu format string for size_t]
[akpm@linux-foundation.org: min_t->min - all types are size_t here]
Signed-off-by: Petr Mladek <pmladek@suse.com>
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Suggested-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Jan Kara <jack@suse.cz>
Acked-by: Russell King <rmk+kernel@arm.linux.org.uk>	[arm part]
Cc: Daniel Thompson <daniel.thompson@linaro.org>
Cc: Jiri Kosina <jkosina@suse.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: David Miller <davem@davemloft.net>
Cc: Daniel Thompson <daniel.thompson@linaro.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20 17:58:30 -07:00
Daniel Thompson
0768330d46 ARM: 8439/1: Fix backtrace generation when IPI is masked
Currently on ARM when <SysRq-L> is triggered from an interrupt handler
(e.g. a SysRq issued using UART or kbd) the main CPU will wedge for ten
seconds with interrupts masked before issuing a backtrace for every CPU
except itself.

The new backtrace code introduced by commit 96f0e00378 ("ARM: add
basic support for on-demand backtrace of other CPUs") does not work
correctly when run from an interrupt handler because IPI_CPU_BACKTRACE
is used to generate the backtrace on all CPUs but cannot preempt the
current calling context.

This can be fixed by detecting that the calling context cannot be
preempted and issuing the backtrace directly in this case. Issuing
directly leaves us without any pt_regs to pass to nmi_cpu_backtrace()
so we also modify the generic code to call dump_stack() when its
argument is NULL.

Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Daniel Thompson <daniel.thompson@linaro.org>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2015-10-03 16:40:51 +01:00
Russell King
b2c0b2cbb2 nmi: create generic NMI backtrace implementation
x86s NMI backtrace implementation (for arch_trigger_all_cpu_backtrace())
is fairly generic in nature - the only architecture specific bits are
the act of raising the NMI to other CPUs, and reporting the status of
the NMI handler.

These are fairly simple to factor out, and produce a generic
implementation which can be shared between ARM and x86.

Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2015-07-17 12:23:17 +01:00