There are 3 places the raid5-cache dispatches IO. The discard IO error
doesn't matter, so we ignore it. The superblock write IO error can be
handled in MD core. The remaining are log write and flush. When the IO
error happens, we mark log disk faulty and fail all write IO. Read IO is
still allowed to run. Userspace will get a notification too and
corresponding daemon can choose setting raid array readonly for example.
Signed-off-by: Shaohua Li <shli@fb.com>
Signed-off-by: NeilBrown <neilb@suse.com>
raid5-cache uses journal disk rdev->bdev, rdev->mddev in several places.
Don't allow journal disk disappear magically. On the other hand, we do
need to update superblock for other disks to bump up ->events, so next
time journal disk will be identified as stale.
Signed-off-by: Shaohua Li <shli@fb.com>
Signed-off-by: NeilBrown <neilb@suse.com>
Since superblock is updated infrequently, we do a simple trim of log
disk (a synchronous trim)
Signed-off-by: Shaohua Li <shli@fb.com>
Signed-off-by: NeilBrown <neilb@suse.com>
journal disk can be faulty. The Journal and Faulty aren't exclusive with
each other.
Signed-off-by: Shaohua Li <shli@fb.com>
Signed-off-by: NeilBrown <neilb@suse.com>
Simplify the bio completion handler by using bio chaining and submitting
bios as soon as they are full.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Shaohua Li <shli@fb.com>
Signed-off-by: NeilBrown <neilb@suse.com>
Factor out code to reserve log space.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Shaohua Li <shli@fb.com>
Signed-off-by: NeilBrown <neilb@suse.com>
This is the only user, and keeping all code initializing the io_unit
structure together improves readbility.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Shaohua Li <shli@fb.com>
Signed-off-by: NeilBrown <neilb@suse.com>
Set up bi_sector properly when we allocate an bio instead of updating it
at submission time.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: NeilBrown <neilb@suse.com>
Split out a helper to allocate a bio for log writes.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Shaohua Li <shli@fb.com>
Signed-off-by: NeilBrown <neilb@suse.com>
Remove the only partially used local 'io' variable to simplify the code
flow.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Shaohua Li <shli@fb.com>
Signed-off-by: NeilBrown <neilb@suse.com>
For devices without a volatile write cache we don't need to send a FLUSH
command to ensure writes are stable on disk, and thus can avoid the whole
step of batching up bios for processing by the MD thread.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Shaohua Li <shli@fb.com>
Signed-off-by: NeilBrown <neilb@suse.com>
After this series we won't nessecarily have flushed the cache for these
I/Os, so give the list a more neutral name.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Shaohua Li <shli@fb.com>
Signed-off-by: NeilBrown <neilb@suse.com>
There is no good reason to keep the I/O unit structures around after the
stripe has been written back to the RAID array. The only information
we need is the log sequence number, and the checkpoint offset of the
highest successfull writeback. Store those in the log structure, and
free the IO units from __r5l_stripe_write_finished.
Besides simplifying the code this also avoid having to keep the allocation
for the I/O unit around for a potentially long time as superblock updates
that checkpoint the log do not happen very often.
This also fixes the previously incorrect calculation of 'free' in
r5l_do_reclaim as a side effect: previous if took the last unit which
isn't checkpointed into account.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Shaohua Li <shli@fb.com>
Signed-off-by: NeilBrown <neilb@suse.com>
Move reclaim stop to quiesce handling, where is safer for this stuff.
Signed-off-by: Shaohua Li <shli@fb.com>
Signed-off-by: NeilBrown <neilb@suse.com>
match_mddev_units is used to check whether 2 RAID arrays share
same disk(s). Arrays that share disk(s) will not do resync at the
same time for better performance (fewer HDD seek). However, this
check should not apply to Spare, Faulty, and Journal disks, as
they do not paticipate in resync.
In this patch, match_mddev_units skips check for disks with flag
"Faulty" or "Journal" or raid_disk < 0.
Signed-off-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Shaohua Li <shli@fb.com>
Signed-off-by: NeilBrown <neilb@suse.com>
There is a case a stripe gets delayed forever.
1. a stripe finishes construction
2. a new bio hits the stripe
3. handle_stripe runs for the stripe. The stripe gets DELAYED bit set
since construction can't run for new bio (the stripe is locked since
step 1)
Without log, handle_stripe will call ops_run_io. After IO finishes, the
stripe gets unlocked and the stripe will restart and run construction
for the new bio. With log, ops_run_io need to run two times. If the
DELAYED bit set, the stripe can't enter into the handle_list, so the
second ops_run_io doesn't run, which leaves the stripe stalled.
Signed-off-by: Shaohua Li <shli@fb.com>
Signed-off-by: NeilBrown <neilb@suse.com>
stripes could finish out of order. Hence r5l_move_io_unit_list() of
__r5l_stripe_write_finished might not move any entry and leave
stripe_end_ios list empty.
This applies on top of http://marc.info/?l=linux-raid&m=144122700510667
Signed-off-by: Shaohua Li <shli@fb.com>
Signed-off-by: NeilBrown <neilb@suse.com>
If a raid array has journal, the journal can guarantee the consistency,
we can skip resync after a unclean shutdown. The exception is raid
creation or user initiated resync, which we still do a raid resync.
Signed-off-by: Shaohua Li <shli@fb.com>
Signed-off-by: NeilBrown <neilb@suse.com>
With log enabled, bio is written to raid disks after the bio is settled
down in log disk. The recovery guarantees we can recovery the bio data
from log disk, so we we skip FLUSH IO.
Signed-off-by: Shaohua Li <shli@fb.com>
Signed-off-by: NeilBrown <neilb@suse.com>
Just keep __r5l_set_io_unit_state as a small set the state wrapper, and
remove r5l_set_io_unit_state entirely after moving the real
functionality to the two callers that need it.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Shaohua Li <shli@fb.com>
Signed-off-by: NeilBrown <neilb@suse.com>
r5l_compress_stripe_end_list() can free an io_unit. This breaks the
assumption only reclaimer can free io_unit. We can add a reference count
based io_unit free, but since only reclaim can wait io_unit becoming to
STRIPE_END state, we use a simple global wait queue here.
Signed-off-by: Shaohua Li <shli@fb.com>
Signed-off-by: NeilBrown <neilb@suse.com>
Before we write stripe data to raid disks, we must guarantee stripe data
is settled down in log disk. To do this, we flush log disk cache and
wait the flush finish. That wait introduces sleep time in raid5d thread
and impact performance. This patch moves the log disk cache flush
process to the stripe handling state machine, which can remove the wait
in raid5d.
Signed-off-by: Shaohua Li <shli@fb.com>
Signed-off-by: NeilBrown <neilb@suse.com>
If cache(log) support is enabled, don't allow resize/reshape in current
stage. In the future, we can flush all data from cache(log) to raid
before resize/reshape and then allow resize/reshape.
Signed-off-by: Shaohua Li <shli@fb.com>
Signed-off-by: NeilBrown <neilb@suse.com>
With log enabled, r5l_write_stripe will add the stripe to log. With
batch, several stripes are linked together. The stripes must be in the
same state. While with log, the log/reclaim unit is stripe, we can't
guarantee the several stripes are in the same state. Disabling batch for
log now.
Signed-off-by: Shaohua Li <shli@fb.com>
Signed-off-by: NeilBrown <neilb@suse.com>
crc32c has lower overhead with cpu acceleration. It's a shame I didn't
use it in first post, sorry. This changes disk format, but we are still
ok in current stage.
V2: delete unnecessary type conversion as pointed out by Bart
Signed-off-by: Shaohua Li <shli@fb.com>
Signed-off-by: NeilBrown <neilb@suse.com>
Reviewed-by: Bart Van Assche <bart.vanassche@sandisk.com>
The variable sctx->nr_regions has type unsigned long and the variable
nr_regions has type sector_t.
Thus the variables may be different when overflow happens.
Changed the conditional to "if (nr_regions >= ULONG_MAX)".
Also move the assignment of nr_regions after sector_div()
and the sanity check which looks more sane.
Signed-off-by: Tomohiro Kusumi <kusumi.tomohiro@gmail.com>
Reviewed-by: Mikulas Patocka <mpatocka@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Only delay params are mentioned in delay.txt.
Mention offsets just like documents for linear and flakey do.
Signed-off-by: Tomohiro Kusumi <kusumi.tomohiro@gmail.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
All other error messages start capitalized.
Signed-off-by: Tomohiro Kusumi <kusumi.tomohiro@gmail.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
.map function of dm-delay returns return value of delay_bio(),
hence it's supposed to return using a defined DM_MAPIO macro.
Signed-off-by: Tomohiro Kusumi <kusumi.tomohiro@gmail.com>
Acked-By: Mikulas Patocka <mpatocka@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Commit 72d94861 back in 2006 should have consistently removed
"dm-linear: " from all error messages.
Signed-off-by: Tomohiro Kusumi <kusumi.tomohiro@gmail.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
dm_bm_unlock and dm_tm_unlock return an integer value but the returned
value is always 0. The calling code sometimes checks the return value
and sometimes doesn't.
Eliminate these unnecessary return values and also the checks for them.
Signed-off-by: Mikulas Patocka <mpatocka@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Commit 54efd50bfd ("block: make
generic_make_request handle arbitrarily sized bios") makes it possible
for block devices to process large bios. In doing so that commit
allocates a new queue->bio_split bioset for each block device, this
bioset is used for allocating bios when the driver needs to split large
bios.
Each bioset allocates a workqueue process, thus the above commit
increases the number of processes allocated per block device.
DM doesn't need the queue->bio_split bioset, thus we can deallocate it.
This reduces the number of allocated processes per bio-based DM device
from 3 to 2. Also remove the call to blk_queue_split(), it is not
needed because DM does its own splitting.
Signed-off-by: Mikulas Patocka <mpatocka@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
ffs counts bit starting with 1 (for the least significant bit), __ffs
counts bits starting with 0. This patch changes various occurrences of ffs
to __ffs and removes subtraction of 1 from the result.
Note that __ffs (unlike ffs) is not defined when called with zero
argument, but it is not called with zero argument in any of these cases.
Signed-off-by: Mikulas Patocka <mpatocka@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Remove DM's unneeded NULL tests before calling these destroy functions,
now that they check for NULL, thanks to these v4.3 commits:
3942d2991 ("mm/slab_common: allow NULL cache pointer in kmem_cache_destroy()")
4e3ca3e03 ("mm/mempool: allow NULL `pool' pointer in mempool_destroy()")
The semantic patch that makes this change is as follows:
(http://coccinelle.lip6.fr/)
// <smpl>
@@ expression x; @@
-if (x != NULL)
\(kmem_cache_destroy\|mempool_destroy\|dma_pool_destroy\)(x);
// </smpl>
Signed-off-by: Julia Lawall <Julia.Lawall@lip6.fr>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
This adds support to pass through persistent reservation requests
similar to the existing ioctl handling, and with the same limitations,
e.g. devices may only have a single target attached.
This is mostly intended for multipathing.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
This moves the call to blkdev_ioctl and the argument checking to DM core
code, and only leaves a callout to find the block device to operate on
in the targets. This simplifies the code and allows us to pass through
ioctl-like command using other methods in the next patch.
Also split out a helper around calling the prepare_ioctl method that
will be reused for persistent reservation handling.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
This reverts commit a1989b3300.
That commit introduced a regression at least for the case of the SG_IO ioctl()
running without CAP_SYS_RAWIO capability (e.g., unprivileged users) when there
are no active paths: the ioctl() fails with the ENOTTY errno immediately rather
than blocking due to queue_if_no_path until a path becomes active, for example.
That case happens to be exercised by QEMU KVM guests with 'scsi-block' devices
(qemu "-device scsi-block" [1], libvirt "<disk type='block' device='lun'>" [2])
from multipath devices; which leads to SCSI/filesystem errors in such a guest.
More general scenarios can hit that regression too. The following demonstration
employs a SG_IO ioctl() with a standard SCSI INQUIRY command for this objective
(some output & user changes omitted for brevity and comments added for clarity).
Reverting that commit restores normal operation (queueing) in failing scenarios;
tested on linux-next (next-20151022).
1) Test-case is based on sg_simple0 [3] (just SG_IO; remove SG_GET_VERSION_NUM)
$ cat sg_simple0.c
... see [3] ...
$ sed '/SG_GET_VERSION_NUM/,/}/d' sg_simple0.c > sgio_inquiry.c
$ gcc sgio_inquiry.c -o sgio_inquiry
2) The ioctl() works fine with active paths present.
# multipath -l 85ag56
85ag56 (...) dm-19 IBM ,2145
size=60G features='1 queue_if_no_path' hwhandler='0' wp=rw
|-+- policy='service-time 0' prio=0 status=active
| |- 8:0:11:0 sdz 65:144 active undef running
| `- 9:0:9:0 sdbf 67:144 active undef running
`-+- policy='service-time 0' prio=0 status=enabled
|- 8:0:12:0 sdae 65:224 active undef running
`- 9:0:12:0 sdbo 68:32 active undef running
$ ./sgio_inquiry /dev/mapper/85ag56
Some of the INQUIRY command's response:
IBM 2145 0000
INQUIRY duration=0 millisecs, resid=0
3) The ioctl() fails with ENOTTY errno with _no_ active paths present,
for unprivileged users (rather than blocking due to queue_if_no_path).
# for path in $(multipath -l 85ag56 | grep -o 'sd[a-z]\+'); \
do multipathd -k"fail path $path"; done
# multipath -l 85ag56
85ag56 (...) dm-19 IBM ,2145
size=60G features='1 queue_if_no_path' hwhandler='0' wp=rw
|-+- policy='service-time 0' prio=0 status=enabled
| |- 8:0:11:0 sdz 65:144 failed undef running
| `- 9:0:9:0 sdbf 67:144 failed undef running
`-+- policy='service-time 0' prio=0 status=enabled
|- 8:0:12:0 sdae 65:224 failed undef running
`- 9:0:12:0 sdbo 68:32 failed undef running
$ ./sgio_inquiry /dev/mapper/85ag56
sg_simple0: Inquiry SG_IO ioctl error: Inappropriate ioctl for device
4) dmesg shows that scsi_verify_blk_ioctl() failed for SG_IO (0x2285);
it returns -ENOIOCTLCMD, later replaced with -ENOTTY in vfs_ioctl().
$ dmesg
<...>
[] device-mapper: multipath: Failing path 65:144.
[] device-mapper: multipath: Failing path 67:144.
[] device-mapper: multipath: Failing path 65:224.
[] device-mapper: multipath: Failing path 68:32.
[] sgio_inquiry: sending ioctl 2285 to a partition!
5) The ioctl() only works if the SYS_CAP_RAWIO capability is present
(then queueing happens -- in this example, queue_if_no_path is set);
this is due to a conditional check in scsi_verify_blk_ioctl().
# capsh --drop=cap_sys_rawio -- -c './sgio_inquiry /dev/mapper/85ag56'
sg_simple0: Inquiry SG_IO ioctl error: Inappropriate ioctl for device
# ./sgio_inquiry /dev/mapper/85ag56 &
[1] 72830
# cat /proc/72830/stack
[<c00000171c0df700>] 0xc00000171c0df700
[<c000000000015934>] __switch_to+0x204/0x350
[<c000000000152d4c>] msleep+0x5c/0x80
[<c00000000077dfb0>] dm_blk_ioctl+0x70/0x170
[<c000000000487c40>] blkdev_ioctl+0x2b0/0x9b0
[<c0000000003128e4>] block_ioctl+0x64/0xd0
[<c0000000002dd3b0>] do_vfs_ioctl+0x490/0x780
[<c0000000002dd774>] SyS_ioctl+0xd4/0xf0
[<c000000000009358>] system_call+0x38/0xd0
6) This is the function call chain exercised in this analysis:
SYSCALL_DEFINE3(ioctl, <...>) @ fs/ioctl.c
-> do_vfs_ioctl()
-> vfs_ioctl()
...
error = filp->f_op->unlocked_ioctl(filp, cmd, arg);
...
-> dm_blk_ioctl() @ drivers/md/dm.c
-> multipath_ioctl() @ drivers/md/dm-mpath.c
...
(bdev = NULL, due to no active paths)
...
if (!bdev || <...>) {
int err = scsi_verify_blk_ioctl(NULL, cmd);
if (err)
r = err;
}
...
-> scsi_verify_blk_ioctl() @ block/scsi_ioctl.c
...
if (bd && bd == bd->bd_contains) // not taken (bd = NULL)
return 0;
...
if (capable(CAP_SYS_RAWIO)) // not taken (unprivileged user)
return 0;
...
printk_ratelimited(KERN_WARNING
"%s: sending ioctl %x to a partition!\n" <...>);
return -ENOIOCTLCMD;
<-
...
return r ? : <...>
<-
...
if (error == -ENOIOCTLCMD)
error = -ENOTTY;
out:
return error;
...
Links:
[1] http://git.qemu.org/?p=qemu.git;a=commit;h=336a6915bc7089fb20fea4ba99972ad9a97c5f52
[2] https://libvirt.org/formatdomain.html#elementsDisks (see 'disk' -> 'device')
[3] http://tldp.org/HOWTO/SCSI-Generic-HOWTO/pexample.html (Revision 1.2, 2002-05-03)
Signed-off-by: Mauricio Faria de Oliveira <mauricfo@linux.vnet.ibm.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Cc: stable@vger.kernel.org
This reverts commit 7eb418851f.
This commit is poorly justified, I can find not discusison in email,
and it clearly causes a problem.
If a device which is being recovered fails and is subsequently
re-added to an array, there could easily have been changes to the
array *before* the point where the recovery was up to. So the
recovery must start again from the beginning.
If a spare is being recovered and fails, then when it is re-added we
really should do a bitmap-based recovery up to the recovery-offset,
and then a full recovery from there. Before this reversion, we only
did the "full recovery from there" which is not corect. After this
reversion with will do a full recovery from the start, which is safer
but not ideal.
It will be left to a future patch to arrange the two different styles
of recovery.
Reported-and-tested-by: Nate Dailey <nate.dailey@stratus.com>
Signed-off-by: NeilBrown <neilb@suse.com>
Cc: stable@vger.kernel.org (3.14+)
Fixes: 7eb418851f ("md: allow a partially recovered device to be hot-added to an array.")
After commit 566c09c534 ("raid5: relieve lock contention in get_active_stripe()")
__find_stripe() is called under conf->hash_locks + hash.
But handle_stripe_clean_event() calls remove_hash() under
conf->device_lock.
Under some cirscumstances the hash chain can be circuited,
and we get an infinite loop with disabled interrupts and locked hash
lock in __find_stripe(). This leads to hard lockup on multiple CPUs
and following system crash.
I was able to reproduce this behavior on raid6 over 6 ssd disks.
The devices_handle_discard_safely option should be set to enable trim
support. The following script was used:
for i in `seq 1 32`; do
dd if=/dev/zero of=large$i bs=10M count=100 &
done
neilb: original was against a 3.x kernel. I forward-ported
to 4.3-rc. This verison is suitable for any kernel since
Commit: 59fc630b8b ("RAID5: batch adjacent full stripe write")
(v4.1+). I'll post a version for earlier kernels to stable.
Signed-off-by: Roman Gushchin <klamm@yandex-team.ru>
Fixes: 566c09c534 ("raid5: relieve lock contention in get_active_stripe()")
Signed-off-by: NeilBrown <neilb@suse.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: <stable@vger.kernel.org> # 3.13 - 4.2
Commit bfebd1cdb4 ("dm: add full blk-mq
support to request-based DM") moves the initialization of the fields
backing_dev_info.congested_fn, backing_dev_info.congested_data and
queuedata from the function dm_init_md_queue (that is called when the
device is created) to dm_init_old_md_queue (that is called after the
device type is determined).
There is no locking when accessing these variables, thus it is possible
for other parts of the kernel to briefly see this data in a transient
state (e.g. queue->backing_dev_info.congested_fn initialized and
md->queue->backing_dev_info.congested_data uninitialized, resulting in
passing an incorrect parameter to the function dm_any_congested).
This queue data is left initialized for blk-mq devices even though they
that don't use it.
Fixes: bfebd1cdb4 ("dm: add full blk-mq support to request-based DM")
Signed-off-by: Mikulas Patocka <mpatocka@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Cc: stable@vger.kernel.org # v4.1+
Two fixes for bugs that are in both raid1 and raid10.
Both related to bad-block-lists and at least one needs
to be back ported to 3.1.
Also a revision for the "new" layout in raid10.
This "new" code (which aims to improve robustness) actually
reduces robustness in some cases.
It probably isn't in use at all as not public user-space code
makes use of these new layouts.
However just in case someone has their own code, it would be
good to get the WARNing out for them sooner.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iQIcBAABCAAGBQJWKxc0AAoJEDnsnt1WYoG5BkIP/0DmbcISl9eSMQt+k9E5B/IN
hk2Z5Q3BeMi7VhjKJDsGsg+oQM1p2ef/vvfhx1lgk34jiVrELRPdzvIlnv0XeQ7y
NwMGkV7KKTbrzvK42eR6XhpO1UdJ3FIiC2RCH/5fmRai5JqgQ4jRWzX4wGDL2p5d
ZKK63KUjnlrqrLtch/kAxeynQbAWhtefzRKfspiUVtnaLD9sIhUwMS+IZDPYHbhd
YMowQEquQW0uEmiyX0j/XNgw14yLau5zXjSZ0SvtDfa+IAiAlHQWpxhatA3Vj0NA
xxKrUjYD41Rkzrm9dLfRtgG1U8Wq51q12wg6McY+i1glrR8d6AISe8PczfQsqRWu
TjKPHqfhENemSMHOxW+8NB9K6BXV7W/rCH4t6iUMG00KTGhVJNPt0T94yYI1p2Yc
Fs+dR6rYILS5whXbRpeLAVZ4Np53eka9O/Wo2qoujPgIOfNrG/Ed3Lfqylb7jk7Z
B8jalgn+99Bok9DuCg/HFtGLrU3KN/BjWdet9YX/Z8zBQifrfroATLOq5PJtuSpI
0STtZ6cOZYwvb70XC1w6eNPgQxz6rzJbPHDjwZ0woKYe4Bh+ZtCBJq3ufwJ/rqRV
OXmCceFO8KtK3/zJqeZOd0eNEkxiXDaKfJ0Ut6t7/kumCflE/tS4lyOpu8ptdT7s
hnATXrkvrL+6vtT1owAJ
=96PZ
-----END PGP SIGNATURE-----
Merge tag 'md/4.3-rc6-fixes' of git://neil.brown.name/md
Pull md fixes from Neil Brown:
"Some raid1/raid10 fixes.
I meant to get this to you before -rc7, but what with all the travel
plans..
Two fixes for bugs that are in both raid1 and raid10. Both related to
bad-block-lists and at least one needs to be back ported to 3.1.
Also a revision for the "new" layout in raid10. This "new" code
(which aims to improve robustness) actually reduces robustness in some
cases. It probably isn't in use at all as not public user-space code
makes use of these new layouts. However just in case someone has
their own code, it would be good to get the WARNing out for them
sooner"
* tag 'md/4.3-rc6-fixes' of git://neil.brown.name/md:
md/raid10: fix the 'new' raid10 layout to work correctly.
md/raid10: don't clear bitmap bit when bad-block-list write fails.
md/raid1: don't clear bitmap bit when bad-block-list write fails.
md/raid10: submit_bio_wait() returns 0 on success
md/raid1: submit_bio_wait() returns 0 on success
This is the log recovery support. The process is quite straightforward.
We scan the log and read all valid meta/data/parity into memory. If a
stripe's data/parity checksum is correct, the stripe will be recoveried.
Otherwise, it's discarded and we don't scan the log further. The reclaim
process guarantees stripe which starts to be flushed raid disks has
completed data/parity and has correct checksum. To recovery a stripe, we
just copy its data/parity to corresponding raid disks.
The trick thing is superblock update after recovery. we can't let
superblock point to last valid meta block. The log might look like:
| meta 1| meta 2| meta 3|
meta 1 is valid, meta 2 is invalid. meta 3 could be valid. If superblock
points to meta 1, we write a new valid meta 2n. If crash happens again,
new recovery will start from meta 1. Since meta 2n is valid, recovery
will think meta 3 is valid, which is wrong. The solution is we create a
new meta in meta2 with its seq == meta 1's seq + 10 and let superblock
points to meta2. recovery will not think meta 3 is a valid meta,
because its seq is wrong
Signed-off-by: Shaohua Li <shli@fb.com>
Signed-off-by: NeilBrown <neilb@suse.com>
This is the reclaim support for raid5 log. A stripe write will have
following steps:
1. reconstruct the stripe, read data/calculate parity. ops_run_io
prepares to write data/parity to raid disks
2. hijack ops_run_io. stripe data/parity is appending to log disk
3. flush log disk cache
4. ops_run_io run again and do normal operation. stripe data/parity is
written in raid array disks. raid core can return io to upper layer.
5. flush cache of all raid array disks
6. update super block
7. log disk space used by the stripe can be reused
In practice, several stripes consist of an io_unit and we will batch
several io_unit in different steps, but the whole process doesn't
change.
It's possible io return just after data/parity hit log disk, but then
read IO will need read from log disk. For simplicity, IO return happens
at step 4, where read IO can directly read from raid disks.
Currently reclaim run if there is specific reclaimable space (1/4 disk
size or 10G) or we are out of space. Reclaim is just to free log disk
spaces, it doesn't impact data consistency. The size based force reclaim
is to make sure log isn't too big, so recovery doesn't scan log too
much.
Recovery make sure raid disks and log disk have the same data of a
stripe. If crash happens before 4, recovery might/might not recovery
stripe's data/parity depending on if data/parity and its checksum
matches. In either case, this doesn't change the syntax of an IO write.
After step 3, stripe is guaranteed recoverable, because stripe's
data/parity is persistent in log disk. In some cases, log disk content
and raid disks content of a stripe are the same, but recovery will still
copy log disk content to raid disks, this doesn't impact data
consistency. space reuse happens after superblock update and cache
flush.
There is one situation we want to avoid. A broken meta in the middle of
a log causes recovery can't find meta at the head of log. If operations
require meta at the head persistent in log, we must make sure meta
before it persistent in log too. The case is stripe data/parity is in
log and we start write stripe to raid disks (before step 4). stripe
data/parity must be persistent in log before we do the write to raid
disks. The solution is we restrictly maintain io_unit list order. In
this case, we only write stripes of an io_unit to raid disks till the
io_unit is the first one whose data/parity is in log.
The io_unit list order is important for other cases too. For example,
some io_unit are reclaimable and others not. They can be mixed in the
list, we shouldn't reuse space of an unreclaimable io_unit.
Includes fixes to problems which were...
Reported-by: kbuild test robot <fengguang.wu@intel.com>
Signed-off-by: Shaohua Li <shli@fb.com>
Signed-off-by: NeilBrown <neilb@suse.com>
This introduces a simple log for raid5. Data/parity writing to raid
array first writes to the log, then write to raid array disks. If
crash happens, we can recovery data from the log. This can speed up
raid resync and fix write hole issue.
The log structure is pretty simple. Data/meta data is stored in block
unit, which is 4k generally. It has only one type of meta data block.
The meta data block can track 3 types of data, stripe data, stripe
parity and flush block. MD superblock will point to the last valid
meta data block. Each meta data block has checksum/seq number, so
recovery can scan the log correctly. We store a checksum of stripe
data/parity to the metadata block, so meta data and stripe data/parity
can be written to log disk together. otherwise, meta data write must
wait till stripe data/parity is finished.
For stripe data, meta data block will record stripe data sector and
size. Currently the size is always 4k. This meta data record can be made
simpler if we just fix write hole (eg, we can record data of a stripe's
different disks together), but this format can be extended to support
caching in the future, which must record data address/size.
For stripe parity, meta data block will record stripe sector. It's
size should be 4k (for raid5) or 8k (for raid6). We always store p
parity first. This format should work for caching too.
flush block indicates a stripe is in raid array disks. Fixing write
hole doesn't need this type of meta data, it's for caching extension.
Signed-off-by: Shaohua Li <shli@fb.com>
Signed-off-by: NeilBrown <neilb@suse.com>
When a stripe finishes construction, we write the stripe to raid in
ops_run_io normally. With log, we do a bunch of other operations before
the stripe is written to raid. Mainly write the stripe to log disk,
flush disk cache and so on. The operations are still driven by raid5d
and run in the stripe state machine. We introduce a new state for such
stripe (trapped into log). The stripe is in this state from the time it
first enters ops_run_io (finish construction) to the time it is written
to raid. Since we know the state is only for log, we bypass other
check/operation in handle_stripe.
Signed-off-by: Shaohua Li <shli@fb.com>
Signed-off-by: NeilBrown <neilb@suse.com>
Next several patches use some raid5 functions, rename them with raid5
prefix and export out.
Signed-off-by: Shaohua Li <shli@fb.com>
Signed-off-by: NeilBrown <neilb@suse.com>
Journal device stores data in a log structure. We need record the log
start. Here we override md superblock recovery_offset for this purpose.
This field of a journal device is meaningless otherwise.
Signed-off-by: Shaohua Li <shli@fb.com>
Signed-off-by: NeilBrown <neilb@suse.com>
Next patches will use a disk as raid5/6 journaling. We need a new disk
role to present the journal device and add MD_FEATURE_JOURNAL to
feature_map for backward compability.
Signed-off-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Shaohua Li <shli@fb.com>
Signed-off-by: NeilBrown <neilb@suse.com>
Add the following two macros for special roles: spare and faulty
MD_DISK_ROLE_SPARE 0xffff
MD_DISK_ROLE_FAULTY 0xfffe
Add MD_DISK_ROLE_MAX 0xff00 as the maximal possible regular role,
and minimal value of special role.
Signed-off-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Shaohua Li <shli@fb.com>
Signed-off-by: NeilBrown <neilb@suse.com>
To incorporate --grow feature executed on one node, other nodes need to
acknowledge the change in number of disks. Call update_raid_disks()
to update internal data structures.
This leads to call check_reshape() -> md_allow_write() -> md_update_sb(),
this results in a deadlock. This is done so it can safely allocate memory
(which might trigger writeback which might write to raid1). This is
not required for md with a bitmap.
In the clustered case, we don't perform md_update_sb() in md_allow_write(),
but in do_md_run(). Also we disable safemode for clustered mode.
mddev->recovery_cp need not be set in check_sb_changes() because this
is required only when a node reads another node's bitmap. mddev->recovery_cp
(which is read from sb->resync_offset), is set only if mddev is in_sync.
Since we disabled safemode, in_sync is set to zero.
In a clustered environment, the MD may not be in sync because another
node could be writing to it. So make sure that in_sync is not set in
case of clustered node in __md_stop_writes().
Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Signed-off-by: NeilBrown <neilb@suse.com>
This patches fixes sparse warnings like incorrect type in assignment
(different base types), cast to restricted __le64.
Reported-by: kbuild test robot <fengguang.wu@intel.com>
Signed-off-by: Guoqing Jiang <gqjiang@suse.com>
Signed-off-by: NeilBrown <neilb@suse.com>
In Linux 3.9 we introduce a new 'far' layout for RAID10 which was
supposed to rotate the replicas differently and so provide better
resilience. In particular it could survive more combinations of 2
drive failures.
Unfortunately. due to a coding error, this some did what was wanted,
sometimes improved less than we hoped, and sometimes - in very
unlikely circumstances - put multiple replicas on the same device so
the redundancy was harmed.
No public user-space tool has created arrays using this layout so it
is very unlikely that zero-redundancy arrays actually exist. Probably
no arrays using any form of the new layout exist. But we cannot be
certain.
So use another bit in the 'layout' number and introduce a bug-fixed
version of the layout.
Also when assembling an array, if it has a zero-redundancy layout,
give a warning.
Reported-by: Heinz Mauelshagen <heinzm@redhat.com>
Signed-off-by: NeilBrown <neilb@suse.com>
When a write fails and a bad-block-list is present, we can
update the bad-block-list instead of writing the data. If
this succeeds then it is OK clear the relevant bitmap-bit as
no further 'sync' of the block is needed.
However if writing the bad-block-list fails then we need to
treat the write as failed and particularly must not clear
the bitmap bit. Otherwise the device can be re-added (after
any hardware connection issues are resolved) and because the
relevant bit in the bitmap is clear, that block will not be
resynced. This leads to data corruption.
We already delay the final bio_endio() on the write until
the bad-block-list is written so that when the write
returns: either that data is safe, the bad-block record is
safe, or the fact that the device is faulty is safe.
However we *don't* delay the clearing of the bitmap, so the
bitmap bit can be recorded as cleared before we know if the
bad-block-list was written safely.
So: delay that until the write really is safe.
i.e. move the call to close_write() until just before
calling bio_endio(), and recheck the 'is array degraded'
status before making that call.
This bug goes back to v3.1 when bad-block-lists were
introduced, though it only affects arrays created with
mdadm-3.3 or later as only those have bad-block lists.
Backports will require at least
Commit: 95af587e95 ("md/raid10: ensure device failure recorded before write request returns.")
as well. I'll send that to 'stable' separately.
Note that of the two tests of R10BIO_WriteError that this
patch adds, the first is certain to fail and the second is
certain to succeed. However doing it this way makes the
patch more obviously correct. I will tidy the code up in a
future merge window.
Reported-by: Nate Dailey <nate.dailey@stratus.com>
Fixes: bd870a16c5 ("md/raid10: Handle write errors by updating badblock log.")
Signed-off-by: NeilBrown <neilb@suse.com>
When a write fails and a bad-block-list is present, we can
update the bad-block-list instead of writing the data. If
this succeeds then it is OK clear the relevant bitmap-bit as
no further 'sync' of the block is needed.
However if writing the bad-block-list fails then we need to
treat the write as failed and particularly must not clear
the bitmap bit. Otherwise the device can be re-added (after
any hardware connection issues are resolved) and because the
relevant bit in the bitmap is clear, that block will not be
resynced. This leads to data corruption.
We already delay the final bio_endio() on the write until
the bad-block-list is written so that when the write
returns: either that data is safe, the bad-block record is
safe, or the fact that the device is faulty is safe.
However we *don't* delay the clearing of the bitmap, so the
bitmap bit can be recorded as cleared before we know if the
bad-block-list was written safely.
So: delay that until the write really is safe.
i.e. move the call to close_write() until just before
calling bio_endio(), and recheck the 'is array degraded'
status before making that call.
This bug goes back to v3.1 when bad-block-lists were
introduced, though it only affects arrays created with
mdadm-3.3 or later as only those have bad-block lists.
Backports will require at least
Commit: 55ce74d4bf ("md/raid1: ensure device failure recorded before write request returns.")
as well. I'll send that to 'stable' separately.
Note that of the two tests of R1BIO_WriteError that this
patch adds, the first is certain to fail and the second is
certain to succeed. However doing it this way makes the
patch more obviously correct. I will tidy the code up in a
future merge window.
Reported-and-tested-by: Nate Dailey <nate.dailey@stratus.com>
Cc: Jes Sorensen <Jes.Sorensen@redhat.com>
Fixes: cd5ff9a16f ("md/raid1: Handle write errors by updating badblock log.")
Signed-off-by: NeilBrown <neilb@suse.com>
If the CLEAN_SHUTDOWN flag is not set when a cache is loaded then all cache
blocks are marked as dirty and a full writeback occurs.
__commit_transaction() is responsible for setting/clearing
CLEAN_SHUTDOWN (based the flags_mutator that is passed in).
Fix this issue, of the cache's on-disk flags being wrong, by making sure
__commit_transaction() does not reset the flags after the mutator has
altered the flags in preparation for them being serialized to disk.
before:
sb_flags = mutator(le32_to_cpu(disk_super->flags));
disk_super->flags = cpu_to_le32(sb_flags);
disk_super->flags = cpu_to_le32(cmd->flags);
after:
disk_super->flags = cpu_to_le32(cmd->flags);
sb_flags = mutator(le32_to_cpu(disk_super->flags));
disk_super->flags = cpu_to_le32(sb_flags);
Reported-by: Bogdan Vasiliev <bogdan.vasiliev@gmail.com>
Signed-off-by: Joe Thornber <ejt@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Cc: stable@vger.kernel.org
btree_split_beneath()'s error path had an outstanding FIXME that speaks
directly to the potential for _not_ cleaning up a previously allocated
bufio-backed block.
Fix this by releasing the previously allocated bufio block using
unlock_block().
Reported-by: Mikulas Patocka <mpatocka@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Acked-by: Joe Thornber <thornber@redhat.com>
Cc: stable@vger.kernel.org
Commit 4c7e309340 ("dm btree remove: fix bug in redistribute3") wasn't
a complete fix for redistribute3().
The redistribute3 function takes 3 btree nodes and shares out the entries
evenly between them. If the three nodes in total contained
(MAX_ENTRIES * 3) - 1 entries between them then this was erroneously getting
rebalanced as (MAX_ENTRIES - 1) on the left and right, and (MAX_ENTRIES + 1) in
the center.
Fix this issue by being more careful about calculating the target number
of entries for the left and right nodes.
Unit tested in userspace using this program:
https://github.com/jthornber/redistribute3-test/blob/master/redistribute3_t.c
Signed-off-by: Joe Thornber <ejt@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Cc: stable@vger.kernel.org
Synchronize pending i/o against a change in the integrity profile to
avoid the possibility of spurious integrity errors. Given linear_add()
is suspending the mddev before manipulating the mddev, do the same for
the other personalities.
Acked-by: NeilBrown <neilb@suse.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
Now that the integrity profile is statically allocated there is no work
to do when shutting down an integrity enabled block device.
Cc: Matthew Wilcox <willy@linux.intel.com>
Cc: Mike Snitzer <snitzer@redhat.com>
Cc: James Bottomley <JBottomley@Odin.com>
Acked-by: NeilBrown <neilb@suse.com>
Acked-by: Keith Busch <keith.busch@intel.com>
Acked-by: Vishal Verma <vishal.l.verma@intel.com>
Tested-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
Up until now the_integrity profile has been dynamically allocated and
attached to struct gendisk after the disk has been made active.
This causes problems because NVMe devices need to register the profile
prior to the partition table being read due to a mandatory metadata
buffer requirement. In addition, DM goes through hoops to deal with
preallocating, but not initializing integrity profiles.
Since the integrity profile is small (4 bytes + a pointer), Christoph
suggested moving it to struct gendisk proper. This requires several
changes:
- Moving the blk_integrity definition to genhd.h.
- Inlining blk_integrity in struct gendisk.
- Removing the dynamic allocation code.
- Adding helper functions which allow gendisk to set up and tear down
the integrity sysfs dir when a disk is added/deleted.
- Adding a blk_integrity_revalidate() callback for updating the stable
pages bdi setting.
- The calls that depend on whether a device has an integrity profile or
not now key off of the bi->profile pointer.
- Simplifying the integrity support routines in DM (Mike Snitzer).
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
Reported-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Sagi Grimberg <sagig@mellanox.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
This was introduced with 9e882242c6
which changed the return value of submit_bio_wait() to return != 0 on
error, but didn't update the caller accordingly.
Fixes: 9e882242c6 ("block: Add submit_bio_wait(), remove from md")
Cc: stable@vger.kernel.org (v3.10)
Reported-by: Bill Kuzeja <William.Kuzeja@stratus.com>
Signed-off-by: Jes Sorensen <Jes.Sorensen@redhat.com>
Signed-off-by: NeilBrown <neilb@suse.com>
This was introduced with 9e882242c6
which changed the return value of submit_bio_wait() to return != 0 on
error, but didn't update the caller accordingly.
Fixes: 9e882242c6 ("block: Add submit_bio_wait(), remove from md")
Cc: stable@vger.kernel.org (v3.10)
Reported-by: Bill Kuzeja <William.Kuzeja@stratus.com>
Signed-off-by: Jes Sorensen <Jes.Sorensen@redhat.com>
Signed-off-by: NeilBrown <neilb@suse.com>
As cmsg.raid_slot is le32, comparing for >0 is not meaningful.
So introduce cpu-endian 'raid_slot' and only assign to cmsg.raid_slot
when we know value is valid.
Reported-by: kbuild test robot <fengguang.wu@intel.com>
Signed-off-by: NeilBrown <neilb@suse.com>
md-cluster: A better way for METADATA_UPDATED processing
The processing of METADATA_UPDATED message is too simple and prone to
errors. Besides, it would not update the internal data structures as
required.
This set of patches reads the superblock from one of the device of the MD
and checks for changes in the in-memory data structures. If there is a change,
it performs the necessary actions to keep the internal data structures
as it would be in the primary node.
An example is if a devices turns faulty. The algorithm is:
1. The initiator node marks the device as faulty and updates the superblock
2. The initiator node sends METADATA_UPDATED with an advisory device number to the rest of the nodes.
3. The receiving node on receiving the METADATA_UPDATED message
3.1 Reads the superblock
3.2 Detects a device has failed by comparing with memory structure
3.3 Calls the necessary functions to record the failure and get the device out of the active array.
3.4 Acknowledges the message.
The patch series also fixes adding the disk which was impacted because of
the changes.
Patches can also be found at
https://github.com/goldwynr/linux branch md-next
Changes since V2:
- Fix status synchrnoization after --add and --re-add operations
- Included Guoqing's patches on endian correctness, zeroing cmsg etc
- Restructure add_new_disk() and cancel()
If an unsupported option is given then the early return from
persistent_ctr() leaked memory allocated for the 'pstore' and never
destroyed the 'metadata_wq'.
Fixes: b0d3cc011e ("dm snapshot: add new persistent store option to support overflow")
Signed-off-by: Sudip Mukherjee <sudip@vectorindia.org>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
For cluster raid, we should not kick it from array if the disk can't be
remove from array successfully.
Signed-off-by: Guoqing Jiang <gqjiang@suse.com>
Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
During the past test, the node occasionally received the msg which is
sent from itself, this case should not happen in theory, but it is
better to avoid it in case something wrong happened.
Signed-off-by: Guoqing Jiang <gqjiang@suse.com>
Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
The receive daemon prints kernel messages for every network message
received. This would fill the kernel message log with unnecessary messages.
Remove the pr_info() messages.
Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Adding the disk worked incorrectly with the new reload code. Fix it:
- No operation should be performed on rdev marked as Candidate
- After a metadata update operation, kick disk if role is 0xfffe
else clear Candidate bit and continue with the regular change check.
- Saving the mode of the lock resource to check if token lock is already
locked, because it can be called twice while adding a disk. However,
unlock_comm() must be called only once.
- add_new_disk() is called by the node initiating the --add operation.
If it needs to be canceled, call add_new_disk_cancel(). The operation
is completed by md_update_sb() which will write and unlock the
communication.
Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Resync or recovery must be performed by only one node at a time.
A DLM lock resource, resync_lockres provides the mutual exclusion
so that only one node performs the recovery/resync at a time.
If a node is unable to get the resync_lockres, because recovery is
being performed by another node, it set MD_RECOVER_NEEDED so as
to schedule recovery in the future.
Remove the debug message in resync_info_update()
used during development.
Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
In a clustered environment, a change such as marking a device faulty,
can be recorded by any of the nodes. This is communicated to all the
nodes and re-recording such a change is unnecessary, and quite often
pretty disruptive.
With this patch, just before the update, we detect for the changes
and if the changes are already in superblock, we abort the update
after clearing all the flags
Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
md_reload_sb is too simplistic and it explicitly needs to determine
the changes made by the writing node. However, there are multiple areas
where a simple reload could fail.
Instead, read the superblock of one of the "good" rdevs and update
the necessary information:
- read the superblock into a newly allocated page, by temporarily
swapping out rdev->sb_page and calling ->load_super.
- if that fails return
- if it succeeds, call check_sb_changes
1. iterates over list of active devices and checks the matching
dev_roles[] value.
If that is 'faulty', the device must be marked as faulty
- call md_error to mark the device as faulty. Make sure
not to set CHANGE_DEVS and wakeup mddev->thread or else
it would initiate a resync process, which is the responsibility
of the "primary" node.
- clear the Blocked bit
- Call remove_and_add_spares() to hot remove the device.
If the device is 'spare':
- call remove_and_add_spares() to get the number of spares
added in this operation.
- Reduce mddev->degraded to mark the array as not degraded.
2. reset recovery_cp
- read the rest of the rdevs to update recovery_offset. If recovery_offset
is equal to MaxSector, call spare_active() to set it In_sync
This required that recovery_offset be initialized to MaxSector, as
opposed to zero so as to communicate the end of sync for a rdev.
Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
remove_and_add_spares() checks for all devices to activate spare.
Change it to activate a specific device if a non-null rdev
argument is passed.
remove_and_add_spares() can be used to activate spares in
slot_store() as well.
For hot_remove_disk(), check if rdev->raid_disk == -1 before
calling remove_and_add_spares()
Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
When the suspended_area is deleted, the suspended processes
must be woken up in order to complete their I/O.
Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Previously, BITMAP_NEEDS_SYNC message is sent when the resyc
aborts, but it could abort for different reasons, and not all
of reasons require another node to take over the resync ownship.
It is better make BITMAP_NEEDS_SYNC message only be sent when
the node is leaving cluster with dirty bitmap. And we also need
to ensure dlm connection is ok.
Signed-off-by: Guoqing Jiang <gqjiang@suse.com>
Signed-off-by: NeilBrown <neilb@suse.com>
Suspending the entire device for resync could take too long. Resync
in small chunks.
cluster's resync window (32M) is maintained in r1conf as
cluster_sync_low and cluster_sync_high and processed in
raid1's sync_request(). If the current resync is outside the cluster
resync window:
1. Set the cluster_sync_low to curr_resync_completed.
2. Check if the sync will fit in the new window, if not issue a
wait_barrier() and set cluster_sync_low to sector_nr.
3. Set cluster_sync_high to cluster_sync_low + resync_window.
4. Send a message to all nodes so they may add it in their suspension
list.
bitmap_cond_end_sync is modified to allow to force a sync inorder
to get the curr_resync_completed uptodate with the sector passed.
Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Signed-off-by: NeilBrown <neilb@suse.de>
Add BITMAP_MAJOR_CLUSTERED as 5, in order to prevent older kernels
to assemble a clustered device.
In order to maximize compatibility, the major version is set to
BITMAP_MAJOR_CLUSTERED *only* if the bitmap is clustered.
Added MD_FEATURE_CLUSTERED in order to return error for older
kernels which would assemble MD even if the bitmap is corrupted.
Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Signed-off-by: NeilBrown <neilb@suse.com>
process_suspend_info - which handles the RESYNCING request - must not
reply until all writes which were initiated before the request arrived,
have completed.
As a by-product, all process_* functions now take mddev as their
first arguement making it uniform.
Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Signed-off-by: NeilBrown <neilb@suse.com>
Very careless bug earler in 4.3-rc, now fixed :-)
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iQIcBAABCAAGBQJWGYrdAAoJEDnsnt1WYoG56vcP/03E7DoycDQ7uH46i2szf3M/
isy0dk+2S9D87iBz/xf4RXvAY7FTHy9/vIG/o6UKYkhSRzm6T6xCbrwd+duS2TSc
yQM33BJ1VdM+trGj5ywrdF8guwRMjW4NFPnez16moVSVZDbNK2pUdZiw8kGSi39n
hpjftyefojISG6rbDGBGK2JiVTNOqDjMH2Ny8MhX2J5ryQQOsd6+9ojgri3nfTbP
6PmP08QyVxdYA3ZUlTZaKUNZ8AQHgoydhiEyGbdCewcE8pYaeEUqvcBi4DrDOil8
9BGHnf755Wl3k26P8uBsvri9zp+SZl0LEZLhSpyFpRmCTaFGn0pnSKJ0intnRTPc
JZ7gTY6q1Bt5DXToZw7hHVWgxjos8aweS2JLzSJloB6FFlDCckypkvSR4GQL7R9N
jIYntfwaQaJIgUSzVo/Aw6vjBTWbqyLHf3DP8ImsPSe/z0gjtRiyPkjoZgthuYp2
ErLoVe/JgKstR0gmobbdRhShIfXMFVAIwasXOXfq4Ye4LRwvfAwP2UDHrC25mb0O
IJi6fMqf3bWxmLIzFUcTe8Z2nzuKolAgP2rcd6kb0bbLxE4Y5xtzCV8fgnhk2obw
HvP4zZnacLKx8Nvet+YGUKjVJU3wx4RTgyGLU4WqC13fwZREeJLWwxgK859ZJ8yl
k+TQud5fKgfkX20+eTA0
=qdcM
-----END PGP SIGNATURE-----
Merge tag 'md/4.3-rc4-fix' of git://neil.brown.name/md
Pull md bugfix from Neil Brown:
"One bug fix for raid1/raid10.
Very careless bug earler in 4.3-rc, now fixed :-)"
* tag 'md/4.3-rc4-fix' of git://neil.brown.name/md:
crash in md-raid1 and md-raid10 due to incorrect list manipulation
- DM core AB-BA deadlock fix in the device destruction path (vs device
creation's DM table swap).
- DM raid fix to properly round up the region_size to the next
power-of-2.
- DM cache fix for a NULL pointer seen while switching from the
"cleaner" cache policy.
2 fixes for regressions introduced during the 4.3 merge:
- request-based DM error propagation regressed due to incorrect
changes introduced when adding the bi_error field to bio.
- DM snapshot fix to only support snapshots that overflow if the client
(e.g. lvm2) is prepared to deal with the associated snapshot status
interface change.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJWGC/jAAoJEMUj8QotnQNaTgYIAJz1AG5IcHz8D3zi8+MBWXFL
WAYrXfXSxexsymVKFsqi6z9fYiW5fRZ41/+Kl8/dYnhBIS8uUzWlad2qw/JFg+zC
l/EzdHWjakzuGm9/quK2h/CBC/3pmRH9UeKgzOPODOpAzkJfrKoO4/J7JPIi3JyP
esE/2F2TBwERL4oC74UB7/nuM/xckS/DRjbd3B82/IsfM5n+MARvuSSrqWcPEu8h
Hh5k42KyA+Tq7uElLnXF8phFOCJCn9IyI+QLdxj33PfDxwrtXMvV6Sxw7FS8b7oF
/gw3Dod4sEv+EJZ1A+O9mxGBk3ajCpMvUYbcY6owIHyB1mKWiSKyvyBPyIY6RiQ=
=2z9t
-----END PGP SIGNATURE-----
Merge tag 'dm-4.3-fixes-2' of git://git.kernel.org/pub/scm/linux/kernel/git/device-mapper/linux-dm
Pull dm fixes from Mike Snitzer:
"Three stable fixes:
- DM core AB-BA deadlock fix in the device destruction path (vs
device creation's DM table swap).
- DM raid fix to properly round up the region_size to the next
power-of-2.
- DM cache fix for a NULL pointer seen while switching from the
"cleaner" cache policy.
Two fixes for regressions introduced during the 4.3 merge:
- request-based DM error propagation regressed due to incorrect
changes introduced when adding the bi_error field to bio.
- DM snapshot fix to only support snapshots that overflow if the
client (e.g. lvm2) is prepared to deal with the associated
snapshot status interface change"
* tag 'dm-4.3-fixes-2' of git://git.kernel.org/pub/scm/linux/kernel/git/device-mapper/linux-dm:
dm snapshot: add new persistent store option to support overflow
dm cache: fix NULL pointer when switching from cleaner policy
dm: fix request-based dm error reporting
dm raid: fix round up of default region size
dm: fix AB-BA deadlock in __dm_destroy()
Commit 76c44f6d80 introduced the possibly for "Overflow" to be reported
by the snapshot device's status. Older userspace (e.g. lvm2) does not
handle the "Overflow" status response.
Fix this incompatibility by requiring newer userspace code, that can
cope with "Overflow", request the persistent store with overflow support
by using "PO" (Persistent with Overflow) for the snapshot store type.
Reported-by: Zdenek Kabelac <zkabelac@redhat.com>
Fixes: 76c44f6d80 ("dm snapshot: don't invalidate on-disk image on snapshot write overflow")
Reviewed-by: Mikulas Patocka <mpatocka@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
The cleaner policy doesn't make use of the per cache block hint space in
the metadata (unlike the other policies). When switching from the
cleaner policy to mq or smq a NULL pointer crash (in dm_tm_new_block)
was observed. The crash was caused by bugs in dm-cache-metadata.c
when trying to skip creation of the hint btree.
The minimal fix is to change hint size for the cleaner policy to 4 bytes
(only hint size supported).
Signed-off-by: Joe Thornber <ejt@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Cc: stable@vger.kernel.org
The commit 55ce74d4bf (md/raid1: ensure
device failure recorded before write request returns) is causing crash in
the LVM2 testsuite test shell/lvchange-raid.sh. For me the crash is 100%
reproducible.
The reason for the crash is that the newly added code in raid1d moves the
list from conf->bio_end_io_list to tmp, then tests if tmp is non-empty and
then incorrectly pops the bio from conf->bio_end_io_list (which is empty
because the list was alrady moved).
Raid-10 has a similar bug.
Kernel Fault: Code=15 regs=000000006ccb8640 (Addr=0000000100000000)
CPU: 3 PID: 1930 Comm: mdX_raid1 Not tainted 4.2.0-rc5-bisect+ #35
task: 000000006cc1f258 ti: 000000006ccb8000 task.ti: 000000006ccb8000
YZrvWESTHLNXBCVMcbcbcbcbOGFRQPDI
PSW: 00001000000001001111111000001111 Not tainted
r00-03 000000ff0804fe0f 000000001059d000 000000001059f818 000000007f16be38
r04-07 000000001059d000 000000007f16be08 0000000000200200 0000000000000001
r08-11 000000006ccb8260 000000007b7934d0 0000000000000001 0000000000000000
r12-15 000000004056f320 0000000000000000 0000000000013dd0 0000000000000000
r16-19 00000000f0d00ae0 0000000000000000 0000000000000000 0000000000000001
r20-23 000000000800000f 0000000042200390 0000000000000000 0000000000000000
r24-27 0000000000000001 000000000800000f 000000007f16be08 000000001059d000
r28-31 0000000100000000 000000006ccb8560 000000006ccb8640 0000000000000000
sr00-03 0000000000249800 0000000000000000 0000000000000000 0000000000249800
sr04-07 0000000000000000 0000000000000000 0000000000000000 0000000000000000
IASQ: 0000000000000000 0000000000000000 IAOQ: 000000001059f61c 000000001059f620
IIR: 0f8010c6 ISR: 0000000000000000 IOR: 0000000100000000
CPU: 3 CR30: 000000006ccb8000 CR31: 0000000000000000
ORIG_R28: 000000001059d000
IAOQ[0]: call_bio_endio+0x34/0x1a8 [raid1]
IAOQ[1]: call_bio_endio+0x38/0x1a8 [raid1]
RP(r2): raid_end_bio_io+0x88/0x168 [raid1]
Backtrace:
[<000000001059f818>] raid_end_bio_io+0x88/0x168 [raid1]
[<00000000105a4f64>] raid1d+0x144/0x1640 [raid1]
[<000000004017fd5c>] kthread+0x144/0x160
Signed-off-by: Mikulas Patocka <mpatocka@redhat.com>
Fixes: 55ce74d4bf ("md/raid1: ensure device failure recorded before write request returns.")
Fixes: 95af587e95 ("md/raid10: ensure device failure recorded before write request returns.")
Signed-off-by: NeilBrown <neilb@suse.com>
end_clone_bio() is a endio callback for clone bio and should check
and save the clone's bi_error for error reporting. However,
4246a0b63b ("block: add a bi_error field to struct bio") changed
the function to check the original bio's bi_error, which is 0.
Without this fix, clone's error is ignored and reported to the
original request as success. Thus data corruption will be observed.
Fixes: 4246a0b63b ("block: add a bi_error field to struct bio")
Signed-off-by: Jun'ichi Nomura <j-nomura@ce.jp.nec.com>
Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Two tagged for -stable
One is really a cleanup to match and improve kmemcache interface.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iQIcBAABCAAGBQJWDjJNAAoJEDnsnt1WYoG5bOkP/ioJ8DZWkobOWSpnjbNCKIyg
xrX3FlTq8MJHPfeqGDzfznjYTZ7vb9ZYkZNkn1HUIOXKCkG0hqr1GL1eVZmKAbgZ
B3nuyIuArZe+IXQ5mMoMXn5qpp7/2mO/JPaqBBrUmxHMx+c+Xx0LC0QUdL7GXzY5
oQ8SahoLrl7Xl4/i9dSuhVD9rDhzuC7ZmykLkYrtquxFC69tH4PRUWak0RXXvHsE
mzADdqCwATLUu2FvEudoaCecXHxRmcn47CuALcqdaZF+VVPe8WsjIySmeVDRCixZ
k9njCdNiqtoKzb87MJECclYbCdHUVcKMNqaOoBkLaZnJumNFABwrPP3LnMtdaNpy
TrjYh3x5/xrdOgmWBML2gK/suEtaN2hgT6KyI38rAwlYQlEppxd94ZbIH0Q0wY+L
Unhcn28h56janKYVzyumA0Z5p6fbpxkI2OLEws4HzSqq6Ajpuc7yxDSCbUmE2vXL
WIoVAgH6PEr5sUCMH7xxqWejoXDi1KinPPVELKuMTWCiwRFr3CnZZzPXGJX5DXSG
nS9HCR35WmXuQx9pqC4/YOk7HBmllnNMHUrFlOYCzAn2qbjsCZ0whNlKe78qvN2z
+OYiVRF8KmSNAkP+S47sxeyEEYMi4aKVNe1ur1jVjYmA5keIdmjbnIRjGXfSNzff
PdvMqZcGouq4jsz2fqQf
=yqg5
-----END PGP SIGNATURE-----
Merge tag 'md/4.3-fixes' of git://neil.brown.name/md
Pull md fixes from Neil Brown:
"Assorted fixes for md in 4.3-rc.
Two tagged for -stable, and one is really a cleanup to match and
improve kmemcache interface.
* tag 'md/4.3-fixes' of git://neil.brown.name/md:
md/bitmap: don't pass -1 to bitmap_storage_alloc.
md/raid1: Avoid raid1 resync getting stuck
md: drop null test before destroy functions
md: clear CHANGE_PENDING in readonly array
md/raid0: apply base queue limits *before* disk_stack_limits
md/raid5: don't index beyond end of array in need_this_block().
raid5: update analysis state for failed stripe
md: wait for pending superblock updates before switching to read-only
Commit 3a0f9aaee0 ("dm raid: round region_size to power of two")
intended to make sure that the default region size is a power of two.
However, the logic in that commit is incorrect and sets the variable
region_size to 0 or 1, depending on whether min_region_size is a power
of two.
Fix this logic, using roundup_pow_of_two(), so that region_size is
properly rounded up to the next power of two.
Signed-off-by: Mikulas Patocka <mpatocka@redhat.com>
Fixes: 3a0f9aaee0 ("dm raid: round region_size to power of two")
Cc: stable@vger.kernel.org # v3.8+
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Passing -1 to bitmap_storage_alloc() causes page->index to be set to
-1, which is quite problematic.
So only pass ->cluster_slot if mddev_is_clustered().
Fixes: b97e92574c ("Use separate bitmaps for each nodes in the cluster")
Cc: stable@vger.kernel.org (v4.1+)
Signed-off-by: NeilBrown <neilb@suse.com>
close_sync() needs to set conf->next_resync to a large, but safe value
below MaxSector and use it to determine whether or not to set
start_next_window in wait_barrier()
Solution suggested by Neil Brown.
Reported-by: Nate Dailey <nate.dailey@stratus.com>
Tested-by: Xiao Ni <xni@redhat.com>
Signed-off-by: Jes Sorensen <Jes.Sorensen@redhat.com>
Signed-off-by: NeilBrown <neilb@suse.com>
Remove unneeded NULL test.
The semantic patch that makes this change is as follows:
(http://coccinelle.lip6.fr/)
// <smpl>
@@ expression x; @@
-if (x != NULL)
\(kmem_cache_destroy\|mempool_destroy\|dma_pool_destroy\)(x);
// </smpl>
Signed-off-by: Julia Lawall <Julia.Lawall@lip6.fr>
Signed-off-by: NeilBrown <neilb@suse.com>
If faulty disks of an array are more than allowed degraded number, the
array enters error handling. It will be marked as read-only with
MD_CHANGE_PENDING/RECOVERY_NEEDED set. But currently recovery doesn't
clear CHANGE_PENDING bit for read-only array. If MD_CHANGE_PENDING is
set for a raid5 array, all returned IO will be hold on a list till the
bit is clear. But recovery nevery clears this bit, the IO is always in
pending state and nevery finish. This has bad effects like upper layer
can't get an IO error and the array can't be stopped.
Fixes: c3cce6cda1 ("md/raid5: ensure device failure recorded before write request returns.")
Signed-off-by: Shaohua Li <shli@fb.com>
Signed-off-by: NeilBrown <neilb@suse.com>
Calling e.g. blk_queue_max_hw_sectors() after calls to
disk_stack_limits() discards the settings determined by
disk_stack_limits().
So we need to make those calls first.
Fixes: 199dc6ed51 ("md/raid0: update queue parameter in a safer location.")
Cc: stable@vger.kernel.org (v2.6.35+ - please apply with 199dc6ed51).
Reported-by: Jes Sorensen <Jes.Sorensen@redhat.com>
Signed-off-by: NeilBrown <neilb@suse.com>
When need_this_block probably shouldn't be called when there
are more than 2 failed devices, we really don't want it to try
indexing beyond the end of the failed_num[] of fdev[] arrays.
So limit the loops to at most 2 iterations.
Reported-by: Shaohua Li <shli@fb.com>
Signed-off-by: NeilBrown <neilb@suse.de>
handle_failed_stripe() makes the stripe fail, eg, all IO will return
with a failure, but it doesn't update stripe_head_state. Later
handle_stripe() has special handling for raid6 for handle_stripe_fill().
That check before handle_stripe_fill() doesn't skip the failed stripe
and we get a kernel crash in need_this_block. This patch clear the
analysis state to make sure no functions wrongly called after
handle_failed_stripe()
Signed-off-by: Shaohua Li <shli@fb.com>
Signed-off-by: NeilBrown <neilb@suse.com>
If a superblock update is pending, wait for it to complete before
letting md_set_readonly() switch to readonly.
Otherwise we might lose important information about a device having
failed.
For external arrays, waiting for superblock updates can wait on
user-space, so in that case, just return an error.
Reported-and-tested-by: Shaohua Li <shli@fb.com>
Signed-off-by: NeilBrown <neilb@suse.com>
__dm_destroy() takes io_barrier SRCU lock (dm_get_live_table) and
suspend_lock in reverse order. Doing so can cause AB-BA deadlock:
__dm_destroy dm_swap_table
---------------------------------------------------
mutex_lock(suspend_lock)
dm_get_live_table()
srcu_read_lock(io_barrier)
dm_sync_table()
synchronize_srcu(io_barrier)
.. waiting for dm_put_live_table()
mutex_lock(suspend_lock)
.. waiting for suspend_lock
Fix this by taking the locks in proper order.
Signed-off-by: Jun'ichi Nomura <j-nomura@ce.jp.nec.com>
Fixes: ab7c7bb6f4 ("dm: hold suspend_lock while suspending device during device deletion")
Acked-by: Mikulas Patocka <mpatocka@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Cc: stable@vger.kernel.org
Setting the dm-crypt device's max_segment_size to PAGE_SIZE is an
unfortunate constraint that is required to avoid the potential for
exceeding dm-crypt's underlying device's max_segments limits -- due to
crypt_alloc_buffer() possibly allocating pages for the encryption bio
that are not as physically contiguous as the original bio.
It is interesting to note that this problem was already fixed back in
2007 via commit 91e106259 ("dm crypt: use bio_add_page"). But Linux 4.0
commit cf2f1abfb ("dm crypt: don't allocate pages for a partial
request") regressed dm-crypt back to _not_ using bio_add_page(). But
given dm-crypt's cpu parallelization changes all depend on commit
cf2f1abfb's abandoning of the more complex io fragments processing that
dm-crypt previously had we cannot easily go back to using
bio_add_page().
So all said the cleanest way to resolve this issue is to fix dm-crypt to
properly constrain the original bios entering dm-crypt so the encryption
bios that dm-crypt generates from the original bios are always
compatible with the underlying device's max_segments queue limits.
It should be noted that technically Linux 4.3 does _not_ need this fix
because of the block core's new late bio-splitting capability. But, it
is reasoned, there is little to be gained by having the block core split
the encrypted bio that is composed of PAGE_SIZE segments. That said, in
the future we may revert this change.
Fixes: cf2f1abfb ("dm crypt: don't allocate pages for a partial request")
Fixes: https://bugzilla.kernel.org/show_bug.cgi?id=104421
Suggested-by: Jeff Moyer <jmoyer@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Cc: stable@vger.kernel.org # 4.0+
If the pool is configured with 'ignore_discard' its discard support is
disabled. The pool's thin devices should also have queue_limits that
reflect discards are disabled.
Fixes: 34fbcf62 ("dm thin: range discard support")
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Cc: stable@vger.kernel.org # 4.1+
The major pieces of this patch are a set patches facilitating better
integration between scsi and scsi_dh (the device handling layer used by
multi-path; all the dm parts are acked by Mike Snitzer). It also includes
driver updates for mp3sas, scsi_debug and an assortment of bug fixes.
Signed-off-by: James Bottomley <JBottomley@Odin.com>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iQEcBAABAgAGBQJV8yt5AAoJEDeqqVYsXL0MBsQH+wXvlx3o0BGuz5ZXfIs/RxzI
MwGnu1J0LSA9FPakkMUVOBtsxIG+pCV+4eKorQMkfGCKAZ8daaYsyYvSEM2mcqIX
1Y/srEnbzfE94JHbsI2pbiMPkB7QdtW27WjTSjQGgD9igAyVmmITiQJrXbpAlSLF
F6n++9avng+GhjXQ5TF8/y13OYgabIoAPM1j4B/ut/Ok8ReruBvMBnOla5w5RMKR
rBZKTZfUwvX5S0cuREwj8tFsRVUgdBNSrcGswFJrZo5x9WAsSHLC6+SOLZuUy1vC
ua0tNtEiyXiuR0/jSP9qv7hJ/j0BW+EGdnW6GZEzKpeMK5PxfVspOsbNunUDRsY=
=Y9G1
-----END PGP SIGNATURE-----
Merge tag 'scsi-misc' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
Pull second round of SCSI updates from James Bottomley:
"There's one late arriving patch here (added today), fixing a build
issue which the scsi_dh patch set in here uncovered. Other than that,
everything has been incubated in -next and the checkers for a week.
The major pieces of this patch are a set patches facilitating better
integration between scsi and scsi_dh (the device handling layer used
by multi-path; all the dm parts are acked by Mike Snitzer).
This also includes driver updates for mp3sas, scsi_debug and an
assortment of bug fixes"
* tag 'scsi-misc' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi: (50 commits)
scsi_dh: fix randconfig build error
scsi: fix scsi_error_handler vs. scsi_host_dev_release race
fcoe: Convert use of __constant_htons to htons
mpt2sas: setpci reset kernel oops fix
pm80xx: Don't override ts->stat on IO_OPEN_CNX_ERROR_HW_RESOURCE_BUSY
lpfc: Fix possible use-after-free and double free in lpfc_mbx_cmpl_rdp_page_a2()
bfa: Fix incorrect de-reference of pointer
bfa: Fix indentation
scsi_transport_sas: Remove check for SAS expander when querying bay/enclosure IDs.
scsi_debug: resp_request: remove unused variable
scsi_debug: fix REPORT LUNS Well Known LU
scsi_debug: schedule_resp fix input variable check
scsi_debug: make dump_sector static
scsi_debug: vfree is null safe so drop the check
scsi_debug: use SCSI_W_LUN_REPORT_LUNS instead of SAM2_WLUN_REPORT_LUNS;
scsi_debug: define pr_fmt() for consistent logging
mpt2sas: Refcount fw_events and fix unsafe list usage
mpt2sas: Refcount sas_device objects and fix unsafe list usage
scsi_dh: return SCSI_DH_NOTCONN in scsi_dh_activate()
scsi_dh: don't allow to detach device handlers at runtime
...
It looks like the Kconfig check that was meant to fix this (commit
fe9233fb69 [SCSI] scsi_dh: fix kconfig related
build errors) was actually reversed, but no-one noticed until the new set of
patches which separated DM and SCSI_DH).
Fixes: fe9233fb69
Signed-off-by: Christoph Hellwig <hch@lst.de>
Tested-by: Mike Snitzer <snitzer@redhat.com>
Signed-off-by: James Bottomley <JBottomley@Odin.com>
- An assortment of little fixes, several for minor races only likely
to be hit during testing
- further cluster-md-raid1 development, not ready for real use yet.
- new RAID6 syndrome code for ARM NEON
- fix a race where a write can return before failure of one device
is properly recorded in metadata, so an immediate crash might result
in that write being lost.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJV6rSXAAoJEDnsnt1WYoG5eJIQAJs62+kB3+p87/VEu4hiBgYv
yyaCBlTDn3xxy3WFLtvSIc+cZOamvGe/u/+9/aTA5zq30VpS0fwZlLUxwyR3vB7H
aXh5y0JL8fViCUp6o+SplOpNDMAv4ntcW5NMv7uWhPLxtQxF/IJu6YLsDRcFaJqL
LFCpvKSPgXOQ88ZXHa54xgFgEy+aAh1lxaWQmeqCLtgVc6YhwIsazG00R/vow8Pb
91u3jFioWjBpovTJiRxQO+NGemfOnKrm2EWkR4jzo8taHOouBWOH0RZjh/67dh4p
QX4GjMINhFvYSr1UMGXfPm+Fjp2PRgx1qKyR/XhPeXNuE2xZf7T4aCnmKA8DVUA4
vyEl/l0lAZClExNA+bgE/wCrMpvtb9E4NnklzIffDqsDY79m9JzLwznYqDQcXP7m
0zPlRmf8KQoSOVV960N2O6siwQMwvTyPecG0raAv9BKjwZ+7/M8HLOplZuuMsbzT
BZ6+FnAIDtc0Id0wwJoARUkghG7Nr4IWi4Q8MtyYLgH9KLnYkomjf/I2B5sEooCF
JFIXeg+XX/xKSFHV4TycYdAFMtMEJMJ/pEnbKJ/W7CyAmrHJv+0/U+/gOkA8Mg76
iqYVWqRJHP9ZyWpmaWaaOeGIgFoJqrjM65qFNRcOnzMd/aAi8W63oyM99Lxi+1pm
i8StqQBNtiwzds/w32SI
=n+/k
-----END PGP SIGNATURE-----
Merge tag 'md/4.3' of git://neil.brown.name/md
Pull md updates from Neil Brown:
- an assortment of little fixes, several for minor races only likely to
be hit during testing
- further cluster-md-raid1 development, not ready for real use yet.
- new RAID6 syndrome code for ARM NEON
- fix a race where a write can return before failure of one device is
properly recorded in metadata, so an immediate crash might result in
that write being lost.
* tag 'md/4.3' of git://neil.brown.name/md: (33 commits)
md/raid5: ensure device failure recorded before write request returns.
md/raid5: use bio_list for the list of bios to return.
md/raid10: ensure device failure recorded before write request returns.
md/raid1: ensure device failure recorded before write request returns.
md-cluster: remove inappropriate try_module_get from join()
md: extend spinlock protection in register_md_cluster_operations
md-cluster: Read the disk bitmap sb and check if it needs recovery
md-cluster: only call complete(&cinfo->completion) when node join cluster
md-cluster: add missed lockres_free
md-cluster: remove the unused sb_lock
md-cluster: init suspend_list and suspend_lock early in join
md-cluster: add the error check if failed to get dlm lock
md-cluster: init completion within lockres_init
md-cluster: fix deadlock issue on message lock
md-cluster: transfer the resync ownership to another node
md-cluster: split recover_slot for future code reuse
md-cluster: use %pU to print UUIDs
md: setup safemode_timer before it's being used
md/raid5: handle possible race as reshape completes.
md: sync sync_completed has correct value as recovery finishes.
...
Pull device mapper update from Mike Snitzer:
- a couple small cleanups in dm-cache, dm-verity, persistent-data's
dm-btree, and DM core.
- a 4.1-stable fix for dm-cache that fixes the leaking of deferred bio
prison cells
- a 4.2-stable fix that adds feature reporting for the dm-stats
features added in 4.2
- improve DM-snapshot to not invalidate the on-disk snapshot if
snapshot device write overflow occurs; but a write overflow triggered
through the origin device will still invalidate the snapshot.
- optimize DM-thinp's async discard submission a bit now that late bio
splitting has been included in block core.
- switch DM-cache's SMQ policy lock from using a mutex to a spinlock;
improves performance on very low latency devices (eg. NVMe SSD).
- document DM RAID 4/5/6's discard support
[ I did not pull the slab changes, which weren't appropriate for this
tree, and weren't obviously the right thing to do anyway. At the very
least they need some discussion and explanation before getting merged.
Because not pulling the actual tagged commit but doing a partial pull
instead, this merge commit thus also obviously is missing the git
signature from the original tag ]
* tag 'dm-4.3-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/device-mapper/linux-dm:
dm cache: fix use after freeing migrations
dm cache: small cleanups related to deferred prison cell cleanup
dm cache: fix leaking of deferred bio prison cells
dm raid: document RAID 4/5/6 discard support
dm stats: report precise_timestamps and histogram in @stats_list output
dm thin: optimize async discard submission
dm snapshot: don't invalidate on-disk image on snapshot write overflow
dm: remove unlikely() before IS_ERR()
dm: do not override error code returned from dm_get_device()
dm: test return value for DM_MAPIO_SUBMITTED
dm verity: remove unused mempool
dm cache: move wake_waker() from free_migrations() to where it is needed
dm btree remove: remove unused function get_nr_entries()
dm btree: remove unused "dm_block_t root" parameter in btree_split_sibling()
dm cache policy smq: change the mutex to a spinlock
Pull core block updates from Jens Axboe:
"This first core part of the block IO changes contains:
- Cleanup of the bio IO error signaling from Christoph. We used to
rely on the uptodate bit and passing around of an error, now we
store the error in the bio itself.
- Improvement of the above from myself, by shrinking the bio size
down again to fit in two cachelines on x86-64.
- Revert of the max_hw_sectors cap removal from a revision again,
from Jeff Moyer. This caused performance regressions in various
tests. Reinstate the limit, bump it to a more reasonable size
instead.
- Make /sys/block/<dev>/queue/discard_max_bytes writeable, by me.
Most devices have huge trim limits, which can cause nasty latencies
when deleting files. Enable the admin to configure the size down.
We will look into having a more sane default instead of UINT_MAX
sectors.
- Improvement of the SGP gaps logic from Keith Busch.
- Enable the block core to handle arbitrarily sized bios, which
enables a nice simplification of bio_add_page() (which is an IO hot
path). From Kent.
- Improvements to the partition io stats accounting, making it
faster. From Ming Lei.
- Also from Ming Lei, a basic fixup for overflow of the sysfs pending
file in blk-mq, as well as a fix for a blk-mq timeout race
condition.
- Ming Lin has been carrying Kents above mentioned patches forward
for a while, and testing them. Ming also did a few fixes around
that.
- Sasha Levin found and fixed a use-after-free problem introduced by
the bio->bi_error changes from Christoph.
- Small blk cgroup cleanup from Viresh Kumar"
* 'for-4.3/core' of git://git.kernel.dk/linux-block: (26 commits)
blk: Fix bio_io_vec index when checking bvec gaps
block: Replace SG_GAPS with new queue limits mask
block: bump BLK_DEF_MAX_SECTORS to 2560
Revert "block: remove artifical max_hw_sectors cap"
blk-mq: fix race between timeout and freeing request
blk-mq: fix buffer overflow when reading sysfs file of 'pending'
Documentation: update notes in biovecs about arbitrarily sized bios
block: remove bio_get_nr_vecs()
fs: use helper bio_add_page() instead of open coding on bi_io_vec
block: kill merge_bvec_fn() completely
md/raid5: get rid of bio_fits_rdev()
md/raid5: split bio for chunk_aligned_read
block: remove split code in blkdev_issue_{discard,write_same}
btrfs: remove bio splitting and merge_bvec_fn() calls
bcache: remove driver private bio splitting code
block: simplify bio_add_page()
block: make generic_make_request handle arbitrarily sized bios
blk-cgroup: Drop unlikely before IS_ERR(_OR_NULL)
block: don't access bio->bi_error after bio_put()
block: shrink struct bio down to 2 cache lines again
...
Both free_io_migration() and issue_discard() dereference a migration
that was just freed. Fix those by saving off the migrations's cache
object before freeing the migration. Also cleanup needless mg->cache
dereferences now that the cache object is available directly.
Fixes: e44b6a5a3c ("dm cache: move wake_waker() from free_migrations() to where it is needed")
Signed-off-by: Joe Thornber <ejt@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Eliminate __cell_release() since it only had one caller that always
released the cell holder.
Switch cell_error_with_code() to using free_prison_cell() for the sake
of consistency.
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
There were two cases where dm_cell_visit_release() was being called,
which removes the cell from the prison's rbtree, but the callers didn't
also return the cell to the mempool. Fix this by having them call
free_prison_cell().
This leak manifested as the 'kmalloc-96' slab growing until OOM.
Fixes: 651f5fa2a3 ("dm cache: defer whole cells")
Signed-off-by: Joe Thornber <ejt@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Cc: stable@vger.kernel.org # 4.1+
When a write to one of the devices of a RAID5/6 fails, the failure is
recorded in the metadata of the other devices so that after a restart
the data on the failed drive wont be trusted even if that drive seems
to be working again (maybe a cable was unplugged).
Similarly when we record a bad-block in response to a write failure,
we must not let the write complete until the bad-block update is safe.
Currently there is no interlock between the write request completing
and the metadata update. So it is possible that the write will
complete, the app will confirm success in some way, and then the
machine will crash before the metadata update completes.
This is an extremely small hole for a racy to fit in, but it is
theoretically possible and so should be closed.
So:
- set MD_CHANGE_PENDING when requesting a metadata update for a
failed device, so we can know with certainty when it completes
- queue requests that completed when MD_CHANGE_PENDING is set to
only be processed after the metadata update completes
- call raid_end_bio_io() on bios in that queue when the time comes.
Signed-off-by: NeilBrown <neilb@suse.com>
When a write to one of the legs of a RAID10 fails, the failure is
recorded in the metadata of the other legs so that after a restart
the data on the failed drive wont be trusted even if that drive seems
to be working again (maybe a cable was unplugged).
Currently there is no interlock between the write request completing
and the metadata update. So it is possible that the write will
complete, the app will confirm success in some way, and then the
machine will crash before the metadata update completes.
This is an extremely small hole for a racy to fit in, but it is
theoretically possible and so should be closed.
So:
- set MD_CHANGE_PENDING when requesting a metadata update for a
failed device, so we can know with certainty when it completes
- queue requests that experienced an error on a new queue which
is only processed after the metadata update completes
- call raid_end_bio_io() on bios in that queue when the time comes.
Signed-off-by: NeilBrown <neilb@suse.com>
When a write to one of the legs of a RAID1 fails, the failure is
recorded in the metadata of the other leg(s) so that after a restart
the data on the failed drive wont be trusted even if that drive seems
to be working again (maybe a cable was unplugged).
Similarly when we record a bad-block in response to a write failure,
we must not let the write complete until the bad-block update is safe.
Currently there is no interlock between the write request completing
and the metadata update. So it is possible that the write will
complete, the app will confirm success in some way, and then the
machine will crash before the metadata update completes.
This is an extremely small hole for a racy to fit in, but it is
theoretically possible and so should be closed.
So:
- set MD_CHANGE_PENDING when requesting a metadata update for a
failed device, so we can know with certainty when it completes
- queue requests that experienced an error on a new queue which
is only processed after the metadata update completes
- call raid_end_bio_io() on bios in that queue when the time comes.
Signed-off-by: NeilBrown <neilb@suse.com>
md_setup_cluster already calls try_module_get(), so this
try_module_get isn't needed.
Also, there is no matching module_put (except in error patch),
so this leaves an unbalanced module count.
Signed-off-by: NeilBrown <neilb@suse.com>
This code looks racy.
The only possible race is if two modules try to register at the same
time and that won't happen. But make the code look safe anyway.
Signed-off-by: NeilBrown <neilb@suse.com>
In gather_all_resync_info, we need to read the disk bitmap sb and
check if it needs recovery.
Reviewed-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Signed-off-by: Guoqing Jiang <gqjiang@suse.com>
Signed-off-by: NeilBrown <neilb@suse.com>
Introduce MD_CLUSTER_BEGIN_JOIN_CLUSTER flag to make sure
complete(&cinfo->completion) is only be invoked when node
join cluster. Otherwise node failure could also call the
complete, and it doesn't make sense to do it.
Reviewed-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Signed-off-by: Guoqing Jiang <gqjiang@suse.com>
Signed-off-by: NeilBrown <neilb@suse.com>
We also need to free the lock resource before goto out.
Reviewed-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Signed-off-by: Guoqing Jiang <gqjiang@suse.com>
Signed-off-by: NeilBrown <neilb@suse.com>
The sb_lock is not used anywhere, so let's remove it.
Reviewed-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Signed-off-by: Guoqing Jiang <gqjiang@suse.com>
Signed-off-by: NeilBrown <neilb@suse.com>
If the node just join the cluster, and receive the msg from other nodes
before init suspend_list, it will cause kernel crash due to NULL pointer
dereference, so move the initializations early to fix the bug.
md-cluster: Joined cluster 3578507b-e0cb-6d4f-6322-696cd7b1b10c slot 3
BUG: unable to handle kernel NULL pointer dereference at (null)
... ... ...
Call Trace:
[<ffffffffa0444924>] process_recvd_msg+0x2e4/0x330 [md_cluster]
[<ffffffffa0444a06>] recv_daemon+0x96/0x170 [md_cluster]
[<ffffffffa045189d>] md_thread+0x11d/0x170 [md_mod]
[<ffffffff810768c4>] kthread+0xb4/0xc0
[<ffffffff8151927c>] ret_from_fork+0x7c/0xb0
... ... ...
RIP [<ffffffffa0443581>] __remove_suspend_info+0x11/0xa0 [md_cluster]
Reviewed-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Signed-off-by: Guoqing Jiang <gqjiang@suse.com>
Signed-off-by: NeilBrown <neilb@suse.com>
In complicated cluster environment, it is possible that the
dlm lock couldn't be get/convert on purpose, the related err
info is added for better debug potential issue.
For lockres_free, if the lock is blocking by a lock request or
conversion request, then dlm_unlock just put it back to grant
queue, so need to ensure the lock is free finally.
Signed-off-by: Guoqing Jiang <gqjiang@suse.com>
Signed-off-by: NeilBrown <neilb@suse.com>
We should init completion within lockres_init, otherwise
completion could be initialized more than one time during
it's life cycle.
Reviewed-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Signed-off-by: Guoqing Jiang <gqjiang@suse.com>
Signed-off-by: NeilBrown <neilb@suse.com>
There is problem with previous communication mechanism, and we got below
deadlock scenario with cluster which has 3 nodes.
Sender Receiver Receiver
token(EX)
message(EX)
writes message
downconverts message(CR)
requests ack(EX)
get message(CR) gets message(CR)
reads message reads message
requests EX on message requests EX on message
To fix this problem, we do the following changes:
1. the sender downconverts MESSAGE to CW rather than CR.
2. and the receiver request PR lock not EX lock on message.
And in case we failed to down-convert EX to CW on message, it is better to
unlock message otherthan still hold the lock.
Reviewed-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Signed-off-by: Lidong Zhong <ldzhong@suse.com>
Signed-off-by: Guoqing Jiang <gqjiang@suse.com>
Signed-off-by: NeilBrown <neilb@suse.com>
When node A stops an array while the array is doing a resync, we need
to let another node B take over the resync task.
To achieve the goal, we need the A send an explicit BITMAP_NEEDS_SYNC
message to the cluster. And the node B which received that message will
invoke __recover_slot to do resync.
Reviewed-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Signed-off-by: Guoqing Jiang <gqjiang@suse.com>
Signed-off-by: NeilBrown <neilb@suse.com>
Make recover_slot as a wraper to __recover_slot, since the
logic of __recover_slot can be reused for the condition
when other nodes need to take over the resync job.
Signed-off-by: Guoqing Jiang <gqjiang@suse.com>
Signed-off-by: NeilBrown <neilb@suse.com>
We used to set up the safemode_timer timer in md_run. If md_run
would fail before the timer was set up we'd end up trying to modify
a timer that doesn't have a callback function when we access safe_delay_store,
which would trigger a BUG.
neilb: delete init_timer() call as setup_timer() does that.
Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: NeilBrown <neilb@suse.com>
It is possible (though unlikely) for a reshape to be
interrupted between the time that end_reshape is called
and the time when raid5_finish_reshape is called.
This can leave conf->reshape_progress set to MaxSector,
but mddev->reshape_position not.
This combination confused reshape_request() when ->reshape_backwards.
As conf->reshape_progress is so high, it seems the reshape hasn't
really begun. But assuming MaxSector is a valid address only
leads to sorrow.
So ensure reshape_position and reshape_progress both agree,
and add an extra check in reshape_request() just in case they don't.
Signed-off-by: NeilBrown <neilb@suse.com>
There can be a small window between the moment that recovery
actually writes the last block and the time when various sysfs
and /proc/mdstat attributes report that it has finished.
During this time, 'sync_completed' can have the wrong value.
This can confuse monitoring software.
So:
- don't set curr_resync_completed beyond the end of the devices,
- set it correctly when resync/recovery has completed.
Signed-off-by: NeilBrown <neilb@suse.com>
While it generally shouldn't happen, it is not impossible for
curr_resync_completed to exceed resync_max.
This can particularly happen when reshaping RAID5 - the current
status isn't copied to curr_resync_completed promptly, so when it
is, it can exceed resync_max.
This happens when the reshape is 'frozen', resync_max is set low,
and reshape is re-enabled.
Taking a difference between two unsigned numbers is always dangerous
anyway, so add a test to behave correctly if
curr_resync_completed > resync_max
Signed-off-by: NeilBrown <neilb@suse.com>
This ensures that 'sync_action' will show 'recover' immediately the
array is started. If there is no spare the status will change to
'idle' once that is detected.
Clear MD_RECOVERY_RECOVER for a read-only array to ensure this change
happens.
This allows scripts which monitor status not to get confused -
particularly my test scripts.
Signed-off-by: NeilBrown <neilb@suse.com>
This code is calculating:
writepos, which is the furthest along address (device-space) that we
*will* be writing to
readpos, which is the earliest address that we *could* possible read
from, and
safepos, which is the earliest address in the 'old' section that we
might read from after a crash when the reshape position is
recovered from metadata.
The first is a precise calculation, so clipping at zero doesn't
make sense. As the reshape position is now guaranteed to always be
a multiple of reshape_sectors and as we already BUG_ON when
reshape_progress is zero, there is no point in this min_t() call.
The readpos and safepos are worst case - actual value depends on
precise geometry. That worst case could be negative, which is only
a problem because we are storing the value in an unsigned.
So leave the min_t() for those.
Signed-off-by: NeilBrown <neilb@suse.com>
When reshaping, we work in units of the largest chunk size.
If changing from a larger to a smaller chunk size, that means we
reshape more than one stripe at a time. So the required alignment
of reshape_position needs to take into account both the old
and new chunk size.
This means that both 'here_new' and 'here_old' are calculated with
respect to the same (maximum) chunk size, so testing if they are the
same when delta_disks is zero becomes pointless.
Signed-off-by: NeilBrown <neilb@suse.com>
The chunk_sectors and new_chunk_sectors fields of mddev can be changed
any time (via sysfs) that the reconfig mutex can be taken. So raid5
keeps internal copies in 'conf' which are stable except for a short
locked moment when reshape stops/starts.
So any access that does not hold reconfig_mutex should use the 'conf'
values, not the 'mddev' values.
Several don't.
This could result in corruption if new values were written at awkward
times.
Also use min() or max() rather than open-coding.
Signed-off-by: NeilBrown <neilb@suse.com>
These aren't really needed when no reshape is happening,
but it is safer to have them always set to a meaningful value.
The next patch will use ->prev_chunk_sectors without checking
if a reshape is happening (because that makes the code simpler),
and this patch makes that safe.
Signed-off-by: NeilBrown <neilb@suse.com>
md/raid5 only updates ->reshape_position (which is stored in
metadata and is authoritative) occasionally, but particularly
when getting closed to ->resync_max as it must be correct
when ->resync_max is reached.
When mdadm tries to stop an array which is reshaping it will:
- freeze the reshape,
- set resync_max to where the reshape has reached.
- unfreeze the reshape.
When this happens, the reshape is aborted and then restarted.
The restart doesn't check that resync_max is close, and so doesn't
update ->reshape_position like it should.
This results in the reshape stopping, but ->reshape_position being
incorrect.
So on that first call to reshape_request, make sure ->reshape_position
is updated if needed.
Signed-off-by: NeilBrown <neilb@suse.com>
When checking sync_action in a script, we want to be sure it is
as accurate as possible.
As resync/reshape etc doesn't always start immediately (a separate
thread is scheduled to do it), it is best if 'action_show'
checks if MD_RECOVER_NEEDED is set (which it does) and in that
case reports what is likely to start soon (which it only sometimes
does).
So:
- report 'reshape' if reshape_position suggests one might start.
- set MD_RECOVERY_RECOVER in raid1_reshape(), because that is very
likely to happen next.
Signed-off-by: NeilBrown <neilb@suse.com>
Currently when a recovery completes, mdstat shows that it has finished
before the new device is marked as a full member. Because of this it
can appear to a script that the recovery finished but the array isn't
in sync.
So while MD_RECOVERY_DONE is still set, keep mdstat reporting "recovery".
Once md_reap_sync_thread() completes, the spare will be active and then
MD_RECOVERY_DONE will be cleared.
To ensure this is race-free, set MD_RECOVERY_DONE before clearning
curr_resync.
Signed-off-by: NeilBrown <neilb@suse.com>