uclamp_update_active() should perform the update when
p->uclamp[clamp_id].active is true. But when the logic was inverted in
[1], the if condition wasn't inverted correctly too.
[1] https://lore.kernel.org/lkml/20190902073836.GO2369@hirez.programming.kicks-ass.net/
Reported-by: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Ben Segall <bsegall@google.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Patrick Bellasi <patrick.bellasi@matbug.net>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: babbe170e0 ("sched/uclamp: Update CPU's refcount on TG's clamp changes")
Link: https://lkml.kernel.org/r/20191114211052.15116-1-qais.yousef@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
While seemingly harmless, __sched_fork() does hrtimer_init(), which,
when DEBUG_OBJETS, can end up doing allocations.
This then results in the following lock order:
rq->lock
zone->lock.rlock
batched_entropy_u64.lock
Which in turn causes deadlocks when we do wakeups while holding that
batched_entropy lock -- as the random code does.
Solve this by moving __sched_fork() out from under rq->lock. This is
safe because nothing there relies on rq->lock, as also evident from the
other __sched_fork() callsite.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Qian Cai <cai@lca.pw>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: akpm@linux-foundation.org
Cc: bigeasy@linutronix.de
Cc: cl@linux.com
Cc: keescook@chromium.org
Cc: penberg@kernel.org
Cc: rientjes@google.com
Cc: thgarnie@google.com
Cc: tytso@mit.edu
Cc: will@kernel.org
Fixes: b7d5dc2107 ("random: add a spinlock_t to struct batched_entropy")
Link: https://lkml.kernel.org/r/20191001091837.GK4536@hirez.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Ever since we moved the sched_class definitions into their own files,
the constant expression {fair,idle}_sched_class.pick_next_task() is
not in fact a compile time constant anymore and results in an indirect
call (barring LTO).
Fix that by exposing pick_next_task_{fair,idle}() directly, this gets
rid of the indirect call (and RETPOLINE) on the fast path.
Also remove the unlikely() from the idle case, it is in fact /the/ way
we select idle -- and that is a very common thing to do.
Performance for will-it-scale/sched_yield improves by 2% (as reported
by 0-day).
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bsegall@google.com
Cc: dietmar.eggemann@arm.com
Cc: juri.lelli@redhat.com
Cc: ktkhai@virtuozzo.com
Cc: mgorman@suse.de
Cc: qais.yousef@arm.com
Cc: qperret@google.com
Cc: rostedt@goodmis.org
Cc: valentin.schneider@arm.com
Cc: vincent.guittot@linaro.org
Link: https://lkml.kernel.org/r/20191108131909.603037345@infradead.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Commit 67692435c4 ("sched: Rework pick_next_task() slow-path")
inadvertly introduced a race because it changed a previously
unexplored dependency between dropping the rq->lock and
sched_class::put_prev_task().
The comments about dropping rq->lock, in for example
newidle_balance(), only mentions the task being current and ->on_cpu
being set. But when we look at the 'change' pattern (in for example
sched_setnuma()):
queued = task_on_rq_queued(p); /* p->on_rq == TASK_ON_RQ_QUEUED */
running = task_current(rq, p); /* rq->curr == p */
if (queued)
dequeue_task(...);
if (running)
put_prev_task(...);
/* change task properties */
if (queued)
enqueue_task(...);
if (running)
set_next_task(...);
It becomes obvious that if we do this after put_prev_task() has
already been called on @p, things go sideways. This is exactly what
the commit in question allows to happen when it does:
prev->sched_class->put_prev_task(rq, prev, rf);
if (!rq->nr_running)
newidle_balance(rq, rf);
The newidle_balance() call will drop rq->lock after we've called
put_prev_task() and that allows the above 'change' pattern to
interleave and mess up the state.
Furthermore, it turns out we lost the RT-pull when we put the last DL
task.
Fix both problems by extracting the balancing from put_prev_task() and
doing a multi-class balance() pass before put_prev_task().
Fixes: 67692435c4 ("sched: Rework pick_next_task() slow-path")
Reported-by: Quentin Perret <qperret@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Quentin Perret <qperret@google.com>
Tested-by: Valentin Schneider <valentin.schneider@arm.com>
When cgroup is disabled the following compilation error was hit
kernel/sched/core.c: In function ‘uclamp_update_active_tasks’:
kernel/sched/core.c:1081:23: error: storage size of ‘it’ isn’t known
struct css_task_iter it;
^~
kernel/sched/core.c:1084:2: error: implicit declaration of function ‘css_task_iter_start’; did you mean ‘__sg_page_iter_start’? [-Werror=implicit-function-declaration]
css_task_iter_start(css, 0, &it);
^~~~~~~~~~~~~~~~~~~
__sg_page_iter_start
kernel/sched/core.c:1085:14: error: implicit declaration of function ‘css_task_iter_next’; did you mean ‘__sg_page_iter_next’? [-Werror=implicit-function-declaration]
while ((p = css_task_iter_next(&it))) {
^~~~~~~~~~~~~~~~~~
__sg_page_iter_next
kernel/sched/core.c:1091:2: error: implicit declaration of function ‘css_task_iter_end’; did you mean ‘get_task_cred’? [-Werror=implicit-function-declaration]
css_task_iter_end(&it);
^~~~~~~~~~~~~~~~~
get_task_cred
kernel/sched/core.c:1081:23: warning: unused variable ‘it’ [-Wunused-variable]
struct css_task_iter it;
^~
cc1: some warnings being treated as errors
make[2]: *** [kernel/sched/core.o] Error 1
Fix by protetion uclamp_update_active_tasks() with
CONFIG_UCLAMP_TASK_GROUP
Fixes: babbe170e0 ("sched/uclamp: Update CPU's refcount on TG's clamp changes")
Reported-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Randy Dunlap <rdunlap@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Patrick Bellasi <patrick.bellasi@matbug.net>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Ben Segall <bsegall@google.com>
Link: https://lkml.kernel.org/r/20191105112212.596-1-qais.yousef@arm.com
This adds support for io-wq, a smaller and specialized thread pool
implementation. This is meant to replace workqueues for io_uring. Among
the reasons for this addition are:
- We can assign memory context smarter and more persistently if we
manage the life time of threads.
- We can drop various work-arounds we have in io_uring, like the
async_list.
- We can implement hashed work insertion, to manage concurrency of
buffered writes without needing a) an extra workqueue, or b)
needlessly making the concurrency of said workqueue very low
which hurts performance of multiple buffered file writers.
- We can implement cancel through signals, for cancelling
interruptible work like read/write (or send/recv) to/from sockets.
- We need the above cancel for being able to assign and use file tables
from a process.
- We can implement a more thorough cancel operation in general.
- We need it to move towards a syslet/threadlet model for even faster
async execution. For that we need to take ownership of the used
threads.
This list is just off the top of my head. Performance should be the
same, or better, at least that's what I've seen in my testing. io-wq
supports basic NUMA functionality, setting up a pool per node.
io-wq hooks up to the scheduler schedule in/out just like workqueue
and uses that to drive the need for more/less workers.
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Switch sched_setattr() syscall from it's own copying struct sched_attr
from userspace to the new dedicated copy_struct_from_user() helper.
The change is very straightforward, and helps unify the syscall
interface for struct-from-userspace syscalls. Ideally we could also
unify sched_getattr(2)-style syscalls as well, but unfortunately the
correct semantics for such syscalls are much less clear (see [1] for
more detail). In future we could come up with a more sane idea for how
the syscall interface should look.
[1]: commit 1251201c0d ("sched/core: Fix uclamp ABI bug, clean up and
robustify sched_read_attr() ABI logic and code")
Signed-off-by: Aleksa Sarai <cyphar@cyphar.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Christian Brauner <christian.brauner@ubuntu.com>
[christian.brauner@ubuntu.com: improve commit message]
Link: https://lore.kernel.org/r/20191001011055.19283-4-cyphar@cyphar.com
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
Pull scheduler fixes from Ingo Molnar:
- Apply a number of membarrier related fixes and cleanups, which fixes
a use-after-free race in the membarrier code
- Introduce proper RCU protection for tasks on the runqueue - to get
rid of the subtle task_rcu_dereference() interface that was easy to
get wrong
- Misc fixes, but also an EAS speedup
* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/fair: Avoid redundant EAS calculation
sched/core: Remove double update_max_interval() call on CPU startup
sched/core: Fix preempt_schedule() interrupt return comment
sched/fair: Fix -Wunused-but-set-variable warnings
sched/core: Fix migration to invalid CPU in __set_cpus_allowed_ptr()
sched/membarrier: Return -ENOMEM to userspace on memory allocation failure
sched/membarrier: Skip IPIs when mm->mm_users == 1
selftests, sched/membarrier: Add multi-threaded test
sched/membarrier: Fix p->mm->membarrier_state racy load
sched/membarrier: Call sync_core only before usermode for same mm
sched/membarrier: Remove redundant check
sched/membarrier: Fix private expedited registration check
tasks, sched/core: RCUify the assignment of rq->curr
tasks, sched/core: With a grace period after finish_task_switch(), remove unnecessary code
tasks, sched/core: Ensure tasks are available for a grace period after leaving the runqueue
tasks: Add a count of task RCU users
sched/core: Convert vcpu_is_preempted() from macro to an inline function
sched/fair: Remove unused cfs_rq_clock_task() function
update_max_interval() is called in both CPUHP_AP_SCHED_STARTING's startup
and teardown callbacks, but it turns out it's also called at the end of
the startup callback of CPUHP_AP_ACTIVE (which is further down the
startup sequence).
There's no point in repeating this interval update in the startup sequence
since the CPU will remain online until it goes down the teardown path.
Remove the redundant call in sched_cpu_activate() (CPUHP_AP_ACTIVE).
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dietmar.eggemann@arm.com
Cc: juri.lelli@redhat.com
Cc: vincent.guittot@linaro.org
Link: https://lkml.kernel.org/r/20190923093017.11755-1-valentin.schneider@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
An oops can be triggered in the scheduler when running qemu on arm64:
Unable to handle kernel paging request at virtual address ffff000008effe40
Internal error: Oops: 96000007 [#1] SMP
Process migration/0 (pid: 12, stack limit = 0x00000000084e3736)
pstate: 20000085 (nzCv daIf -PAN -UAO)
pc : __ll_sc___cmpxchg_case_acq_4+0x4/0x20
lr : move_queued_task.isra.21+0x124/0x298
...
Call trace:
__ll_sc___cmpxchg_case_acq_4+0x4/0x20
__migrate_task+0xc8/0xe0
migration_cpu_stop+0x170/0x180
cpu_stopper_thread+0xec/0x178
smpboot_thread_fn+0x1ac/0x1e8
kthread+0x134/0x138
ret_from_fork+0x10/0x18
__set_cpus_allowed_ptr() will choose an active dest_cpu in affinity mask to
migrage the process if process is not currently running on any one of the
CPUs specified in affinity mask. __set_cpus_allowed_ptr() will choose an
invalid dest_cpu (dest_cpu >= nr_cpu_ids, 1024 in my virtual machine) if
CPUS in an affinity mask are deactived by cpu_down after cpumask_intersects
check. cpumask_test_cpu() of dest_cpu afterwards is overflown and may pass if
corresponding bit is coincidentally set. As a consequence, kernel will
access an invalid rq address associate with the invalid CPU in
migration_cpu_stop->__migrate_task->move_queued_task and the Oops occurs.
The reproduce the crash:
1) A process repeatedly binds itself to cpu0 and cpu1 in turn by calling
sched_setaffinity.
2) A shell script repeatedly does "echo 0 > /sys/devices/system/cpu/cpu1/online"
and "echo 1 > /sys/devices/system/cpu/cpu1/online" in turn.
3) Oops appears if the invalid CPU is set in memory after tested cpumask.
Signed-off-by: KeMeng Shi <shikemeng@huawei.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/1568616808-16808-1-git-send-email-shikemeng@huawei.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The membarrier_state field is located within the mm_struct, which
is not guaranteed to exist when used from runqueue-lock-free iteration
on runqueues by the membarrier system call.
Copy the membarrier_state from the mm_struct into the scheduler runqueue
when the scheduler switches between mm.
When registering membarrier for mm, after setting the registration bit
in the mm membarrier state, issue a synchronize_rcu() to ensure the
scheduler observes the change. In order to take care of the case
where a runqueue keeps executing the target mm without swapping to
other mm, iterate over each runqueue and issue an IPI to copy the
membarrier_state from the mm_struct into each runqueue which have the
same mm which state has just been modified.
Move the mm membarrier_state field closer to pgd in mm_struct to use
a cache line already touched by the scheduler switch_mm.
The membarrier_execve() (now membarrier_exec_mmap) hook now needs to
clear the runqueue's membarrier state in addition to clear the mm
membarrier state, so move its implementation into the scheduler
membarrier code so it can access the runqueue structure.
Add memory barrier in membarrier_exec_mmap() prior to clearing
the membarrier state, ensuring memory accesses executed prior to exec
are not reordered with the stores clearing the membarrier state.
As suggested by Linus, move all membarrier.c RCU read-side locks outside
of the for each cpu loops.
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Kirill Tkhai <tkhai@yandex.ru>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Russell King - ARM Linux admin <linux@armlinux.org.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190919173705.2181-5-mathieu.desnoyers@efficios.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The current task on the runqueue is currently read with rcu_dereference().
To obtain ordinary RCU semantics for an rcu_dereference() of rq->curr it needs
to be paired with rcu_assign_pointer() of rq->curr. Which provides the
memory barrier necessary to order assignments to the task_struct
and the assignment to rq->curr.
Unfortunately the assignment of rq->curr in __schedule is a hot path,
and it has already been show that additional barriers in that code
will reduce the performance of the scheduler. So I will attempt to
describe below why you can effectively have ordinary RCU semantics
without any additional barriers.
The assignment of rq->curr in init_idle is a slow path called once
per cpu and that can use rcu_assign_pointer() without any concerns.
As I write this there are effectively two users of rcu_dereference() on
rq->curr. There is the membarrier code in kernel/sched/membarrier.c
that only looks at "->mm" after the rcu_dereference(). Then there is
task_numa_compare() in kernel/sched/fair.c. My best reading of the
code shows that task_numa_compare only access: "->flags",
"->cpus_ptr", "->numa_group", "->numa_faults[]",
"->total_numa_faults", and "->se.cfs_rq".
The code in __schedule() essentially does:
rq_lock(...);
smp_mb__after_spinlock();
next = pick_next_task(...);
rq->curr = next;
context_switch(prev, next);
At the start of the function the rq_lock/smp_mb__after_spinlock
pair provides a full memory barrier. Further there is a full memory barrier
in context_switch().
This means that any task that has already run and modified itself (the
common case) has already seen two memory barriers before __schedule()
runs and begins executing. A task that modifies itself then sees a
third full memory barrier pair with the rq_lock();
For a brand new task that is enqueued with wake_up_new_task() there
are the memory barriers present from the taking and release the
pi_lock and the rq_lock as the processes is enqueued as well as the
full memory barrier at the start of __schedule() assuming __schedule()
happens on the same cpu.
This means that by the time we reach the assignment of rq->curr
except for values on the task struct modified in pick_next_task
the code has the same guarantees as if it used rcu_assign_pointer().
Reading through all of the implementations of pick_next_task it
appears pick_next_task is limited to modifying the task_struct fields
"->se", "->rt", "->dl". These fields are the sched_entity structures
of the varies schedulers.
Further "->se.cfs_rq" is only changed in cgroup attach/move operations
initialized by userspace.
Unless I have missed something this means that in practice that the
users of "rcu_dereference(rq->curr)" get normal RCU semantics of
rcu_dereference() for the fields the care about, despite the
assignment of rq->curr in __schedule() ot using rcu_assign_pointer.
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Kirill Tkhai <tkhai@yandex.ru>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Russell King - ARM Linux admin <linux@armlinux.org.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20190903200603.GW2349@hirez.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In the ordinary case today the RCU grace period for a task_struct is
triggered when another process wait's for it's zombine and causes the
kernel to call release_task(). As the waiting task has to receive a
signal and then act upon it before this happens, typically this will
occur after the original task as been removed from the runqueue.
Unfortunaty in some cases such as self reaping tasks it can be shown
that release_task() will be called starting the grace period for
task_struct long before the task leaves the runqueue.
Therefore use put_task_struct_rcu_user() in finish_task_switch() to
guarantee that the there is a RCU lifetime after the task
leaves the runqueue.
Besides the change in the start of the RCU grace period for the
task_struct this change may cause perf_event_delayed_put and
trace_sched_process_free. The function perf_event_delayed_put boils
down to just a WARN_ON for cases that I assume never show happen. So
I don't see any problem with delaying it.
The function trace_sched_process_free is a trace point and thus
visible to user space. Occassionally userspace has the strangest
dependencies so this has a miniscule chance of causing a regression.
This change only changes the timing of when the tracepoint is called.
The change in timing arguably gives userspace a more accurate picture
of what is going on. So I don't expect there to be a regression.
In the case where a task self reaps we are pretty much guaranteed that
the RCU grace period is delayed. So we should get quite a bit of
coverage in of this worst case for the change in a normal threaded
workload. So I expect any issues to turn up quickly or not at all.
I have lightly tested this change and everything appears to work
fine.
Inspired-by: Linus Torvalds <torvalds@linux-foundation.org>
Inspired-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Kirill Tkhai <tkhai@yandex.ru>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Russell King - ARM Linux admin <linux@armlinux.org.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/87r24jdpl5.fsf_-_@x220.int.ebiederm.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This is more cleanup and consolidation of the hmm APIs and the very
strongly related mmu_notifier interfaces. Many places across the tree
using these interfaces are touched in the process. Beyond that a cleanup
to the page walker API and a few memremap related changes round out the
series:
- General improvement of hmm_range_fault() and related APIs, more
documentation, bug fixes from testing, API simplification &
consolidation, and unused API removal
- Simplify the hmm related kconfigs to HMM_MIRROR and DEVICE_PRIVATE, and
make them internal kconfig selects
- Hoist a lot of code related to mmu notifier attachment out of drivers by
using a refcount get/put attachment idiom and remove the convoluted
mmu_notifier_unregister_no_release() and related APIs.
- General API improvement for the migrate_vma API and revision of its only
user in nouveau
- Annotate mmu_notifiers with lockdep and sleeping region debugging
Two series unrelated to HMM or mmu_notifiers came along due to
dependencies:
- Allow pagemap's memremap_pages family of APIs to work without providing
a struct device
- Make walk_page_range() and related use a constant structure for function
pointers
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEfB7FMLh+8QxL+6i3OG33FX4gmxoFAl1/nnkACgkQOG33FX4g
mxqaRg//c6FqowV1pQlLutvAOAgMdpzfZ9eaaDKngy9RVQxz+k/MmJrdRH/p/mMA
Pq93A1XfwtraGKErHegFXGEDk4XhOustVAVFwvjyXO41dTUdoFVUkti6ftbrl/rS
6CT+X90jlvrwdRY7QBeuo7lxx7z8Qkqbk1O1kc1IOracjKfNJS+y6LTamy6weM3g
tIMHI65PkxpRzN36DV9uCN5dMwFzJ73DWHp1b0acnDIigkl6u5zp6orAJVWRjyQX
nmEd3/IOvdxaubAoAvboNS5CyVb4yS9xshWWMbH6AulKJv3Glca1Aa7QuSpBoN8v
wy4c9+umzqRgzgUJUe1xwN9P49oBNhJpgBSu8MUlgBA4IOc3rDl/Tw0b5KCFVfkH
yHkp8n6MP8VsRrzXTC6Kx0vdjIkAO8SUeylVJczAcVSyHIo6/JUJCVDeFLSTVymh
EGWJ7zX2iRhUbssJ6/izQTTQyCH3YIyZ5QtqByWuX2U7ZrfkqS3/EnBW1Q+j+gPF
Z2yW8iT6k0iENw6s8psE9czexuywa/Lttz94IyNlOQ8rJTiQqB9wLaAvg9hvUk7a
kuspL+JGIZkrL3ouCeO/VA6xnaP+Q7nR8geWBRb8zKGHmtWrb5Gwmt6t+vTnCC2l
olIDebrnnxwfBQhEJ5219W+M1pBpjiTpqK/UdBd92A4+sOOhOD0=
=FRGg
-----END PGP SIGNATURE-----
Merge tag 'for-linus-hmm' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma
Pull hmm updates from Jason Gunthorpe:
"This is more cleanup and consolidation of the hmm APIs and the very
strongly related mmu_notifier interfaces. Many places across the tree
using these interfaces are touched in the process. Beyond that a
cleanup to the page walker API and a few memremap related changes
round out the series:
- General improvement of hmm_range_fault() and related APIs, more
documentation, bug fixes from testing, API simplification &
consolidation, and unused API removal
- Simplify the hmm related kconfigs to HMM_MIRROR and DEVICE_PRIVATE,
and make them internal kconfig selects
- Hoist a lot of code related to mmu notifier attachment out of
drivers by using a refcount get/put attachment idiom and remove the
convoluted mmu_notifier_unregister_no_release() and related APIs.
- General API improvement for the migrate_vma API and revision of its
only user in nouveau
- Annotate mmu_notifiers with lockdep and sleeping region debugging
Two series unrelated to HMM or mmu_notifiers came along due to
dependencies:
- Allow pagemap's memremap_pages family of APIs to work without
providing a struct device
- Make walk_page_range() and related use a constant structure for
function pointers"
* tag 'for-linus-hmm' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma: (75 commits)
libnvdimm: Enable unit test infrastructure compile checks
mm, notifier: Catch sleeping/blocking for !blockable
kernel.h: Add non_block_start/end()
drm/radeon: guard against calling an unpaired radeon_mn_unregister()
csky: add missing brackets in a macro for tlb.h
pagewalk: use lockdep_assert_held for locking validation
pagewalk: separate function pointers from iterator data
mm: split out a new pagewalk.h header from mm.h
mm/mmu_notifiers: annotate with might_sleep()
mm/mmu_notifiers: prime lockdep
mm/mmu_notifiers: add a lockdep map for invalidate_range_start/end
mm/mmu_notifiers: remove the __mmu_notifier_invalidate_range_start/end exports
mm/hmm: hmm_range_fault() infinite loop
mm/hmm: hmm_range_fault() NULL pointer bug
mm/hmm: fix hmm_range_fault()'s handling of swapped out pages
mm/mmu_notifiers: remove unregister_no_release
RDMA/odp: remove ib_ucontext from ib_umem
RDMA/odp: use mmu_notifier_get/put for 'struct ib_ucontext_per_mm'
RDMA/mlx5: Use odp instead of mr->umem in pagefault_mr
RDMA/mlx5: Use ib_umem_start instead of umem.address
...
Pull core timer updates from Thomas Gleixner:
"Timers and timekeeping updates:
- A large overhaul of the posix CPU timer code which is a preparation
for moving the CPU timer expiry out into task work so it can be
properly accounted on the task/process.
An update to the bogus permission checks will come later during the
merge window as feedback was not complete before heading of for
travel.
- Switch the timerqueue code to use cached rbtrees and get rid of the
homebrewn caching of the leftmost node.
- Consolidate hrtimer_init() + hrtimer_init_sleeper() calls into a
single function
- Implement the separation of hrtimers to be forced to expire in hard
interrupt context even when PREEMPT_RT is enabled and mark the
affected timers accordingly.
- Implement a mechanism for hrtimers and the timer wheel to protect
RT against priority inversion and live lock issues when a (hr)timer
which should be canceled is currently executing the callback.
Instead of infinitely spinning, the task which tries to cancel the
timer blocks on a per cpu base expiry lock which is held and
released by the (hr)timer expiry code.
- Enable the Hyper-V TSC page based sched_clock for Hyper-V guests
resulting in faster access to timekeeping functions.
- Updates to various clocksource/clockevent drivers and their device
tree bindings.
- The usual small improvements all over the place"
* 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (101 commits)
posix-cpu-timers: Fix permission check regression
posix-cpu-timers: Always clear head pointer on dequeue
hrtimer: Add a missing bracket and hide `migration_base' on !SMP
posix-cpu-timers: Make expiry_active check actually work correctly
posix-timers: Unbreak CONFIG_POSIX_TIMERS=n build
tick: Mark sched_timer to expire in hard interrupt context
hrtimer: Add kernel doc annotation for HRTIMER_MODE_HARD
x86/hyperv: Hide pv_ops access for CONFIG_PARAVIRT=n
posix-cpu-timers: Utilize timerqueue for storage
posix-cpu-timers: Move state tracking to struct posix_cputimers
posix-cpu-timers: Deduplicate rlimit handling
posix-cpu-timers: Remove pointless comparisons
posix-cpu-timers: Get rid of 64bit divisions
posix-cpu-timers: Consolidate timer expiry further
posix-cpu-timers: Get rid of zero checks
rlimit: Rewrite non-sensical RLIMIT_CPU comment
posix-cpu-timers: Respect INFINITY for hard RTTIME limit
posix-cpu-timers: Switch thread group sampling to array
posix-cpu-timers: Restructure expiry array
posix-cpu-timers: Remove cputime_expires
...
Pull scheduler updates from Ingo Molnar:
- MAINTAINERS: Add Mark Rutland as perf submaintainer, Juri Lelli and
Vincent Guittot as scheduler submaintainers. Add Dietmar Eggemann,
Steven Rostedt, Ben Segall and Mel Gorman as scheduler reviewers.
As perf and the scheduler is getting bigger and more complex,
document the status quo of current responsibilities and interests,
and spread the review pain^H^H^H^H fun via an increase in the Cc:
linecount generated by scripts/get_maintainer.pl. :-)
- Add another series of patches that brings the -rt (PREEMPT_RT) tree
closer to mainline: split the monolithic CONFIG_PREEMPT dependencies
into a new CONFIG_PREEMPTION category that will allow the eventual
introduction of CONFIG_PREEMPT_RT. Still a few more hundred patches
to go though.
- Extend the CPU cgroup controller with uclamp.min and uclamp.max to
allow the finer shaping of CPU bandwidth usage.
- Micro-optimize energy-aware wake-ups from O(CPUS^2) to O(CPUS).
- Improve the behavior of high CPU count, high thread count
applications running under cpu.cfs_quota_us constraints.
- Improve balancing with SCHED_IDLE (SCHED_BATCH) tasks present.
- Improve CPU isolation housekeeping CPU allocation NUMA locality.
- Fix deadline scheduler bandwidth calculations and logic when cpusets
rebuilds the topology, or when it gets deadline-throttled while it's
being offlined.
- Convert the cpuset_mutex to percpu_rwsem, to allow it to be used from
setscheduler() system calls without creating global serialization.
Add new synchronization between cpuset topology-changing events and
the deadline acceptance tests in setscheduler(), which were broken
before.
- Rework the active_mm state machine to be less confusing and more
optimal.
- Rework (simplify) the pick_next_task() slowpath.
- Improve load-balancing on AMD EPYC systems.
- ... and misc cleanups, smaller fixes and improvements - please see
the Git log for more details.
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (53 commits)
sched/psi: Correct overly pessimistic size calculation
sched/fair: Speed-up energy-aware wake-ups
sched/uclamp: Always use 'enum uclamp_id' for clamp_id values
sched/uclamp: Update CPU's refcount on TG's clamp changes
sched/uclamp: Use TG's clamps to restrict TASK's clamps
sched/uclamp: Propagate system defaults to the root group
sched/uclamp: Propagate parent clamps
sched/uclamp: Extend CPU's cgroup controller
sched/topology: Improve load balancing on AMD EPYC systems
arch, ia64: Make NUMA select SMP
sched, perf: MAINTAINERS update, add submaintainers and reviewers
sched/fair: Use rq_lock/unlock in online_fair_sched_group
cpufreq: schedutil: fix equation in comment
sched: Rework pick_next_task() slow-path
sched: Allow put_prev_task() to drop rq->lock
sched/fair: Expose newidle_balance()
sched: Add task_struct pointer to sched_class::set_curr_task
sched: Rework CPU hotplug task selection
sched/{rt,deadline}: Fix set_next_task vs pick_next_task
sched: Fix kerneldoc comment for ia64_set_curr_task
...
Pull RCU updates from Ingo Molnar:
"This cycle's RCU changes were:
- A few more RCU flavor consolidation cleanups.
- Updates to RCU's list-traversal macros improving lockdep usability.
- Forward-progress improvements for no-CBs CPUs: Avoid ignoring
incoming callbacks during grace-period waits.
- Forward-progress improvements for no-CBs CPUs: Use ->cblist
structure to take advantage of others' grace periods.
- Also added a small commit that avoids needlessly inflicting
scheduler-clock ticks on callback-offloaded CPUs.
- Forward-progress improvements for no-CBs CPUs: Reduce contention on
->nocb_lock guarding ->cblist.
- Forward-progress improvements for no-CBs CPUs: Add ->nocb_bypass
list to further reduce contention on ->nocb_lock guarding ->cblist.
- Miscellaneous fixes.
- Torture-test updates.
- minor LKMM updates"
* 'core-rcu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (86 commits)
MAINTAINERS: Update from paulmck@linux.ibm.com to paulmck@kernel.org
rcu: Don't include <linux/ktime.h> in rcutiny.h
rcu: Allow rcu_do_batch() to dynamically adjust batch sizes
rcu/nocb: Don't wake no-CBs GP kthread if timer posted under overload
rcu/nocb: Reduce __call_rcu_nocb_wake() leaf rcu_node ->lock contention
rcu/nocb: Reduce nocb_cb_wait() leaf rcu_node ->lock contention
rcu/nocb: Advance CBs after merge in rcutree_migrate_callbacks()
rcu/nocb: Avoid synchronous wakeup in __call_rcu_nocb_wake()
rcu/nocb: Print no-CBs diagnostics when rcutorture writer unduly delayed
rcu/nocb: EXP Check use and usefulness of ->nocb_lock_contended
rcu/nocb: Add bypass callback queueing
rcu/nocb: Atomic ->len field in rcu_segcblist structure
rcu/nocb: Unconditionally advance and wake for excessive CBs
rcu/nocb: Reduce ->nocb_lock contention with separate ->nocb_gp_lock
rcu/nocb: Reduce contention at no-CBs invocation-done time
rcu/nocb: Reduce contention at no-CBs registry-time CB advancement
rcu/nocb: Round down for number of no-CBs grace-period kthreads
rcu/nocb: Avoid ->nocb_lock capture by corresponding CPU
rcu/nocb: Avoid needless wakeups of no-CBs grace-period kthread
rcu/nocb: Make __call_rcu_nocb_wake() safe for many callbacks
...
In some special cases we must not block, but there's not a spinlock,
preempt-off, irqs-off or similar critical section already that arms the
might_sleep() debug checks. Add a non_block_start/end() pair to annotate
these.
This will be used in the oom paths of mmu-notifiers, where blocking is not
allowed to make sure there's forward progress. Quoting Michal:
"The notifier is called from quite a restricted context - oom_reaper -
which shouldn't depend on any locks or sleepable conditionals. The code
should be swift as well but we mostly do care about it to make a forward
progress. Checking for sleepable context is the best thing we could come
up with that would describe these demands at least partially."
Peter also asked whether we want to catch spinlocks on top, but Michal
said those are less of a problem because spinlocks can't have an indirect
dependency upon the page allocator and hence close the loop with the oom
reaper.
Suggested by Michal Hocko.
Link: https://lore.kernel.org/r/20190826201425.17547-4-daniel.vetter@ffwll.ch
Acked-by: Christian König <christian.koenig@amd.com> (v1)
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Daniel Vetter <daniel.vetter@intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
Thadeu Lima de Souza Cascardo reported that 'chrt' broke on recent kernels:
$ chrt -p $$
chrt: failed to get pid 26306's policy: Argument list too long
and he has root-caused the bug to the following commit increasing sched_attr
size and breaking sched_read_attr() into returning -EFBIG:
a509a7cd79 ("sched/uclamp: Extend sched_setattr() to support utilization clamping")
The other, bigger bug is that the whole sched_getattr() and sched_read_attr()
logic of checking non-zero bits in new ABI components is arguably broken,
and pretty much any extension of the ABI will spuriously break the ABI.
That's way too fragile.
Instead implement the perf syscall's extensible ABI instead, which we
already implement on the sched_setattr() side:
- if user-attributes have the same size as kernel attributes then the
logic is unchanged.
- if user-attributes are larger than the kernel knows about then simply
skip the extra bits, but set attr->size to the (smaller) kernel size
so that tooling can (in principle) handle older kernel as well.
- if user-attributes are smaller than the kernel knows about then just
copy whatever user-space can accept.
Also clean up the whole logic:
- Simplify the code flow - there's no need for 'ret' for example.
- Standardize on 'kattr/uattr' and 'ksize/usize' naming to make sure we
always know which side we are dealing with.
- Why is it called 'read' when what it does is to copy to user? This
code is so far away from VFS read() semantics that the naming is
actively confusing. Name it sched_attr_copy_to_user() instead, which
mirrors other copy_to_user() functionality.
- Move the attr->size assignment from the head of sched_getattr() to the
sched_attr_copy_to_user() function. Nothing else within the kernel
should care about the size of the structure.
With these fixes the sched_getattr() syscall now nicely supports an
extensible ABI in both a forward and backward compatible fashion, and
will also fix the chrt bug.
As an added bonus the bogus -EFBIG return is removed as well, which as
Thadeu noted should have been -E2BIG to begin with.
Reported-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com>
Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Tested-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com>
Acked-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com>
Cc: Arnaldo Carvalho de Melo <acme@infradead.org>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Patrick Bellasi <patrick.bellasi@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: a509a7cd79 ("sched/uclamp: Extend sched_setattr() to support utilization clamping")
Link: https://lkml.kernel.org/r/20190904075532.GA26751@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The supported clamp indexes are defined in 'enum clamp_id', however, because
of the code logic in some of the first utilization clamping series version,
sometimes we needed to use 'unsigned int' to represent indices.
This is not more required since the final version of the uclamp_* APIs can
always use the proper enum uclamp_id type.
Fix it with a bulk rename now that we have all the bits merged.
Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Michal Koutny <mkoutny@suse.com>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: Alessio Balsini <balsini@android.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Perret <quentin.perret@arm.com>
Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com>
Cc: Steve Muckle <smuckle@google.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Todd Kjos <tkjos@google.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Link: https://lkml.kernel.org/r/20190822132811.31294-7-patrick.bellasi@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
On updates of task group (TG) clamp values, ensure that these new values
are enforced on all RUNNABLE tasks of the task group, i.e. all RUNNABLE
tasks are immediately boosted and/or capped as requested.
Do that each time we update effective clamps from cpu_util_update_eff().
Use the *cgroup_subsys_state (css) to walk the list of tasks in each
affected TG and update their RUNNABLE tasks.
Update each task by using the same mechanism used for cpu affinity masks
updates, i.e. by taking the rq lock.
Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Michal Koutny <mkoutny@suse.com>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: Alessio Balsini <balsini@android.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Perret <quentin.perret@arm.com>
Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com>
Cc: Steve Muckle <smuckle@google.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Todd Kjos <tkjos@google.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Link: https://lkml.kernel.org/r/20190822132811.31294-6-patrick.bellasi@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When a task specific clamp value is configured via sched_setattr(2), this
value is accounted in the corresponding clamp bucket every time the task is
{en,de}qeued. However, when cgroups are also in use, the task specific
clamp values could be restricted by the task_group (TG) clamp values.
Update uclamp_cpu_inc() to aggregate task and TG clamp values. Every time a
task is enqueued, it's accounted in the clamp bucket tracking the smaller
clamp between the task specific value and its TG effective value. This
allows to:
1. ensure cgroup clamps are always used to restrict task specific requests,
i.e. boosted not more than its TG effective protection and capped at
least as its TG effective limit.
2. implement a "nice-like" policy, where tasks are still allowed to request
less than what enforced by their TG effective limits and protections
Do this by exploiting the concept of "effective" clamp, which is already
used by a TG to track parent enforced restrictions.
Apply task group clamp restrictions only to tasks belonging to a child
group. While, for tasks in the root group or in an autogroup, system
defaults are still enforced.
Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Michal Koutny <mkoutny@suse.com>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: Alessio Balsini <balsini@android.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Perret <quentin.perret@arm.com>
Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com>
Cc: Steve Muckle <smuckle@google.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Todd Kjos <tkjos@google.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Link: https://lkml.kernel.org/r/20190822132811.31294-5-patrick.bellasi@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The clamp values are not tunable at the level of the root task group.
That's for two main reasons:
- the root group represents "system resources" which are always
entirely available from the cgroup standpoint.
- when tuning/restricting "system resources" makes sense, tuning must
be done using a system wide API which should also be available when
control groups are not.
When a system wide restriction is available, cgroups should be aware of
its value in order to know exactly how much "system resources" are
available for the subgroups.
Utilization clamping supports already the concepts of:
- system defaults: which define the maximum possible clamp values
usable by tasks.
- effective clamps: which allows a parent cgroup to constraint (maybe
temporarily) its descendants without losing the information related
to the values "requested" from them.
Exploit these two concepts and bind them together in such a way that,
whenever system default are tuned, the new values are propagated to
(possibly) restrict or relax the "effective" value of nested cgroups.
When cgroups are in use, force an update of all the RUNNABLE tasks.
Otherwise, keep things simple and do just a lazy update next time each
task will be enqueued.
Do that since we assume a more strict resource control is required when
cgroups are in use. This allows also to keep "effective" clamp values
updated in case we need to expose them to user-space.
Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Michal Koutny <mkoutny@suse.com>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: Alessio Balsini <balsini@android.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Perret <quentin.perret@arm.com>
Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com>
Cc: Steve Muckle <smuckle@google.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Todd Kjos <tkjos@google.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Link: https://lkml.kernel.org/r/20190822132811.31294-4-patrick.bellasi@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In order to properly support hierarchical resources control, the cgroup
delegation model requires that attribute writes from a child group never
fail but still are locally consistent and constrained based on parent's
assigned resources. This requires to properly propagate and aggregate
parent attributes down to its descendants.
Implement this mechanism by adding a new "effective" clamp value for each
task group. The effective clamp value is defined as the smaller value
between the clamp value of a group and the effective clamp value of its
parent. This is the actual clamp value enforced on tasks in a task group.
Since it's possible for a cpu.uclamp.min value to be bigger than the
cpu.uclamp.max value, ensure local consistency by restricting each
"protection" (i.e. min utilization) with the corresponding "limit"
(i.e. max utilization).
Do that at effective clamps propagation to ensure all user-space write
never fails while still always tracking the most restrictive values.
Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Michal Koutny <mkoutny@suse.com>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: Alessio Balsini <balsini@android.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Perret <quentin.perret@arm.com>
Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com>
Cc: Steve Muckle <smuckle@google.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Todd Kjos <tkjos@google.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Link: https://lkml.kernel.org/r/20190822132811.31294-3-patrick.bellasi@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The cgroup CPU bandwidth controller allows to assign a specified
(maximum) bandwidth to the tasks of a group. However this bandwidth is
defined and enforced only on a temporal base, without considering the
actual frequency a CPU is running on. Thus, the amount of computation
completed by a task within an allocated bandwidth can be very different
depending on the actual frequency the CPU is running that task.
The amount of computation can be affected also by the specific CPU a
task is running on, especially when running on asymmetric capacity
systems like Arm's big.LITTLE.
With the availability of schedutil, the scheduler is now able
to drive frequency selections based on actual task utilization.
Moreover, the utilization clamping support provides a mechanism to
bias the frequency selection operated by schedutil depending on
constraints assigned to the tasks currently RUNNABLE on a CPU.
Giving the mechanisms described above, it is now possible to extend the
cpu controller to specify the minimum (or maximum) utilization which
should be considered for tasks RUNNABLE on a cpu.
This makes it possible to better defined the actual computational
power assigned to task groups, thus improving the cgroup CPU bandwidth
controller which is currently based just on time constraints.
Extend the CPU controller with a couple of new attributes uclamp.{min,max}
which allow to enforce utilization boosting and capping for all the
tasks in a group.
Specifically:
- uclamp.min: defines the minimum utilization which should be considered
i.e. the RUNNABLE tasks of this group will run at least at a
minimum frequency which corresponds to the uclamp.min
utilization
- uclamp.max: defines the maximum utilization which should be considered
i.e. the RUNNABLE tasks of this group will run up to a
maximum frequency which corresponds to the uclamp.max
utilization
These attributes:
a) are available only for non-root nodes, both on default and legacy
hierarchies, while system wide clamps are defined by a generic
interface which does not depends on cgroups. This system wide
interface enforces constraints on tasks in the root node.
b) enforce effective constraints at each level of the hierarchy which
are a restriction of the group requests considering its parent's
effective constraints. Root group effective constraints are defined
by the system wide interface.
This mechanism allows each (non-root) level of the hierarchy to:
- request whatever clamp values it would like to get
- effectively get only up to the maximum amount allowed by its parent
c) have higher priority than task-specific clamps, defined via
sched_setattr(), thus allowing to control and restrict task requests.
Add two new attributes to the cpu controller to collect "requested"
clamp values. Allow that at each non-root level of the hierarchy.
Keep it simple by not caring now about "effective" values computation
and propagation along the hierarchy.
Update sysctl_sched_uclamp_handler() to use the newly introduced
uclamp_mutex so that we serialize system default updates with cgroup
relate updates.
Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Michal Koutny <mkoutny@suse.com>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: Alessio Balsini <balsini@android.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Perret <quentin.perret@arm.com>
Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com>
Cc: Steve Muckle <smuckle@google.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Todd Kjos <tkjos@google.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Link: https://lkml.kernel.org/r/20190822132811.31294-2-patrick.bellasi@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
If a task is PI-blocked (blocking on sleeping spinlock) then we don't want to
schedule a new kworker if we schedule out due to lock contention because !RT
does not do that as well. A spinning spinlock disables preemption and a worker
does not schedule out on lock contention (but spin).
On RT the RW-semaphore implementation uses an rtmutex so
tsk_is_pi_blocked() will return true if a task blocks on it. In this case we
will now start a new worker which may deadlock if one worker is waiting on
progress from another worker. Since a RW-semaphore starts a new worker on !RT,
we should do the same on RT.
XFS is able to trigger this deadlock.
Allow to schedule new worker if the current worker is PI-blocked.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20190816160626.12742-1-bigeasy@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Avoid the RETRY_TASK case in the pick_next_task() slow path.
By doing the put_prev_task() early, we get the rt/deadline pull done,
and by testing rq->nr_running we know if we need newidle_balance().
This then gives a stable state to pick a task from.
Since the fast-path is fair only; it means the other classes will
always have pick_next_task(.prev=NULL, .rf=NULL) and we can simplify.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Aaron Lu <aaron.lwe@gmail.com>
Cc: Valentin Schneider <valentin.schneider@arm.com>
Cc: mingo@kernel.org
Cc: Phil Auld <pauld@redhat.com>
Cc: Julien Desfossez <jdesfossez@digitalocean.com>
Cc: Nishanth Aravamudan <naravamudan@digitalocean.com>
Link: https://lkml.kernel.org/r/aa34d24b36547139248f32a30138791ac6c02bd6.1559129225.git.vpillai@digitalocean.com
Currently the pick_next_task() loop is convoluted and ugly because of
how it can drop the rq->lock and needs to restart the picking.
For the RT/Deadline classes, it is put_prev_task() where we do
balancing, and we could do this before the picking loop. Make this
possible.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Valentin Schneider <valentin.schneider@arm.com>
Cc: Aaron Lu <aaron.lwe@gmail.com>
Cc: mingo@kernel.org
Cc: Phil Auld <pauld@redhat.com>
Cc: Julien Desfossez <jdesfossez@digitalocean.com>
Cc: Nishanth Aravamudan <naravamudan@digitalocean.com>
Link: https://lkml.kernel.org/r/e4519f6850477ab7f3d257062796e6425ee4ba7c.1559129225.git.vpillai@digitalocean.com
In preparation of further separating pick_next_task() and
set_curr_task() we have to pass the actual task into it, while there,
rename the thing to better pair with put_prev_task().
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Aaron Lu <aaron.lwe@gmail.com>
Cc: Valentin Schneider <valentin.schneider@arm.com>
Cc: mingo@kernel.org
Cc: Phil Auld <pauld@redhat.com>
Cc: Julien Desfossez <jdesfossez@digitalocean.com>
Cc: Nishanth Aravamudan <naravamudan@digitalocean.com>
Link: https://lkml.kernel.org/r/a96d1bcdd716db4a4c5da2fece647a1456c0ed78.1559129225.git.vpillai@digitalocean.com
The CPU hotplug task selection is the only place where we used
put_prev_task() on a task that is not current. While looking at that,
it occured to me that we can simplify all that by by using a custom
pick loop.
Since we don't need to put current, we can do away with the fake task
too.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Aaron Lu <aaron.lwe@gmail.com>
Cc: Valentin Schneider <valentin.schneider@arm.com>
Cc: mingo@kernel.org
Cc: Phil Auld <pauld@redhat.com>
Cc: Julien Desfossez <jdesfossez@digitalocean.com>
Cc: Nishanth Aravamudan <naravamudan@digitalocean.com>
The current active_mm reference counting is confusing and sub-optimal.
Rewrite the code to explicitly consider the 4 separate cases:
user -> user
When switching between two user tasks, all we need to consider
is switch_mm().
user -> kernel
When switching from a user task to a kernel task (which
doesn't have an associated mm) we retain the last mm in our
active_mm. Increment a reference count on active_mm.
kernel -> kernel
When switching between kernel threads, all we need to do is
pass along the active_mm reference.
kernel -> user
When switching between a kernel and user task, we must switch
from the last active_mm to the next mm, hoping of course that
these are the same. Decrement a reference on the active_mm.
The code keeps a different order, because as you'll note, both 'to
user' cases require switch_mm().
And where the old code would increment/decrement for the 'kernel ->
kernel' case, the new code observes this is a neutral operation and
avoids touching the reference count.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Rik van Riel <riel@surriel.com>
Reviewed-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: luto@kernel.org
The TASKS03 and TREE04 rcutorture scenarios produce the following
lockdep complaint:
------------------------------------------------------------------------
================================
WARNING: inconsistent lock state
5.2.0-rc1+ #513 Not tainted
--------------------------------
inconsistent {IN-HARDIRQ-W} -> {HARDIRQ-ON-W} usage.
migration/1/14 [HC0[0]:SC0[0]:HE1:SE1] takes:
(____ptrval____) (tick_broadcast_lock){?...}, at: tick_broadcast_offline+0xf/0x70
{IN-HARDIRQ-W} state was registered at:
lock_acquire+0xb0/0x1c0
_raw_spin_lock_irqsave+0x3c/0x50
tick_broadcast_switch_to_oneshot+0xd/0x40
tick_switch_to_oneshot+0x4f/0xd0
hrtimer_run_queues+0xf3/0x130
run_local_timers+0x1c/0x50
update_process_times+0x1c/0x50
tick_periodic+0x26/0xc0
tick_handle_periodic+0x1a/0x60
smp_apic_timer_interrupt+0x80/0x2a0
apic_timer_interrupt+0xf/0x20
_raw_spin_unlock_irqrestore+0x4e/0x60
rcu_nocb_gp_kthread+0x15d/0x590
kthread+0xf3/0x130
ret_from_fork+0x3a/0x50
irq event stamp: 171
hardirqs last enabled at (171): [<ffffffff8a201a37>] trace_hardirqs_on_thunk+0x1a/0x1c
hardirqs last disabled at (170): [<ffffffff8a201a53>] trace_hardirqs_off_thunk+0x1a/0x1c
softirqs last enabled at (0): [<ffffffff8a264ee0>] copy_process.part.56+0x650/0x1cb0
softirqs last disabled at (0): [<0000000000000000>] 0x0
other info that might help us debug this:
Possible unsafe locking scenario:
CPU0
----
lock(tick_broadcast_lock);
<Interrupt>
lock(tick_broadcast_lock);
*** DEADLOCK ***
1 lock held by migration/1/14:
#0: (____ptrval____) (clockevents_lock){+.+.}, at: tick_offline_cpu+0xf/0x30
stack backtrace:
CPU: 1 PID: 14 Comm: migration/1 Not tainted 5.2.0-rc1+ #513
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS Bochs 01/01/2011
Call Trace:
dump_stack+0x5e/0x8b
print_usage_bug+0x1fc/0x216
? print_shortest_lock_dependencies+0x1b0/0x1b0
mark_lock+0x1f2/0x280
__lock_acquire+0x1e0/0x18f0
? __lock_acquire+0x21b/0x18f0
? _raw_spin_unlock_irqrestore+0x4e/0x60
lock_acquire+0xb0/0x1c0
? tick_broadcast_offline+0xf/0x70
_raw_spin_lock+0x33/0x40
? tick_broadcast_offline+0xf/0x70
tick_broadcast_offline+0xf/0x70
tick_offline_cpu+0x16/0x30
take_cpu_down+0x7d/0xa0
multi_cpu_stop+0xa2/0xe0
? cpu_stop_queue_work+0xc0/0xc0
cpu_stopper_thread+0x6d/0x100
smpboot_thread_fn+0x169/0x240
kthread+0xf3/0x130
? sort_range+0x20/0x20
? kthread_cancel_delayed_work_sync+0x10/0x10
ret_from_fork+0x3a/0x50
------------------------------------------------------------------------
To reproduce, run the following rcutorture test:
tools/testing/selftests/rcutorture/bin/kvm.sh --duration 5 --kconfig "CONFIG_DEBUG_LOCK_ALLOC=y CONFIG_PROVE_LOCKING=y" --configs "TASKS03 TREE04"
It turns out that tick_broadcast_offline() was an innocent bystander.
After all, interrupts are supposed to be disabled throughout
take_cpu_down(), and therefore should have been disabled upon entry to
tick_offline_cpu() and thus to tick_broadcast_offline(). This suggests
that one of the CPU-hotplug notifiers was incorrectly enabling interrupts,
and leaving them enabled on return.
Some debugging code showed that the culprit was sched_cpu_dying().
It had irqs enabled after return from sched_tick_stop(). Which in turn
had irqs enabled after return from cancel_delayed_work_sync(). Which is a
wrapper around __cancel_work_timer(). Which can sleep in the case where
something else is concurrently trying to cancel the same delayed work,
and as Thomas Gleixner pointed out on IRC, sleeping is a decidedly bad
idea when you are invoked from take_cpu_down(), regardless of the state
you leave interrupts in upon return.
Code inspection located no reason why the delayed work absolutely
needed to be canceled from sched_tick_stop(): The work is not
bound to the outgoing CPU by design, given that the whole point is
to collect statistics without disturbing the outgoing CPU.
This commit therefore simply drops the cancel_delayed_work_sync() from
sched_tick_stop(). Instead, a new ->state field is added to the tick_work
structure so that the delayed-work handler function sched_tick_remote()
can avoid reposting itself. A cpu_is_offline() check is also added to
sched_tick_remote() to avoid mucking with the state of an offlined CPU
(though it does appear safe to do so). The sched_tick_start() and
sched_tick_stop() functions also update ->state, and sched_tick_start()
also schedules the delayed work if ->state indicates that it is not
already in flight.
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
[ paulmck: Apply Peter Zijlstra and Frederic Weisbecker atomics feedback. ]
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
The scheduler related hrtimers need to expire in hard interrupt context
even on PREEMPT_RT enabled kernels. Mark then as such.
No functional change.
[ tglx: Split out from larger combo patch. Add changelog. ]
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20190726185753.077004842@linutronix.de
CONFIG_PREEMPTION is selected by CONFIG_PREEMPT and by
CONFIG_PREEMPT_RT. Both PREEMPT and PREEMPT_RT require the same
functionality which today depends on CONFIG_PREEMPT.
Switch the preemption code, scheduler and init task over to use
CONFIG_PREEMPTION.
That's the first step towards RT in that area. The more complex changes are
coming separately.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/20190726212124.117528401@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Compiling a kernel with both FAIR_GROUP_SCHED=n and RT_GROUP_SCHED=n
will generate a compiler warning:
kernel/sched/core.c: In function 'sched_init':
kernel/sched/core.c:5906:32: warning: variable 'ptr' set but not used
It is unnecessary to have both "alloc_size" and "ptr", so just combine
them.
Signed-off-by: Qian Cai <cai@lca.pw>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: valentin.schneider@arm.com
Link: https://lkml.kernel.org/r/20190720012319.884-1-cai@lca.pw
Signed-off-by: Ingo Molnar <mingo@kernel.org>
On !CONFIG_RT_GROUP_SCHED configurations it is currently not possible to
move RT tasks between cgroups to which CPU controller has been attached;
but it is oddly possible to first move tasks around and then make them
RT (setschedule to FIFO/RR).
E.g.:
# mkdir /sys/fs/cgroup/cpu,cpuacct/group1
# chrt -fp 10 $$
# echo $$ > /sys/fs/cgroup/cpu,cpuacct/group1/tasks
bash: echo: write error: Invalid argument
# chrt -op 0 $$
# echo $$ > /sys/fs/cgroup/cpu,cpuacct/group1/tasks
# chrt -fp 10 $$
# cat /sys/fs/cgroup/cpu,cpuacct/group1/tasks
2345
2598
# chrt -p 2345
pid 2345's current scheduling policy: SCHED_FIFO
pid 2345's current scheduling priority: 10
Also, as Michal noted, it is currently not possible to enable CPU
controller on unified hierarchy with !CONFIG_RT_GROUP_SCHED (if there
are any kernel RT threads in root cgroup, they can't be migrated to the
newly created CPU controller's root in cgroup_update_dfl_csses()).
Existing code comes with a comment saying the "we don't support RT-tasks
being in separate groups". Such comment is however stale and belongs to
pre-RT_GROUP_SCHED times. Also, it doesn't make much sense for
!RT_GROUP_ SCHED configurations, since checks related to RT bandwidth
are not performed at all in these cases.
Make moving RT tasks between CPU controller groups viable by removing
special case check for RT (and DEADLINE) tasks.
Signed-off-by: Juri Lelli <juri.lelli@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Michal Koutný <mkoutny@suse.com>
Reviewed-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: lizefan@huawei.com
Cc: longman@redhat.com
Cc: luca.abeni@santannapisa.it
Cc: rostedt@goodmis.org
Link: https://lkml.kernel.org/r/20190719063455.27328-1-juri.lelli@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
No synchronisation mechanism exists between the cpuset subsystem and
calls to function __sched_setscheduler(). As such, it is possible that
new root domains are created on the cpuset side while a deadline
acceptance test is carried out in __sched_setscheduler(), leading to a
potential oversell of CPU bandwidth.
Grab cpuset_rwsem read lock from core scheduler, so to prevent
situations such as the one described above from happening.
The only exception is normalize_rt_tasks() which needs to work under
tasklist_lock and can't therefore grab cpuset_rwsem. We are fine with
this, as this function is only called by sysrq and, if that gets
triggered, DEADLINE guarantees are already gone out of the window
anyway.
Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Juri Lelli <juri.lelli@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bristot@redhat.com
Cc: claudio@evidence.eu.com
Cc: lizefan@huawei.com
Cc: longman@redhat.com
Cc: luca.abeni@santannapisa.it
Cc: mathieu.poirier@linaro.org
Cc: rostedt@goodmis.org
Cc: tj@kernel.org
Cc: tommaso.cucinotta@santannapisa.it
Link: https://lkml.kernel.org/r/20190719140000.31694-9-juri.lelli@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Calls to task_rq_unlock() are done several times in the
__sched_setscheduler() function. This is fine when only the rq lock needs to be
handled but not so much when other locks come into play.
This patch streamlines the release of the rq lock so that only one
location need to be modified when dealing with more than one lock.
No change of functionality is introduced by this patch.
Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Mathieu Poirier <mathieu.poirier@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bristot@redhat.com
Cc: claudio@evidence.eu.com
Cc: lizefan@huawei.com
Cc: longman@redhat.com
Cc: luca.abeni@santannapisa.it
Cc: tommaso.cucinotta@santannapisa.it
Link: https://lkml.kernel.org/r/20190719140000.31694-3-juri.lelli@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
time/tick-broadcast: Fix tick_broadcast_offline() lockdep complaint
The TASKS03 and TREE04 rcutorture scenarios produce the following
lockdep complaint:
WARNING: inconsistent lock state
5.2.0-rc1+ #513 Not tainted
--------------------------------
inconsistent {IN-HARDIRQ-W} -> {HARDIRQ-ON-W} usage.
migration/1/14 [HC0[0]:SC0[0]:HE1:SE1] takes:
(____ptrval____) (tick_broadcast_lock){?...}, at: tick_broadcast_offline+0xf/0x70
{IN-HARDIRQ-W} state was registered at:
lock_acquire+0xb0/0x1c0
_raw_spin_lock_irqsave+0x3c/0x50
tick_broadcast_switch_to_oneshot+0xd/0x40
tick_switch_to_oneshot+0x4f/0xd0
hrtimer_run_queues+0xf3/0x130
run_local_timers+0x1c/0x50
update_process_times+0x1c/0x50
tick_periodic+0x26/0xc0
tick_handle_periodic+0x1a/0x60
smp_apic_timer_interrupt+0x80/0x2a0
apic_timer_interrupt+0xf/0x20
_raw_spin_unlock_irqrestore+0x4e/0x60
rcu_nocb_gp_kthread+0x15d/0x590
kthread+0xf3/0x130
ret_from_fork+0x3a/0x50
irq event stamp: 171
hardirqs last enabled at (171): [<ffffffff8a201a37>] trace_hardirqs_on_thunk+0x1a/0x1c
hardirqs last disabled at (170): [<ffffffff8a201a53>] trace_hardirqs_off_thunk+0x1a/0x1c
softirqs last enabled at (0): [<ffffffff8a264ee0>] copy_process.part.56+0x650/0x1cb0
softirqs last disabled at (0): [<0000000000000000>] 0x0
[...]
To reproduce, run the following rcutorture test:
$ tools/testing/selftests/rcutorture/bin/kvm.sh --duration 5 --kconfig "CONFIG_DEBUG_LOCK_ALLOC=y CONFIG_PROVE_LOCKING=y" --configs "TASKS03 TREE04"
It turns out that tick_broadcast_offline() was an innocent bystander.
After all, interrupts are supposed to be disabled throughout
take_cpu_down(), and therefore should have been disabled upon entry to
tick_offline_cpu() and thus to tick_broadcast_offline(). This suggests
that one of the CPU-hotplug notifiers was incorrectly enabling interrupts,
and leaving them enabled on return.
Some debugging code showed that the culprit was sched_cpu_dying().
It had irqs enabled after return from sched_tick_stop(). Which in turn
had irqs enabled after return from cancel_delayed_work_sync(). Which is a
wrapper around __cancel_work_timer(). Which can sleep in the case where
something else is concurrently trying to cancel the same delayed work,
and as Thomas Gleixner pointed out on IRC, sleeping is a decidedly bad
idea when you are invoked from take_cpu_down(), regardless of the state
you leave interrupts in upon return.
Code inspection located no reason why the delayed work absolutely
needed to be canceled from sched_tick_stop(): The work is not
bound to the outgoing CPU by design, given that the whole point is
to collect statistics without disturbing the outgoing CPU.
This commit therefore simply drops the cancel_delayed_work_sync() from
sched_tick_stop(). Instead, a new ->state field is added to the tick_work
structure so that the delayed-work handler function sched_tick_remote()
can avoid reposting itself. A cpu_is_offline() check is also added to
sched_tick_remote() to avoid mucking with the state of an offlined CPU
(though it does appear safe to do so). The sched_tick_start() and
sched_tick_stop() functions also update ->state, and sched_tick_start()
also schedules the delayed work if ->state indicates that it is not
already in flight.
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
[ paulmck: Apply Peter Zijlstra and Frederic Weisbecker atomics feedback. ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190625165238.GJ26519@linux.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
John reported a DEBUG_PREEMPT warning caused by commit:
aacedf26fb ("sched/core: Optimize try_to_wake_up() for local wakeups")
I overlooked that ttwu_stat() requires preemption disabled.
Reported-by: John Stultz <john.stultz@linaro.org>
Tested-by: John Stultz <john.stultz@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: aacedf26fb ("sched/core: Optimize try_to_wake_up() for local wakeups")
Link: https://lkml.kernel.org/r/20190710105736.GK3402@hirez.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
So far uclamp_util() allows to clamp a specified utilization considering
the clamp values requested by RUNNABLE tasks in a CPU. For the Energy
Aware Scheduler (EAS) it is interesting to test how clamp values will
change when a task is becoming RUNNABLE on a given CPU.
For example, EAS is interested in comparing the energy impact of
different scheduling decisions and the clamp values can play a role on
that.
Add uclamp_util_with() which allows to clamp a given utilization by
considering the possible impact on CPU clamp values of a specified task.
Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alessio Balsini <balsini@android.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Perret <quentin.perret@arm.com>
Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com>
Cc: Steve Muckle <smuckle@google.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Todd Kjos <tkjos@google.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Link: https://lkml.kernel.org/r/20190621084217.8167-11-patrick.bellasi@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
By default FAIR tasks start without clamps, i.e. neither boosted nor
capped, and they run at the best frequency matching their utilization
demand. This default behavior does not fit RT tasks which instead are
expected to run at the maximum available frequency, if not otherwise
required by explicitly capping them.
Enforce the correct behavior for RT tasks by setting util_min to max
whenever:
1. the task is switched to the RT class and it does not already have a
user-defined clamp value assigned.
2. an RT task is forked from a parent with RESET_ON_FORK set.
NOTE: utilization clamp values are cross scheduling class attributes and
thus they are never changed/reset once a value has been explicitly
defined from user-space.
Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alessio Balsini <balsini@android.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Perret <quentin.perret@arm.com>
Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com>
Cc: Steve Muckle <smuckle@google.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Todd Kjos <tkjos@google.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Link: https://lkml.kernel.org/r/20190621084217.8167-9-patrick.bellasi@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
A forked tasks gets the same clamp values of its parent however, when
the RESET_ON_FORK flag is set on parent, e.g. via:
sys_sched_setattr()
sched_setattr()
__sched_setscheduler(attr::SCHED_FLAG_RESET_ON_FORK)
the new forked task is expected to start with all attributes reset to
default values.
Do that for utilization clamp values too by checking the reset request
from the existing uclamp_fork() call which already provides the required
initialization for other uclamp related bits.
Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alessio Balsini <balsini@android.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Perret <quentin.perret@arm.com>
Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com>
Cc: Steve Muckle <smuckle@google.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Todd Kjos <tkjos@google.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Link: https://lkml.kernel.org/r/20190621084217.8167-8-patrick.bellasi@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The SCHED_DEADLINE scheduling class provides an advanced and formal
model to define tasks requirements that can translate into proper
decisions for both task placements and frequencies selections. Other
classes have a more simplified model based on the POSIX concept of
priorities.
Such a simple priority based model however does not allow to exploit
most advanced features of the Linux scheduler like, for example, driving
frequencies selection via the schedutil cpufreq governor. However, also
for non SCHED_DEADLINE tasks, it's still interesting to define tasks
properties to support scheduler decisions.
Utilization clamping exposes to user-space a new set of per-task
attributes the scheduler can use as hints about the expected/required
utilization for a task. This allows to implement a "proactive" per-task
frequency control policy, a more advanced policy than the current one
based just on "passive" measured task utilization. For example, it's
possible to boost interactive tasks (e.g. to get better performance) or
cap background tasks (e.g. to be more energy/thermal efficient).
Introduce a new API to set utilization clamping values for a specified
task by extending sched_setattr(), a syscall which already allows to
define task specific properties for different scheduling classes. A new
pair of attributes allows to specify a minimum and maximum utilization
the scheduler can consider for a task.
Do that by validating the required clamp values before and then applying
the required changes using _the_ same pattern already in use for
__setscheduler(). This ensures that the task is re-enqueued with the new
clamp values.
Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alessio Balsini <balsini@android.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Perret <quentin.perret@arm.com>
Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com>
Cc: Steve Muckle <smuckle@google.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Todd Kjos <tkjos@google.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Link: https://lkml.kernel.org/r/20190621084217.8167-7-patrick.bellasi@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The sched_setattr() syscall mandates that a policy is always specified.
This requires to always know which policy a task will have when
attributes are configured and this makes it impossible to add more
generic task attributes valid across different scheduling policies.
Reading the policy before setting generic tasks attributes is racy since
we cannot be sure it is not changed concurrently.
Introduce the required support to change generic task attributes without
affecting the current task policy. This is done by adding an attribute flag
(SCHED_FLAG_KEEP_POLICY) to enforce the usage of the current policy.
Add support for the SETPARAM_POLICY policy, which is already used by the
sched_setparam() POSIX syscall, to the sched_setattr() non-POSIX
syscall.
Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alessio Balsini <balsini@android.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Perret <quentin.perret@arm.com>
Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com>
Cc: Steve Muckle <smuckle@google.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Todd Kjos <tkjos@google.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Link: https://lkml.kernel.org/r/20190621084217.8167-6-patrick.bellasi@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tasks without a user-defined clamp value are considered not clamped
and by default their utilization can have any value in the
[0..SCHED_CAPACITY_SCALE] range.
Tasks with a user-defined clamp value are allowed to request any value
in that range, and the required clamp is unconditionally enforced.
However, a "System Management Software" could be interested in limiting
the range of clamp values allowed for all tasks.
Add a privileged interface to define a system default configuration via:
/proc/sys/kernel/sched_uclamp_util_{min,max}
which works as an unconditional clamp range restriction for all tasks.
With the default configuration, the full SCHED_CAPACITY_SCALE range of
values is allowed for each clamp index. Otherwise, the task-specific
clamp is capped by the corresponding system default value.
Do that by tracking, for each task, the "effective" clamp value and
bucket the task has been refcounted in at enqueue time. This
allows to lazy aggregate "requested" and "system default" values at
enqueue time and simplifies refcounting updates at dequeue time.
The cached bucket ids are used to avoid (relatively) more expensive
integer divisions every time a task is enqueued.
An active flag is used to report when the "effective" value is valid and
thus the task is actually refcounted in the corresponding rq's bucket.
Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alessio Balsini <balsini@android.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Perret <quentin.perret@arm.com>
Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com>
Cc: Steve Muckle <smuckle@google.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Todd Kjos <tkjos@google.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Link: https://lkml.kernel.org/r/20190621084217.8167-5-patrick.bellasi@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When a task sleeps it removes its max utilization clamp from its CPU.
However, the blocked utilization on that CPU can be higher than the max
clamp value enforced while the task was running. This allows undesired
CPU frequency increases while a CPU is idle, for example, when another
CPU on the same frequency domain triggers a frequency update, since
schedutil can now see the full not clamped blocked utilization of the
idle CPU.
Fix this by using:
uclamp_rq_dec_id(p, rq, UCLAMP_MAX)
uclamp_rq_max_value(rq, UCLAMP_MAX, clamp_value)
to detect when a CPU has no more RUNNABLE clamped tasks and to flag this
condition.
Don't track any minimum utilization clamps since an idle CPU never
requires a minimum frequency. The decay of the blocked utilization is
good enough to reduce the CPU frequency.
Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alessio Balsini <balsini@android.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Perret <quentin.perret@arm.com>
Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com>
Cc: Steve Muckle <smuckle@google.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Todd Kjos <tkjos@google.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Link: https://lkml.kernel.org/r/20190621084217.8167-4-patrick.bellasi@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Because of bucketization, different task-specific clamp values are
tracked in the same bucket. For example, with 20% bucket size and
assuming to have:
Task1: util_min=25%
Task2: util_min=35%
both tasks will be refcounted in the [20..39]% bucket and always boosted
only up to 20% thus implementing a simple floor aggregation normally
used in histograms.
In systems with only few and well-defined clamp values, it would be
useful to track the exact clamp value required by a task whenever
possible. For example, if a system requires only 23% and 47% boost
values then it's possible to track the exact boost required by each
task using only 3 buckets of ~33% size each.
Introduce a mechanism to max aggregate the requested clamp values of
RUNNABLE tasks in the same bucket. Keep it simple by resetting the
bucket value to its base value only when a bucket becomes inactive.
Allow a limited and controlled overboosting margin for tasks recounted
in the same bucket.
In systems where the boost values are not known in advance, it is still
possible to control the maximum acceptable overboosting margin by tuning
the number of clamp groups. For example, 20 groups ensure a 5% maximum
overboost.
Remove the rq bucket initialization code since a correct bucket value
is now computed when a task is refcounted into a CPU's rq.
Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alessio Balsini <balsini@android.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Perret <quentin.perret@arm.com>
Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com>
Cc: Steve Muckle <smuckle@google.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Todd Kjos <tkjos@google.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Link: https://lkml.kernel.org/r/20190621084217.8167-3-patrick.bellasi@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Utilization clamping allows to clamp the CPU's utilization within a
[util_min, util_max] range, depending on the set of RUNNABLE tasks on
that CPU. Each task references two "clamp buckets" defining its minimum
and maximum (util_{min,max}) utilization "clamp values". A CPU's clamp
bucket is active if there is at least one RUNNABLE tasks enqueued on
that CPU and refcounting that bucket.
When a task is {en,de}queued {on,from} a rq, the set of active clamp
buckets on that CPU can change. If the set of active clamp buckets
changes for a CPU a new "aggregated" clamp value is computed for that
CPU. This is because each clamp bucket enforces a different utilization
clamp value.
Clamp values are always MAX aggregated for both util_min and util_max.
This ensures that no task can affect the performance of other
co-scheduled tasks which are more boosted (i.e. with higher util_min
clamp) or less capped (i.e. with higher util_max clamp).
A task has:
task_struct::uclamp[clamp_id]::bucket_id
to track the "bucket index" of the CPU's clamp bucket it refcounts while
enqueued, for each clamp index (clamp_id).
A runqueue has:
rq::uclamp[clamp_id]::bucket[bucket_id].tasks
to track how many RUNNABLE tasks on that CPU refcount each
clamp bucket (bucket_id) of a clamp index (clamp_id).
It also has a:
rq::uclamp[clamp_id]::bucket[bucket_id].value
to track the clamp value of each clamp bucket (bucket_id) of a clamp
index (clamp_id).
The rq::uclamp::bucket[clamp_id][] array is scanned every time it's
needed to find a new MAX aggregated clamp value for a clamp_id. This
operation is required only when it's dequeued the last task of a clamp
bucket tracking the current MAX aggregated clamp value. In this case,
the CPU is either entering IDLE or going to schedule a less boosted or
more clamped task.
The expected number of different clamp values configured at build time
is small enough to fit the full unordered array into a single cache
line, for configurations of up to 7 buckets.
Add to struct rq the basic data structures required to refcount the
number of RUNNABLE tasks for each clamp bucket. Add also the max
aggregation required to update the rq's clamp value at each
enqueue/dequeue event.
Use a simple linear mapping of clamp values into clamp buckets.
Pre-compute and cache bucket_id to avoid integer divisions at
enqueue/dequeue time.
Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alessio Balsini <balsini@android.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Perret <quentin.perret@arm.com>
Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com>
Cc: Steve Muckle <smuckle@google.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Todd Kjos <tkjos@google.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Link: https://lkml.kernel.org/r/20190621084217.8167-2-patrick.bellasi@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
So that external modules can hook into them and extract the info they
need. Since these new tracepoints have no events associated with them
exporting these tracepoints make them useful for external modules to
perform testing and debugging. There's no other way otherwise to access
them.
BPF doesn't have infrastructure to access these bare tracepoints either.
Signed-off-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Pavankumar Kondeti <pkondeti@codeaurora.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Perret <quentin.perret@arm.com>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Uwe Kleine-Konig <u.kleine-koenig@pengutronix.de>
Link: https://lkml.kernel.org/r/20190604111459.2862-7-qais.yousef@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Jens reported that significant performance can be had on some block
workloads by special casing local wakeups. That is, wakeups on the
current task before it schedules out.
Given something like the normal wait pattern:
for (;;) {
set_current_state(TASK_UNINTERRUPTIBLE);
if (cond)
break;
schedule();
}
__set_current_state(TASK_RUNNING);
Any wakeup (on this CPU) after set_current_state() and before
schedule() would benefit from this.
Normal wakeups take p->pi_lock, which serializes wakeups to the same
task. By eliding that we gain concurrency on:
- ttwu_stat(); we already had concurrency on rq stats, this now also
brings it to task stats. -ENOCARE
- tracepoints; it is now possible to get multiple instances of
trace_sched_waking() (and possibly trace_sched_wakeup()) for the
same task. Tracers will have to learn to cope.
Furthermore, p->pi_lock is used by set_special_state(), to order
against TASK_RUNNING stores from other CPUs. But since this is
strictly CPU local, we don't need the lock, and set_special_state()'s
disabling of IRQs is sufficient.
After the normal wakeup takes p->pi_lock it issues
smp_mb__after_spinlock(), in order to ensure the woken task must
observe prior stores before we observe the p->state. If this is CPU
local, this will be satisfied with a compiler barrier, and we rely on
try_to_wake_up() being a funcation call, which implies such.
Since, when 'p == current', 'p->on_rq' must be true, the normal wakeup
would continue into the ttwu_remote() branch, which normally is
concerned with exactly this wakeup scenario, except from a remote CPU.
IOW we're waking a task that is still running. In this case, we can
trivially avoid taking rq->lock, all that's left from this is to set
p->state.
This then yields an extremely simple and fast path for 'p == current'.
Reported-by: Jens Axboe <axboe@kernel.dk>
Tested-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Qian Cai <cai@lca.pw>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: akpm@linux-foundation.org
Cc: gkohli@codeaurora.org
Cc: hch@lst.de
Cc: oleg@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Non-inline io_schedule() was introduced in:
commit 10ab56434f ("sched/core: Separate out io_schedule_prepare() and io_schedule_finish()")
Keep in line with io_schedule_timeout(), otherwise "/proc/<pid>/wchan" will
report io_schedule() rather than its callers when waiting for IO.
Reported-by: Jilong Kou <koujilong@huawei.com>
Signed-off-by: Gao Xiang <gaoxiang25@huawei.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Miao Xie <miaoxie@huawei.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 10ab56434f ("sched/core: Separate out io_schedule_prepare() and io_schedule_finish()")
Link: https://lkml.kernel.org/r/20190603091338.2695-1-gaoxiang25@huawei.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
With LB_BIAS disabled, there is no need to update the rq->cpu_load[idx]
any more.
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Rik van Riel <riel@surriel.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Patrick Bellasi <patrick.bellasi@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Perret <quentin.perret@arm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Valentin Schneider <valentin.schneider@arm.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20190527062116.11512-2-dietmar.eggemann@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In commit:
4b53a3412d ("sched/core: Remove the tsk_nr_cpus_allowed() wrapper")
the tsk_nr_cpus_allowed() wrapper was removed. There was not
much difference in !RT but in RT we used this to implement
migrate_disable(). Within a migrate_disable() section the CPU mask is
restricted to single CPU while the "normal" CPU mask remains untouched.
As an alternative implementation Ingo suggested to use:
struct task_struct {
const cpumask_t *cpus_ptr;
cpumask_t cpus_mask;
};
with
t->cpus_ptr = &t->cpus_mask;
In -RT we then can switch the cpus_ptr to:
t->cpus_ptr = &cpumask_of(task_cpu(p));
in a migration disabled region. The rules are simple:
- Code that 'uses' ->cpus_allowed would use the pointer.
- Code that 'modifies' ->cpus_allowed would use the direct mask.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20190423142636.14347-1-bigeasy@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Add SPDX license identifiers to all files which:
- Have no license information of any form
- Have EXPORT_.*_SYMBOL_GPL inside which was used in the
initial scan/conversion to ignore the file
These files fall under the project license, GPL v2 only. The resulting SPDX
license identifier is:
GPL-2.0-only
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Pull scheduler updates from Ingo Molnar:
"The main changes in this cycle were:
- Make nohz housekeeping processing more permissive and less
intrusive to isolated CPUs
- Decouple CPU-bound workqueue acconting from the scheduler and move
it into the workqueue code.
- Optimize topology building
- Better handle quota and period overflows
- Add more RCU annotations
- Comment updates, misc cleanups"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (25 commits)
nohz_full: Allow the boot CPU to be nohz_full
sched/isolation: Require a present CPU in housekeeping mask
kernel/cpu: Allow non-zero CPU to be primary for suspend / kexec freeze
power/suspend: Add function to disable secondaries for suspend
sched/core: Allow the remote scheduler tick to be started on CPU0
sched/nohz: Run NOHZ idle load balancer on HK_FLAG_MISC CPUs
sched/debug: Fix spelling mistake "logaritmic" -> "logarithmic"
sched/topology: Update init_sched_domains() comment
cgroup/cpuset: Update stale generate_sched_domains() comments
sched/core: Check quota and period overflow at usec to nsec conversion
sched/core: Handle overflow in cpu_shares_write_u64
sched/rt: Check integer overflow at usec to nsec conversion
sched/core: Fix typo in comment
sched/core: Make some functions static
sched/core: Unify p->on_rq updates
sched/core: Remove ttwu_activate()
sched/core, workqueues: Distangle worker accounting from rq lock
sched/fair: Remove unneeded prototype of capacity_of()
sched/topology: Skip duplicate group rewrites in build_sched_groups()
sched/topology: Fix build_sched_groups() comment
...
This has no effect yet because CPU0 will always be a housekeeping CPU
until a later change.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linuxppc-dev@lists.ozlabs.org
Link: https://lkml.kernel.org/r/20190411033448.20842-2-npiggin@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Large values could overflow u64 and pass following sanity checks.
# echo 18446744073750000 > cpu.cfs_period_us
# cat cpu.cfs_period_us
40448
# echo 18446744073750000 > cpu.cfs_quota_us
# cat cpu.cfs_quota_us
40448
After this patch they will fail with -EINVAL.
Signed-off-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/155125502079.293431.3947497929372138600.stgit@buzz
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Bit shift in scale_load() could overflow shares. This patch saturates
it to MAX_SHARES like following sched_group_set_shares().
Example:
# echo 9223372036854776832 > cpu.shares
# cat cpu.shares
Before patch: 1024
After pattch: 262144
Signed-off-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/155125501891.293431.3345233332801109696.stgit@buzz
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Fix these sparse warnings:
kernel/sched/core.c:6577:11: warning: symbol 'min_cfs_quota_period' was not declared. Should it be static?
kernel/sched/core.c:6657:5: warning: symbol 'tg_set_cfs_quota' was not declared. Should it be static?
kernel/sched/core.c:6670:6: warning: symbol 'tg_get_cfs_quota' was not declared. Should it be static?
kernel/sched/core.c:6683:5: warning: symbol 'tg_set_cfs_period' was not declared. Should it be static?
kernel/sched/core.c:6693:6: warning: symbol 'tg_get_cfs_period' was not declared. Should it be static?
kernel/sched/fair.c:2596:6: warning: symbol 'task_tick_numa' was not declared. Should it be static?
Signed-off-by: YueHaibing <yuehaibing@huawei.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20190418144713.34332-1-yuehaibing@huawei.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Almost all {,de}activate_task() invocations pair with p->on_rq
updates, the exception being the usage in rt/deadline which hold both
rq locks and therefore don't strictly need to set
TASK_ON_RQ_MIGRATING, but it is harmless if we do anyway.
Put the updates in {,de}activate_task() and cut down on repetition.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
After the removal of try_to_wake_up_local(), there is only one user of
ttwu_activate() left, and since it is a trivial function, remove it.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The worker accounting for CPU bound workers is plugged into the core
scheduler code and the wakeup code. This is not a hard requirement and
can be avoided by keeping track of the state in the workqueue code
itself.
Keep track of the sleeping state in the worker itself and call the
notifier before entering the core scheduler. There might be false
positives when the task is woken between that call and actually
scheduling, but that's not really different from scheduling and being
woken immediately after switching away. When nr_running is updated when
the task is retunrning from schedule() then it is later compared when it
is done from ttwu().
[ bigeasy: preempt_disable() around wq_worker_sleeping() by Daniel Bristot de Oliveira ]
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: Daniel Bristot de Oliveira <bristot@redhat.com>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/ad2b29b5715f970bffc1a7026cabd6ff0b24076a.1532952814.git.bristot@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Only ia64-sn2 uses this as an optimization, and there it is of
questionable correctness due to the mm_users==1 test.
Remove it entirely.
No change in behavior intended.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull scheduler updates from Thomas Gleixner:
"Third more careful attempt for this set of fixes:
- Prevent a 32bit math overflow in the cpufreq code
- Fix a buffer overflow when scanning the cgroup2 cpu.max property
- A set of fixes for the NOHZ scheduler logic to prevent waking up
CPUs even if the capacity of the busy CPUs is sufficient along with
other tweaks optimizing the behaviour for asymmetric systems
(big/little)"
* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/fair: Skip LLC NOHZ logic for asymmetric systems
sched/fair: Tune down misfit NOHZ kicks
sched/fair: Comment some nohz_balancer_kick() kick conditions
sched/core: Fix buffer overflow in cgroup2 property cpu.max
sched/cpufreq: Fix 32-bit math overflow
Merge misc updates from Andrew Morton:
- a few misc things
- ocfs2 updates
- most of MM
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (159 commits)
tools/testing/selftests/proc/proc-self-syscall.c: remove duplicate include
proc: more robust bulk read test
proc: test /proc/*/maps, smaps, smaps_rollup, statm
proc: use seq_puts() everywhere
proc: read kernel cpu stat pointer once
proc: remove unused argument in proc_pid_lookup()
fs/proc/thread_self.c: code cleanup for proc_setup_thread_self()
fs/proc/self.c: code cleanup for proc_setup_self()
proc: return exit code 4 for skipped tests
mm,mremap: bail out earlier in mremap_to under map pressure
mm/sparse: fix a bad comparison
mm/memory.c: do_fault: avoid usage of stale vm_area_struct
writeback: fix inode cgroup switching comment
mm/huge_memory.c: fix "orig_pud" set but not used
mm/hotplug: fix an imbalance with DEBUG_PAGEALLOC
mm/memcontrol.c: fix bad line in comment
mm/cma.c: cma_declare_contiguous: correct err handling
mm/page_ext.c: fix an imbalance with kmemleak
mm/compaction: pass pgdat to too_many_isolated() instead of zone
mm: remove zone_lru_lock() function, access ->lru_lock directly
...
Pull scheduler updates from Ingo Molnar:
"The main changes in this cycle were:
- refcount conversions
- Solve the rq->leaf_cfs_rq_list can of worms for real.
- improve power-aware scheduling
- add sysctl knob for Energy Aware Scheduling
- documentation updates
- misc other changes"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (34 commits)
kthread: Do not use TIMER_IRQSAFE
kthread: Convert worker lock to raw spinlock
sched/fair: Use non-atomic cpumask_{set,clear}_cpu()
sched/fair: Remove unused 'sd' parameter from select_idle_smt()
sched/wait: Use freezable_schedule() when possible
sched/fair: Prune, fix and simplify the nohz_balancer_kick() comment block
sched/fair: Explain LLC nohz kick condition
sched/fair: Simplify nohz_balancer_kick()
sched/topology: Fix percpu data types in struct sd_data & struct s_data
sched/fair: Simplify post_init_entity_util_avg() by calling it with a task_struct pointer argument
sched/fair: Fix O(nr_cgroups) in the load balancing path
sched/fair: Optimize update_blocked_averages()
sched/fair: Fix insertion in rq->leaf_cfs_rq_list
sched/fair: Add tmp_alone_branch assertion
sched/core: Use READ_ONCE()/WRITE_ONCE() in move_queued_task()/task_rq_lock()
sched/debug: Initialize sd_sysctl_cpus if !CONFIG_CPUMASK_OFFSTACK
sched/pelt: Skip updating util_est when utilization is higher than CPU's capacity
sched/fair: Update scale invariance of PELT
sched/fair: Move the rq_of() helper function
sched/core: Convert task_struct.stack_refcount to refcount_t
...
Pull locking updates from Ingo Molnar:
"The biggest part of this tree is the new auto-generated atomics API
wrappers by Mark Rutland.
The primary motivation was to allow instrumentation without uglifying
the primary source code.
The linecount increase comes from adding the auto-generated files to
the Git space as well:
include/asm-generic/atomic-instrumented.h | 1689 ++++++++++++++++--
include/asm-generic/atomic-long.h | 1174 ++++++++++---
include/linux/atomic-fallback.h | 2295 +++++++++++++++++++++++++
include/linux/atomic.h | 1241 +------------
I preferred this approach, so that the full call stack of the (already
complex) locking APIs is still fully visible in 'git grep'.
But if this is excessive we could certainly hide them.
There's a separate build-time mechanism to determine whether the
headers are out of date (they should never be stale if we do our job
right).
Anyway, nothing from this should be visible to regular kernel
developers.
Other changes:
- Add support for dynamic keys, which removes a source of false
positives in the workqueue code, among other things (Bart Van
Assche)
- Updates to tools/memory-model (Andrea Parri, Paul E. McKenney)
- qspinlock, wake_q and lockdep micro-optimizations (Waiman Long)
- misc other updates and enhancements"
* 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (48 commits)
locking/lockdep: Shrink struct lock_class_key
locking/lockdep: Add module_param to enable consistency checks
lockdep/lib/tests: Test dynamic key registration
lockdep/lib/tests: Fix run_tests.sh
kernel/workqueue: Use dynamic lockdep keys for workqueues
locking/lockdep: Add support for dynamic keys
locking/lockdep: Verify whether lock objects are small enough to be used as class keys
locking/lockdep: Check data structure consistency
locking/lockdep: Reuse lock chains that have been freed
locking/lockdep: Fix a comment in add_chain_cache()
locking/lockdep: Introduce lockdep_next_lockchain() and lock_chain_count()
locking/lockdep: Reuse list entries that are no longer in use
locking/lockdep: Free lock classes that are no longer in use
locking/lockdep: Update two outdated comments
locking/lockdep: Make it easy to detect whether or not inside a selftest
locking/lockdep: Split lockdep_free_key_range() and lockdep_reset_lock()
locking/lockdep: Initialize the locks_before and locks_after lists earlier
locking/lockdep: Make zap_class() remove all matching lock order entries
locking/lockdep: Reorder struct lock_class members
locking/lockdep: Avoid that add_chain_cache() adds an invalid chain to the cache
...
Compaction is inherently race-prone as a suitable page freed during
compaction can be allocated by any parallel task. This patch uses a
capture_control structure to isolate a page immediately when it is freed
by a direct compactor in the slow path of the page allocator. The
intent is to avoid redundant scanning.
5.0.0-rc1 5.0.0-rc1
selective-v3r17 capture-v3r19
Amean fault-both-1 0.00 ( 0.00%) 0.00 * 0.00%*
Amean fault-both-3 2582.11 ( 0.00%) 2563.68 ( 0.71%)
Amean fault-both-5 4500.26 ( 0.00%) 4233.52 ( 5.93%)
Amean fault-both-7 5819.53 ( 0.00%) 6333.65 ( -8.83%)
Amean fault-both-12 9321.18 ( 0.00%) 9759.38 ( -4.70%)
Amean fault-both-18 9782.76 ( 0.00%) 10338.76 ( -5.68%)
Amean fault-both-24 15272.81 ( 0.00%) 13379.55 * 12.40%*
Amean fault-both-30 15121.34 ( 0.00%) 16158.25 ( -6.86%)
Amean fault-both-32 18466.67 ( 0.00%) 18971.21 ( -2.73%)
Latency is only moderately affected but the devil is in the details. A
closer examination indicates that base page fault latency is reduced but
latency of huge pages is increased as it takes creater care to succeed.
Part of the "problem" is that allocation success rates are close to 100%
even when under pressure and compaction gets harder
5.0.0-rc1 5.0.0-rc1
selective-v3r17 capture-v3r19
Percentage huge-3 96.70 ( 0.00%) 98.23 ( 1.58%)
Percentage huge-5 96.99 ( 0.00%) 95.30 ( -1.75%)
Percentage huge-7 94.19 ( 0.00%) 97.24 ( 3.24%)
Percentage huge-12 94.95 ( 0.00%) 97.35 ( 2.53%)
Percentage huge-18 96.74 ( 0.00%) 97.30 ( 0.58%)
Percentage huge-24 97.07 ( 0.00%) 97.55 ( 0.50%)
Percentage huge-30 95.69 ( 0.00%) 98.50 ( 2.95%)
Percentage huge-32 96.70 ( 0.00%) 99.27 ( 2.65%)
And scan rates are reduced as expected by 6% for the migration scanner
and 29% for the free scanner indicating that there is less redundant
work.
Compaction migrate scanned 20815362 19573286
Compaction free scanned 16352612 11510663
[mgorman@techsingularity.net: remove redundant check]
Link: http://lkml.kernel.org/r/20190201143853.GH9565@techsingularity.net
Link: http://lkml.kernel.org/r/20190118175136.31341-23-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull year 2038 updates from Thomas Gleixner:
"Another round of changes to make the kernel ready for 2038. After lots
of preparatory work this is the first set of syscalls which are 2038
safe:
403 clock_gettime64
404 clock_settime64
405 clock_adjtime64
406 clock_getres_time64
407 clock_nanosleep_time64
408 timer_gettime64
409 timer_settime64
410 timerfd_gettime64
411 timerfd_settime64
412 utimensat_time64
413 pselect6_time64
414 ppoll_time64
416 io_pgetevents_time64
417 recvmmsg_time64
418 mq_timedsend_time64
419 mq_timedreceiv_time64
420 semtimedop_time64
421 rt_sigtimedwait_time64
422 futex_time64
423 sched_rr_get_interval_time64
The syscall numbers are identical all over the architectures"
* 'timers-2038-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (36 commits)
riscv: Use latest system call ABI
checksyscalls: fix up mq_timedreceive and stat exceptions
unicore32: Fix __ARCH_WANT_STAT64 definition
asm-generic: Make time32 syscall numbers optional
asm-generic: Drop getrlimit and setrlimit syscalls from default list
32-bit userspace ABI: introduce ARCH_32BIT_OFF_T config option
compat ABI: use non-compat openat and open_by_handle_at variants
y2038: add 64-bit time_t syscalls to all 32-bit architectures
y2038: rename old time and utime syscalls
y2038: remove struct definition redirects
y2038: use time32 syscall names on 32-bit
syscalls: remove obsolete __IGNORE_ macros
y2038: syscalls: rename y2038 compat syscalls
x86/x32: use time64 versions of sigtimedwait and recvmmsg
timex: change syscalls to use struct __kernel_timex
timex: use __kernel_timex internally
sparc64: add custom adjtimex/clock_adjtime functions
time: fix sys_timer_settime prototype
time: Add struct __kernel_timex
time: make adjtime compat handling available for 32 bit
...
Introduce cant_sleep() macro for annotation of functions that
cannot sleep.
Use it in BPF_PROG_RUN to catch execution of BPF programs in
preemptable context.
Suggested-by: Jann Horn <jannh@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Since commit:
d03266910a ("sched/fair: Fix task group initialization")
the utilization of a sched entity representing a task group is no longer
initialized to any other value than 0. So post_init_entity_util_avg() is
only used for tasks, not for sched_entities.
Make this clear by calling it with a task_struct pointer argument which
also eliminates the entity_is_task(se) if condition in the fork path and
get rid of the stale comment in remove_entity_load_avg() accordingly.
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Patrick Bellasi <patrick.bellasi@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Perret <quentin.perret@arm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Valentin Schneider <valentin.schneider@arm.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20190122162501.12000-1-dietmar.eggemann@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This series finally gets us to the point of having system calls with
64-bit time_t on all architectures, after a long time of incremental
preparation patches.
There was actually one conversion that I missed during the summer,
i.e. Deepa's timex series, which I now updated based the 5.0-rc1 changes
and review comments.
The following system calls are now added on all 32-bit architectures
using the same system call numbers:
403 clock_gettime64
404 clock_settime64
405 clock_adjtime64
406 clock_getres_time64
407 clock_nanosleep_time64
408 timer_gettime64
409 timer_settime64
410 timerfd_gettime64
411 timerfd_settime64
412 utimensat_time64
413 pselect6_time64
414 ppoll_time64
416 io_pgetevents_time64
417 recvmmsg_time64
418 mq_timedsend_time64
419 mq_timedreceiv_time64
420 semtimedop_time64
421 rt_sigtimedwait_time64
422 futex_time64
423 sched_rr_get_interval_time64
Each one of these corresponds directly to an existing system call
that includes a 'struct timespec' argument, or a structure containing
a timespec or (in case of clock_adjtime) timeval. Not included here
are new versions of getitimer/setitimer and getrusage/waitid, which
are planned for the future but only needed to make a consistent API
rather than for correct operation beyond y2038. These four system
calls are based on 'timeval', and it has not been finally decided
what the replacement kernel interface will use instead.
So far, I have done a lot of build testing across most architectures,
which has found a number of bugs. Runtime testing so far included
testing LTP on 32-bit ARM with the existing system calls, to ensure
we do not regress for existing binaries, and a test with a 32-bit
x86 build of LTP against a modified version of the musl C library
that has been adapted to the new system call interface [3].
This library can be used for testing on all architectures supported
by musl-1.1.21, but it is not how the support is getting integrated
into the official musl release. Official musl support is planned
but will require more invasive changes to the library.
Link: https://lore.kernel.org/lkml/20190110162435.309262-1-arnd@arndb.de/T/
Link: https://lore.kernel.org/lkml/20190118161835.2259170-1-arnd@arndb.de/
Link: https://git.linaro.org/people/arnd/musl-y2038.git/ [2]
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iQIcBAABCAAGBQJcXf7/AAoJEGCrR//JCVInPSUP/RhsQSCKMGtONB/vVICQhwep
PybhzBSpHWFxszzTi6BEPN1zS9B069G9mDollRBYZCckyPqL/Bv6sI/vzQZdNk01
Q6Nw92OnNE1QP8owZ5TjrZhpbtopWdqIXjsbGZlloUemvuJP2JwvKovQUcn5CPTQ
jbnqU04CVyFFJYVxAnGJ+VSeWNrjW/cm/m+rhLFjUcwW7Y3aodxsPqPP6+K9hY9P
yIWfcH42WBeEWGm1RSBOZOScQl4SGCPUAhFydl/TqyEQagyegJMIyMOv9wZ5AuTT
xK644bDVmNsrtJDZDpx+J8hytXCk1LrnKzkHR/uK80iUIraF/8D7PlaPgTmEEjko
XcrywEkvkXTVU3owCm2/sbV+8fyFKzSPipnNfN1JNxEX71A98kvMRtPjDueQq/GA
Yh81rr2YLF2sUiArkc2fNpENT7EGhrh1q6gviK3FB8YDgj1kSgPK5wC/X0uolC35
E7iC2kg4NaNEIjhKP/WKluCaTvjRbvV+0IrlJLlhLTnsqbA57ZKCCteiBrlm7wQN
4csUtCyxchR9Ac2o/lj+Mf53z68Zv74haIROp18K2dL7ZpVcOPnA3XHeauSAdoyp
wy2Ek6ilNvlNB+4x+mRntPoOsyuOUGv7JXzB9JvweLWUd9G7tvYeDJQp/0YpDppb
K4UWcKnhtEom0DgK08vY
=IZVb
-----END PGP SIGNATURE-----
Merge tag 'y2038-new-syscalls' of git://git.kernel.org:/pub/scm/linux/kernel/git/arnd/playground into timers/2038
Pull y2038 - time64 system calls from Arnd Bergmann:
This series finally gets us to the point of having system calls with 64-bit
time_t on all architectures, after a long time of incremental preparation
patches.
There was actually one conversion that I missed during the summer,
i.e. Deepa's timex series, which I now updated based the 5.0-rc1 changes
and review comments.
The following system calls are now added on all 32-bit architectures using
the same system call numbers:
403 clock_gettime64
404 clock_settime64
405 clock_adjtime64
406 clock_getres_time64
407 clock_nanosleep_time64
408 timer_gettime64
409 timer_settime64
410 timerfd_gettime64
411 timerfd_settime64
412 utimensat_time64
413 pselect6_time64
414 ppoll_time64
416 io_pgetevents_time64
417 recvmmsg_time64
418 mq_timedsend_time64
419 mq_timedreceiv_time64
420 semtimedop_time64
421 rt_sigtimedwait_time64
422 futex_time64
423 sched_rr_get_interval_time64
Each one of these corresponds directly to an existing system call that
includes a 'struct timespec' argument, or a structure containing a timespec
or (in case of clock_adjtime) timeval. Not included here are new versions
of getitimer/setitimer and getrusage/waitid, which are planned for the
future but only needed to make a consistent API rather than for correct
operation beyond y2038. These four system calls are based on 'timeval', and
it has not been finally decided what the replacement kernel interface will
use instead.
So far, I have done a lot of build testing across most architectures, which
has found a number of bugs. Runtime testing so far included testing LTP on
32-bit ARM with the existing system calls, to ensure we do not regress for
existing binaries, and a test with a 32-bit x86 build of LTP against a
modified version of the musl C library that has been adapted to the new
system call interface [3]. This library can be used for testing on all
architectures supported by musl-1.1.21, but it is not how the support is
getting integrated into the official musl release. Official musl support is
planned but will require more invasive changes to the library.
Link: https://lore.kernel.org/lkml/20190110162435.309262-1-arnd@arndb.de/T/
Link: https://lore.kernel.org/lkml/20190118161835.2259170-1-arnd@arndb.de/
Link: https://git.linaro.org/people/arnd/musl-y2038.git/ [2]
A lot of system calls that pass a time_t somewhere have an implementation
using a COMPAT_SYSCALL_DEFINEx() on 64-bit architectures, and have
been reworked so that this implementation can now be used on 32-bit
architectures as well.
The missing step is to redefine them using the regular SYSCALL_DEFINEx()
to get them out of the compat namespace and make it possible to build them
on 32-bit architectures.
Any system call that ends in 'time' gets a '32' suffix on its name for
that version, while the others get a '_time32' suffix, to distinguish
them from the normal version, which takes a 64-bit time argument in the
future.
In this step, only 64-bit architectures are changed, doing this rename
first lets us avoid touching the 32-bit architectures twice.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
move_queued_task() synchronizes with task_rq_lock() as follows:
move_queued_task() task_rq_lock()
[S] ->on_rq = MIGRATING [L] rq = task_rq()
WMB (__set_task_cpu()) ACQUIRE (rq->lock);
[S] ->cpu = new_cpu [L] ->on_rq
where "[L] rq = task_rq()" is ordered before "ACQUIRE (rq->lock)" by an
address dependency and, in turn, "ACQUIRE (rq->lock)" is ordered before
"[L] ->on_rq" by the ACQUIRE itself.
Use READ_ONCE() to load ->cpu in task_rq() (c.f., task_cpu()) to honor
this address dependency. Also, mark the accesses to ->cpu and ->on_rq
with READ_ONCE()/WRITE_ONCE() to comply with the LKMM.
Signed-off-by: Andrea Parri <andrea.parri@amarulasolutions.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E. McKenney <paulmck@linux.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Link: https://lkml.kernel.org/r/20190121155240.27173-1-andrea.parri@amarulasolutions.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The current implementation of load tracking invariance scales the
contribution with current frequency and uarch performance (only for
utilization) of the CPU. One main result of this formula is that the
figures are capped by current capacity of CPU. Another one is that the
load_avg is not invariant because not scaled with uarch.
The util_avg of a periodic task that runs r time slots every p time slots
varies in the range :
U * (1-y^r)/(1-y^p) * y^i < Utilization < U * (1-y^r)/(1-y^p)
with U is the max util_avg value = SCHED_CAPACITY_SCALE
At a lower capacity, the range becomes:
U * C * (1-y^r')/(1-y^p) * y^i' < Utilization < U * C * (1-y^r')/(1-y^p)
with C reflecting the compute capacity ratio between current capacity and
max capacity.
so C tries to compensate changes in (1-y^r') but it can't be accurate.
Instead of scaling the contribution value of PELT algo, we should scale the
running time. The PELT signal aims to track the amount of computation of
tasks and/or rq so it seems more correct to scale the running time to
reflect the effective amount of computation done since the last update.
In order to be fully invariant, we need to apply the same amount of
running time and idle time whatever the current capacity. Because running
at lower capacity implies that the task will run longer, we have to ensure
that the same amount of idle time will be applied when system becomes idle
and no idle time has been "stolen". But reaching the maximum utilization
value (SCHED_CAPACITY_SCALE) means that the task is seen as an
always-running task whatever the capacity of the CPU (even at max compute
capacity). In this case, we can discard this "stolen" idle times which
becomes meaningless.
In order to achieve this time scaling, a new clock_pelt is created per rq.
The increase of this clock scales with current capacity when something
is running on rq and synchronizes with clock_task when rq is idle. With
this mechanism, we ensure the same running and idle time whatever the
current capacity. This also enables to simplify the pelt algorithm by
removing all references of uarch and frequency and applying the same
contribution to utilization and loads. Furthermore, the scaling is done
only once per update of clock (update_rq_clock_task()) instead of during
each update of sched_entities and cfs/rt/dl_rq of the rq like the current
implementation. This is interesting when cgroup are involved as shown in
the results below:
On a hikey (octo Arm64 platform).
Performance cpufreq governor and only shallowest c-state to remove variance
generated by those power features so we only track the impact of pelt algo.
each test runs 16 times:
./perf bench sched pipe
(higher is better)
kernel tip/sched/core + patch
ops/seconds ops/seconds diff
cgroup
root 59652(+/- 0.18%) 59876(+/- 0.24%) +0.38%
level1 55608(+/- 0.27%) 55923(+/- 0.24%) +0.57%
level2 52115(+/- 0.29%) 52564(+/- 0.22%) +0.86%
hackbench -l 1000
(lower is better)
kernel tip/sched/core + patch
duration(sec) duration(sec) diff
cgroup
root 4.453(+/- 2.37%) 4.383(+/- 2.88%) -1.57%
level1 4.859(+/- 8.50%) 4.830(+/- 7.07%) -0.60%
level2 5.063(+/- 9.83%) 4.928(+/- 9.66%) -2.66%
Then, the responsiveness of PELT is improved when CPU is not running at max
capacity with this new algorithm. I have put below some examples of
duration to reach some typical load values according to the capacity of the
CPU with current implementation and with this patch. These values has been
computed based on the geometric series and the half period value:
Util (%) max capacity half capacity(mainline) half capacity(w/ patch)
972 (95%) 138ms not reachable 276ms
486 (47.5%) 30ms 138ms 60ms
256 (25%) 13ms 32ms 26ms
On my hikey (octo Arm64 platform) with schedutil governor, the time to
reach max OPP when starting from a null utilization, decreases from 223ms
with current scale invariance down to 121ms with the new algorithm.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Morten.Rasmussen@arm.com
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bsegall@google.com
Cc: dietmar.eggemann@arm.com
Cc: patrick.bellasi@arm.com
Cc: pjt@google.com
Cc: pkondeti@codeaurora.org
Cc: quentin.perret@arm.com
Cc: rjw@rjwysocki.net
Cc: srinivas.pandruvada@linux.intel.com
Cc: thara.gopinath@linaro.org
Link: https://lkml.kernel.org/r/1548257214-13745-3-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Some users, specifically futexes and rwsems, required fixes
that allowed the callers to be safe when wakeups occur before
they are expected by wake_up_q(). Such scenarios also play
games and rely on reference counting, and until now were
pivoting on wake_q doing it. With the wake_q_add() call being
moved down, this can no longer be the case. As such we end up
with a a double task refcounting overhead; and these callers
care enough about this (being rather core-ish).
This patch introduces a wake_q_add_safe() call that serves
for callers that have already done refcounting and therefore the
task is 'safe' from wake_q point of view (int that it requires
reference throughout the entire queue/>wakeup cycle). In the one
case it has internal reference counting, in the other case it
consumes the reference counting.
Signed-off-by: Davidlohr Bueso <dbueso@suse.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Waiman Long <longman@redhat.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Xie Yongji <xieyongji@baidu.com>
Cc: Yongji Xie <elohimes@gmail.com>
Cc: andrea.parri@amarulasolutions.com
Cc: lilin24@baidu.com
Cc: liuqi16@baidu.com
Cc: nixun@baidu.com
Cc: yuanlinsi01@baidu.com
Cc: zhangyu31@baidu.com
Link: https://lkml.kernel.org/r/20181218195352.7orq3upiwfdbrdne@linux-r8p5
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The cmpxchg() will fail when the task is already in the process
of waking up, and as such is an extremely rare occurrence.
Micro-optimize the call and put an unlikely() around it.
To no surprise, when using CONFIG_PROFILE_ANNOTATED_BRANCHES
under a number of workloads the incorrect rate was a mere 1-2%.
Signed-off-by: Davidlohr Bueso <dbueso@suse.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Waiman Long <longman@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Yongji Xie <elohimes@gmail.com>
Cc: andrea.parri@amarulasolutions.com
Cc: lilin24@baidu.com
Cc: liuqi16@baidu.com
Cc: nixun@baidu.com
Cc: xieyongji@baidu.com
Cc: yuanlinsi01@baidu.com
Cc: zhangyu31@baidu.com
Link: https://lkml.kernel.org/r/20181203053130.gwkw6kg72azt2npb@linux-r8p5
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Notable cmpxchg() does not provide ordering when it fails, however
wake_q_add() requires ordering in this specific case too. Without this
it would be possible for the concurrent wakeup to not observe our
prior state.
Andrea Parri provided:
C wake_up_q-wake_q_add
{
int next = 0;
int y = 0;
}
P0(int *next, int *y)
{
int r0;
/* in wake_up_q() */
WRITE_ONCE(*next, 1); /* node->next = NULL */
smp_mb(); /* implied by wake_up_process() */
r0 = READ_ONCE(*y);
}
P1(int *next, int *y)
{
int r1;
/* in wake_q_add() */
WRITE_ONCE(*y, 1); /* wake_cond = true */
smp_mb__before_atomic();
r1 = cmpxchg_relaxed(next, 1, 2);
}
exists (0:r0=0 /\ 1:r1=0)
This "exists" clause cannot be satisfied according to the LKMM:
Test wake_up_q-wake_q_add Allowed
States 3
0:r0=0; 1:r1=1;
0:r0=1; 1:r1=0;
0:r0=1; 1:r1=1;
No
Witnesses
Positive: 0 Negative: 3
Condition exists (0:r0=0 /\ 1:r1=0)
Observation wake_up_q-wake_q_add Never 0 3
Reported-by: Yongji Xie <elohimes@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Waiman Long <longman@redhat.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The only guarantee provided by wake_q_add() is that a wakeup will
happen after it, it does _NOT_ guarantee the wakeup will be delayed
until the matching wake_up_q().
If wake_q_add() fails the cmpxchg() a concurrent wakeup is pending and
that can happen at any time after the cmpxchg(). This means we should
not rely on the wakeup happening at wake_q_up(), but should be ready
for wake_q_add() to issue the wakeup.
The delay; if provided (most likely); should only result in more efficient
behaviour.
Reported-by: Yongji Xie <elohimes@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Waiman Long <longman@redhat.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently, CONFIG_JUMP_LABEL just means "I _want_ to use jump label".
The jump label is controlled by HAVE_JUMP_LABEL, which is defined
like this:
#if defined(CC_HAVE_ASM_GOTO) && defined(CONFIG_JUMP_LABEL)
# define HAVE_JUMP_LABEL
#endif
We can improve this by testing 'asm goto' support in Kconfig, then
make JUMP_LABEL depend on CC_HAS_ASM_GOTO.
Ugly #ifdef HAVE_JUMP_LABEL will go away, and CONFIG_JUMP_LABEL will
match to the real kernel capability.
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Acked-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc)
Tested-by: Sedat Dilek <sedat.dilek@gmail.com>
Merge more updates from Andrew Morton:
- procfs updates
- various misc bits
- lib/ updates
- epoll updates
- autofs
- fatfs
- a few more MM bits
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (58 commits)
mm/page_io.c: fix polled swap page in
checkpatch: add Co-developed-by to signature tags
docs: fix Co-Developed-by docs
drivers/base/platform.c: kmemleak ignore a known leak
fs: don't open code lru_to_page()
fs/: remove caller signal_pending branch predictions
mm/: remove caller signal_pending branch predictions
arch/arc/mm/fault.c: remove caller signal_pending_branch predictions
kernel/sched/: remove caller signal_pending branch predictions
kernel/locking/mutex.c: remove caller signal_pending branch predictions
mm: select HAVE_MOVE_PMD on x86 for faster mremap
mm: speed up mremap by 20x on large regions
mm: treewide: remove unused address argument from pte_alloc functions
initramfs: cleanup incomplete rootfs
scripts/gdb: fix lx-version string output
kernel/kcov.c: mark write_comp_data() as notrace
kernel/sysctl: add panic_print into sysctl
panic: add options to print system info when panic happens
bfs: extra sanity checking and static inode bitmap
exec: separate MM_ANONPAGES and RLIMIT_STACK accounting
...
This is already done for us internally by the signal machinery.
Link: http://lkml.kernel.org/r/20181116002713.8474-3-dave@stgolabs.net
Signed-off-by: Davidlohr Bueso <dave@stgolabs.net>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Nobody has actually used the type (VERIFY_READ vs VERIFY_WRITE) argument
of the user address range verification function since we got rid of the
old racy i386-only code to walk page tables by hand.
It existed because the original 80386 would not honor the write protect
bit when in kernel mode, so you had to do COW by hand before doing any
user access. But we haven't supported that in a long time, and these
days the 'type' argument is a purely historical artifact.
A discussion about extending 'user_access_begin()' to do the range
checking resulted this patch, because there is no way we're going to
move the old VERIFY_xyz interface to that model. And it's best done at
the end of the merge window when I've done most of my merges, so let's
just get this done once and for all.
This patch was mostly done with a sed-script, with manual fix-ups for
the cases that weren't of the trivial 'access_ok(VERIFY_xyz' form.
There were a couple of notable cases:
- csky still had the old "verify_area()" name as an alias.
- the iter_iov code had magical hardcoded knowledge of the actual
values of VERIFY_{READ,WRITE} (not that they mattered, since nothing
really used it)
- microblaze used the type argument for a debug printout
but other than those oddities this should be a total no-op patch.
I tried to fix up all architectures, did fairly extensive grepping for
access_ok() uses, and the changes are trivial, but I may have missed
something. Any missed conversion should be trivially fixable, though.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull scheduler updates from Ingo Molnar:
"The main changes in this cycle were:
- Introduce "Energy Aware Scheduling" - by Quentin Perret.
This is a coherent topology description of CPUs in cooperation with
the PM subsystem, with the goal to schedule more energy-efficiently
on asymetric SMP platform - such as waking up tasks to the more
energy-efficient CPUs first, as long as the system isn't
oversubscribed.
For details of the design, see:
https://lore.kernel.org/lkml/20180724122521.22109-1-quentin.perret@arm.com/
- Misc cleanups and smaller enhancements"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (23 commits)
sched/fair: Select an energy-efficient CPU on task wake-up
sched/fair: Introduce an energy estimation helper function
sched/fair: Add over-utilization/tipping point indicator
sched/fair: Clean-up update_sg_lb_stats parameters
sched/toplogy: Introduce the 'sched_energy_present' static key
sched/topology: Make Energy Aware Scheduling depend on schedutil
sched/topology: Disable EAS on inappropriate platforms
sched/topology: Add lowest CPU asymmetry sched_domain level pointer
sched/topology: Reference the Energy Model of CPUs when available
PM: Introduce an Energy Model management framework
sched/cpufreq: Prepare schedutil for Energy Aware Scheduling
sched/topology: Relocate arch_scale_cpu_capacity() to the internal header
sched/core: Remove unnecessary unlikely() in push_*_task()
sched/topology: Remove the ::smt_gain field from 'struct sched_domain'
sched: Fix various typos in comments
sched/core: Clean up the #ifdef block in add_nr_running()
sched/fair: Make some variables static
sched/core: Create task_has_idle_policy() helper
sched/fair: Add lsub_positive() and use it consistently
sched/fair: Mask UTIL_AVG_UNCHANGED usages
...
Pull RCU changes from Paul E. McKenney:
- Convert RCU's BUG_ON() and similar calls to WARN_ON() and similar.
- Replace calls of RCU-bh and RCU-sched update-side functions
to their vanilla RCU counterparts. This series is a step
towards complete removal of the RCU-bh and RCU-sched update-side
functions.
( Note that some of these conversions are going upstream via their
respective maintainers. )
- Documentation updates, including a number of flavor-consolidation
updates from Joel Fernandes.
- Miscellaneous fixes.
- Automate generation of the initrd filesystem used for
rcutorture testing.
- Convert spin_is_locked() assertions to instead use lockdep.
( Note that some of these conversions are going upstream via their
respective maintainers. )
- SRCU updates, especially including a fix from Dennis Krein
for a bag-on-head-class bug.
- RCU torture-test updates.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Go over the scheduler source code and fix common typos
in comments - and a typo in an actual variable name.
No change in functionality intended.
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently the 'sched_smt_present' static key is enabled when at CPU bringup
SMT topology is observed, but it is never disabled. However there is demand
to also disable the key when the topology changes such that there is no SMT
present anymore.
Implement this by making the key count the number of cores that have SMT
enabled.
In particular, the SMT topology bits are set before interrrupts are enabled
and similarly, are cleared after interrupts are disabled for the last time
and the CPU dies.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Woodhouse <dwmw@amazon.co.uk>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Casey Schaufler <casey.schaufler@intel.com>
Cc: Asit Mallick <asit.k.mallick@intel.com>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Jon Masters <jcm@redhat.com>
Cc: Waiman Long <longman9394@gmail.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Dave Stewart <david.c.stewart@intel.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20181125185004.246110444@linutronix.de
We already have task_has_rt_policy() and task_has_dl_policy() helpers,
create task_has_idle_policy() as well and update sched core to start
using it.
While at it, use task_has_dl_policy() at one more place.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Link: http://lkml.kernel.org/r/ce3915d5b490fc81af926a3b6bfb775e7188e005.1541416894.git.viresh.kumar@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull scheduler fixes from Thomas Gleixner:
"Two small scheduler fixes:
- Take hotplug lock in sched_init_smp(). Technically not really
required, but lockdep will complain other.
- Trivial comment fix in sched/fair"
* 'sched/urgent' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/fair: Fix a comment in task_numa_fault()
sched/core: Take the hotplug lock in sched_init_smp()
Now that synchronize_rcu() waits for both RCU read-side critical
sections and preempt-disabled regions of code, the sole caller of
synchronize_rcu_mult() can be replaced by synchronize_rcu().
This patch makes this change and removes synchronize_rcu_mult().
Note that _wait_rcu_gp() still supports synchronize_rcu_mult(),
and thus might be simplified in the future to take only take
a single call_rcu() function rather than the current list of them.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
When running on linux-next (8c60c36d0b8c ("Add linux-next specific files
for 20181019")) + CONFIG_PROVE_LOCKING=y on a big.LITTLE system (e.g.
Juno or HiKey960), we get the following report:
[ 0.748225] Call trace:
[ 0.750685] lockdep_assert_cpus_held+0x30/0x40
[ 0.755236] static_key_enable_cpuslocked+0x20/0xc8
[ 0.760137] build_sched_domains+0x1034/0x1108
[ 0.764601] sched_init_domains+0x68/0x90
[ 0.768628] sched_init_smp+0x30/0x80
[ 0.772309] kernel_init_freeable+0x278/0x51c
[ 0.776685] kernel_init+0x10/0x108
[ 0.780190] ret_from_fork+0x10/0x18
The static_key in question is 'sched_asym_cpucapacity' introduced by
commit:
df054e8445 ("sched/topology: Add static_key for asymmetric CPU capacity optimizations")
In this particular case, we enable it because smp_prepare_cpus() will
end up fetching the capacity-dmips-mhz entry from the devicetree,
so we already have some asymmetry detected when entering sched_init_smp().
This didn't get detected in tip/sched/core because we were missing:
commit cb538267ea ("jump_label/lockdep: Assert we hold the hotplug lock for _cpuslocked() operations")
Calls to build_sched_domains() post sched_init_smp() will hold the
hotplug lock, it just so happens that this very first call is a
special case. As stated by a comment in sched_init_smp(), "There's no
userspace yet to cause hotplug operations" so this is a harmless
warning.
However, to both respect the semantics of underlying
callees and make lockdep happy, take the hotplug lock in
sched_init_smp(). This also satisfies the comment atop
sched_init_domains() that says "Callers must hold the hotplug lock".
Reported-by: Sudeep Holla <sudeep.holla@arm.com>
Tested-by: Sudeep Holla <sudeep.holla@arm.com>
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Dietmar.Eggemann@arm.com
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: morten.rasmussen@arm.com
Cc: quentin.perret@arm.com
Link: http://lkml.kernel.org/r/1540301851-3048-1-git-send-email-valentin.schneider@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
- Fix build regression in the intel_pstate driver that doesn't
build without CONFIG_ACPI after recent changes (Dominik Brodowski).
- One of the heuristics in the menu cpuidle governor is based on a
function returning 0 most of the time, so drop it and clean up
the scheduler code related to it (Daniel Lezcano).
- Prevent the arm_big_little cpufreq driver from being used on ARM64
which is not suitable for it and drop the arm_big_little_dt driver
that is not used any more (Sudeep Holla).
- Prevent the hung task watchdog from triggering during resume from
system-wide sleep states by disabling it before freezing tasks and
enabling it again after they have been thawed (Vitaly Kuznetsov).
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iQIcBAABCAAGBQJb2BJ7AAoJEILEb/54YlRx/kwP/iD7tUUZ6mT84OI0FTbEj8A/
fM+uHrwy25PmqyWGGtbHpaWU9OxVxUReSicsBCt+2LZmX3sFYpbSb243mv3pmxqb
A0kLflG4lWCKJNIfa/a3OMDTUw26mxSTCidE3jJXkd8HkWrzeAWvMair+UCuzMf3
A4Omu0IkNL8C0MKtUOb3PlUk3dnLYMxuairNhozBPhi+P+0tLW9/9XvgPJBVhnbZ
CKn/aFsDoc08tAfxC8N32cgKwE7nbeIgTJTBFyu2lQmInsd4TTuoM50vSC5i+x88
AmBOoH9IX0fhXJ6hgm+VMW8+x9S+H7jAVy/3C2xoUBeCclzlxX6eUCtjV5YNZqqn
1nXQfGeAwgzX6Tyu6HjM7vjbfObk59ZwpmDRPJEUEhLDEBMS+iDStlp9zmKTedNm
G4iSTzS6qJCNPtx4y5wkLp/FvzTofIuWqVFJSJC4+EoVKkbbw9xwaY+JKXUt1Uwx
j+U6EtRhzL/kVX0nq+iQXXeANxCFNzI56Ov5O7mxjF1m/hDE/Gb2QEeIb6nRZC2A
H3I2so2J3h1yTgadpGFFvJWaqfHkgcBTsm06tSgHVb86quiTANJIQ9mqfFyOzDDJ
KaZ82MROt7UuCMI6X9n+oIBDZWLHmADge6RdHCD1wB+zrUmusCtNEHUZACXd0mPf
s8MUK4bWVhViVXGS5bMP
=/bnR
-----END PGP SIGNATURE-----
Merge tag 'pm-4.20-rc1-2' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull more power management updates from Rafael Wysocki:
"These remove a questionable heuristic from the menu cpuidle governor,
fix a recent build regression in the intel_pstate driver, clean up ARM
big-Little support in cpufreq and fix up hung task watchdog's
interaction with system-wide power management transitions.
Specifics:
- Fix build regression in the intel_pstate driver that doesn't build
without CONFIG_ACPI after recent changes (Dominik Brodowski).
- One of the heuristics in the menu cpuidle governor is based on a
function returning 0 most of the time, so drop it and clean up the
scheduler code related to it (Daniel Lezcano).
- Prevent the arm_big_little cpufreq driver from being used on ARM64
which is not suitable for it and drop the arm_big_little_dt driver
that is not used any more (Sudeep Holla).
- Prevent the hung task watchdog from triggering during resume from
system-wide sleep states by disabling it before freezing tasks and
enabling it again after they have been thawed (Vitaly Kuznetsov)"
* tag 'pm-4.20-rc1-2' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm:
kernel: hung_task.c: disable on suspend
cpufreq: remove unused arm_big_little_dt driver
cpufreq: drop ARM_BIG_LITTLE_CPUFREQ support for ARM64
cpufreq: intel_pstate: Fix compilation for !CONFIG_ACPI
cpuidle: menu: Remove get_loadavg() from the performance multiplier
sched: Factor out nr_iowait and nr_iowait_cpu
When systems are overcommitted and resources become contended, it's hard
to tell exactly the impact this has on workload productivity, or how close
the system is to lockups and OOM kills. In particular, when machines work
multiple jobs concurrently, the impact of overcommit in terms of latency
and throughput on the individual job can be enormous.
In order to maximize hardware utilization without sacrificing individual
job health or risk complete machine lockups, this patch implements a way
to quantify resource pressure in the system.
A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that
expose the percentage of time the system is stalled on CPU, memory, or IO,
respectively. Stall states are aggregate versions of the per-task delay
accounting delays:
cpu: some tasks are runnable but not executing on a CPU
memory: tasks are reclaiming, or waiting for swapin or thrashing cache
io: tasks are waiting for io completions
These percentages of walltime can be thought of as pressure percentages,
and they give a general sense of system health and productivity loss
incurred by resource overcommit. They can also indicate when the system
is approaching lockup scenarios and OOMs.
To do this, psi keeps track of the task states associated with each CPU
and samples the time they spend in stall states. Every 2 seconds, the
samples are averaged across CPUs - weighted by the CPUs' non-idle time to
eliminate artifacts from unused CPUs - and translated into percentages of
walltime. A running average of those percentages is maintained over 10s,
1m, and 5m periods (similar to the loadaverage).
[hannes@cmpxchg.org: doc fixlet, per Randy]
Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org
[hannes@cmpxchg.org: code optimization]
Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org
[hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter]
Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org
[hannes@cmpxchg.org: fix build]
Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org
Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Drake <drake@endlessm.com>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
do_sched_yield() disables IRQs, looks up this_rq() and locks it. The next
patch is adding another site with the same pattern, so provide a
convenience function for it.
Link: http://lkml.kernel.org/r/20180828172258.3185-8-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Tested-by: Daniel Drake <drake@endlessm.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull timekeeping updates from Thomas Gleixner:
"The timers and timekeeping departement provides:
- Another large y2038 update with further preparations for providing
the y2038 safe timespecs closer to the syscalls.
- An overhaul of the SHCMT clocksource driver
- SPDX license identifier updates
- Small cleanups and fixes all over the place"
* 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (31 commits)
tick/sched : Remove redundant cpu_online() check
clocksource/drivers/dw_apb: Add reset control
clocksource: Remove obsolete CLOCKSOURCE_OF_DECLARE
clocksource/drivers: Unify the names to timer-* format
clocksource/drivers/sh_cmt: Add R-Car gen3 support
dt-bindings: timer: renesas: cmt: document R-Car gen3 support
clocksource/drivers/sh_cmt: Properly line-wrap sh_cmt_of_table[] initializer
clocksource/drivers/sh_cmt: Fix clocksource width for 32-bit machines
clocksource/drivers/sh_cmt: Fixup for 64-bit machines
clocksource/drivers/sh_tmu: Convert to SPDX identifiers
clocksource/drivers/sh_mtu2: Convert to SPDX identifiers
clocksource/drivers/sh_cmt: Convert to SPDX identifiers
clocksource/drivers/renesas-ostm: Convert to SPDX identifiers
clocksource: Convert to using %pOFn instead of device_node.name
tick/broadcast: Remove redundant check
RISC-V: Request newstat syscalls
y2038: signal: Change rt_sigtimedwait to use __kernel_timespec
y2038: socket: Change recvmmsg to use __kernel_timespec
y2038: sched: Change sched_rr_get_interval to use __kernel_timespec
y2038: utimes: Rework #ifdef guards for compat syscalls
...
The function get_loadavg() returns almost always zero. To be more
precise, statistically speaking for a total of 1023379 times passing
in the function, the load is equal to zero 1020728 times, greater than
100, 610 times, the remaining is between 0 and 5.
In 2011, the get_loadavg() was removed from the Android tree because
of the above [1]. At this time, the load was:
unsigned long this_cpu_load(void)
{
struct rq *this = this_rq();
return this->cpu_load[0];
}
In 2014, the code was changed by commit 372ba8cb46 (cpuidle: menu: Lookup CPU
runqueues less) and the load is:
void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
{
struct rq *rq = this_rq();
*nr_waiters = atomic_read(&rq->nr_iowait);
*load = rq->load.weight;
}
with the same result.
Both measurements show using the load in this code path does no matter
anymore. Removing it.
[1] 4dedd9f124
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The function nr_iowait_cpu() can be used directly by nr_iowait() instead
of duplicating code.
Call nr_iowait_cpu() from nr_iowait()
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The comment related to nr_iowait_cpu() and get_iowait_load() confuses
cpufreq with cpuidle and is not very useful for this reason, so fix it.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Linux PM <linux-pm@vger.kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: e33a9bba85 "sched/core: move IO scheduling accounting from io_schedule_timeout() into scheduler"
Link: http://lkml.kernel.org/r/3803514.xkx7zY50tF@aspire.rjw.lan
Signed-off-by: Ingo Molnar <mingo@kernel.org>
A CFS (SCHED_OTHER, SCHED_BATCH or SCHED_IDLE policy) task's
se->runnable_weight must always be in sync with its se->load.weight.
se->runnable_weight is set to se->load.weight when the task is
forked (init_entity_runnable_average()) or reniced (reweight_entity()).
There are two cases in set_load_weight() which since they currently only
set se->load.weight could lead to a situation in which se->load.weight
is different to se->runnable_weight for a CFS task:
(1) A task switches to SCHED_IDLE.
(2) A SCHED_FIFO, SCHED_RR or SCHED_DEADLINE task which has been reniced
(during which only its static priority gets set) switches to
SCHED_OTHER or SCHED_BATCH.
Set se->runnable_weight to se->load.weight in these two cases to prevent
this. This eliminates the need to explicitly set it to se->load.weight
during PELT updates in the CFS scheduler fastpath.
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Patrick Bellasi <patrick.bellasi@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Perret <quentin.perret@arm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Link: http://lkml.kernel.org/r/20180803140538.1178-1-dietmar.eggemann@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Create a config for enabling irq load tracking in the scheduler.
irq load tracking is useful only when irq or paravirtual time is
accounted but it's only possible with SMP for now.
Also use __maybe_unused to remove the compilation warning in
update_rq_clock_task() that has been introduced by:
2e62c4743a ("sched/fair: Remove #ifdefs from scale_rt_capacity()")
Suggested-by: Ingo Molnar <mingo@redhat.com>
Reported-by: Dou Liyang <douly.fnst@cn.fujitsu.com>
Reported-by: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com>
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bp@alien8.de
Cc: dou_liyang@163.com
Fixes: 2e62c4743a ("sched/fair: Remove #ifdefs from scale_rt_capacity()")
Link: http://lkml.kernel.org/r/1537867062-27285-1-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This is a preparation patch for converting sys_sched_rr_get_interval to
work with 64-bit time_t on 32-bit architectures. The 'interval' argument
is changed to struct __kernel_timespec, which will be redefined using
64-bit time_t in the future. The compat version of the system call in
turn is enabled for compilation with CONFIG_COMPAT_32BIT_TIME so
the individual 32-bit architectures can share the handling of the
traditional argument with 64-bit architectures providing it for their
compat mode.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Christoph Hellwig suggested a slightly different path for handling
backwards compatibility with the 32-bit time_t based system calls:
Rather than simply reusing the compat_sys_* entry points on 32-bit
architectures unchanged, we get rid of those entry points and the
compat_time types by renaming them to something that makes more sense
on 32-bit architectures (which don't have a compat mode otherwise),
and then share the entry points under the new name with the 64-bit
architectures that use them for implementing the compatibility.
The following types and interfaces are renamed here, and moved
from linux/compat_time.h to linux/time32.h:
old new
--- ---
compat_time_t old_time32_t
struct compat_timeval struct old_timeval32
struct compat_timespec struct old_timespec32
struct compat_itimerspec struct old_itimerspec32
ns_to_compat_timeval() ns_to_old_timeval32()
get_compat_itimerspec64() get_old_itimerspec32()
put_compat_itimerspec64() put_old_itimerspec32()
compat_get_timespec64() get_old_timespec32()
compat_put_timespec64() put_old_timespec32()
As we already have aliases in place, this patch addresses only the
instances that are relevant to the system call interface in particular,
not those that occur in device drivers and other modules. Those
will get handled separately, while providing the 64-bit version
of the respective interfaces.
I'm not renaming the timex, rusage and itimerval structures, as we are
still debating what the new interface will look like, and whether we
will need a replacement at all.
This also doesn't change the names of the syscall entry points, which can
be done more easily when we actually switch over the 32-bit architectures
to use them, at that point we need to change COMPAT_SYSCALL_DEFINEx to
SYSCALL_DEFINEx with a new name, e.g. with a _time32 suffix.
Suggested-by: Christoph Hellwig <hch@infradead.org>
Link: https://lore.kernel.org/lkml/20180705222110.GA5698@infradead.org/
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Pull core signal handling updates from Eric Biederman:
"It was observed that a periodic timer in combination with a
sufficiently expensive fork could prevent fork from every completing.
This contains the changes to remove the need for that restart.
This set of changes is split into several parts:
- The first part makes PIDTYPE_TGID a proper pid type instead
something only for very special cases. The part starts using
PIDTYPE_TGID enough so that in __send_signal where signals are
actually delivered we know if the signal is being sent to a a group
of processes or just a single process.
- With that prep work out of the way the logic in fork is modified so
that fork logically makes signals received while it is running
appear to be received after the fork completes"
* 'siginfo-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace: (22 commits)
signal: Don't send signals to tasks that don't exist
signal: Don't restart fork when signals come in.
fork: Have new threads join on-going signal group stops
fork: Skip setting TIF_SIGPENDING in ptrace_init_task
signal: Add calculate_sigpending()
fork: Unconditionally exit if a fatal signal is pending
fork: Move and describe why the code examines PIDNS_ADDING
signal: Push pid type down into complete_signal.
signal: Push pid type down into __send_signal
signal: Push pid type down into send_signal
signal: Pass pid type into do_send_sig_info
signal: Pass pid type into send_sigio_to_task & send_sigurg_to_task
signal: Pass pid type into group_send_sig_info
signal: Pass pid and pid type into send_sigqueue
posix-timers: Noralize good_sigevent
signal: Use PIDTYPE_TGID to clearly store where file signals will be sent
pid: Implement PIDTYPE_TGID
pids: Move the pgrp and session pid pointers from task_struct to signal_struct
kvm: Don't open code task_pid in kvm_vcpu_ioctl
pids: Compute task_tgid using signal->leader_pid
...
- Restructure of lockdep and latency tracers
This is the biggest change. Joel Fernandes restructured the hooks
from irqs and preemption disabling and enabling. He got rid of
a lot of the preprocessor #ifdef mess that they caused.
He turned both lockdep and the latency tracers to use trace events
inserted in the preempt/irqs disabling paths. But unfortunately,
these started to cause issues in corner cases. Thus, parts of the
code was reverted back to where lockde and the latency tracers
just get called directly (without using the trace events).
But because the original change cleaned up the code very nicely
we kept that, as well as the trace events for preempt and irqs
disabling, but they are limited to not being called in NMIs.
- Have trace events use SRCU for "rcu idle" calls. This was required
for the preempt/irqs off trace events. But it also had to not
allow them to be called in NMI context. Waiting till Paul makes
an NMI safe SRCU API.
- New notrace SRCU API to allow trace events to use SRCU.
- Addition of mcount-nop option support
- SPDX headers replacing GPL templates.
- Various other fixes and clean ups.
- Some fixes are marked for stable, but were not fully tested
before the merge window opened.
-----BEGIN PGP SIGNATURE-----
iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCW3ruhRQccm9zdGVkdEBn
b29kbWlzLm9yZwAKCRAp5XQQmuv6qiM7AP47NhYdSnCFCRUJfrt6PovXmQtuCHt3
c3QMoGGdvzh9YAEAqcSXwh7uLhpHUp1LjMAPkXdZVwNddf4zJQ1zyxQ+EAU=
=vgEr
-----END PGP SIGNATURE-----
Merge tag 'trace-v4.19' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace
Pull tracing updates from Steven Rostedt:
- Restructure of lockdep and latency tracers
This is the biggest change. Joel Fernandes restructured the hooks
from irqs and preemption disabling and enabling. He got rid of a lot
of the preprocessor #ifdef mess that they caused.
He turned both lockdep and the latency tracers to use trace events
inserted in the preempt/irqs disabling paths. But unfortunately,
these started to cause issues in corner cases. Thus, parts of the
code was reverted back to where lockdep and the latency tracers just
get called directly (without using the trace events). But because the
original change cleaned up the code very nicely we kept that, as well
as the trace events for preempt and irqs disabling, but they are
limited to not being called in NMIs.
- Have trace events use SRCU for "rcu idle" calls. This was required
for the preempt/irqs off trace events. But it also had to not allow
them to be called in NMI context. Waiting till Paul makes an NMI safe
SRCU API.
- New notrace SRCU API to allow trace events to use SRCU.
- Addition of mcount-nop option support
- SPDX headers replacing GPL templates.
- Various other fixes and clean ups.
- Some fixes are marked for stable, but were not fully tested before
the merge window opened.
* tag 'trace-v4.19' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace: (44 commits)
tracing: Fix SPDX format headers to use C++ style comments
tracing: Add SPDX License format tags to tracing files
tracing: Add SPDX License format to bpf_trace.c
blktrace: Add SPDX License format header
s390/ftrace: Add -mfentry and -mnop-mcount support
tracing: Add -mcount-nop option support
tracing: Avoid calling cc-option -mrecord-mcount for every Makefile
tracing: Handle CC_FLAGS_FTRACE more accurately
Uprobe: Additional argument arch_uprobe to uprobe_write_opcode()
Uprobes: Simplify uprobe_register() body
tracepoints: Free early tracepoints after RCU is initialized
uprobes: Use synchronize_rcu() not synchronize_sched()
tracing: Fix synchronizing to event changes with tracepoint_synchronize_unregister()
ftrace: Remove unused pointer ftrace_swapper_pid
tracing: More reverting of "tracing: Centralize preemptirq tracepoints and unify their usage"
tracing/irqsoff: Handle preempt_count for different configs
tracing: Partial revert of "tracing: Centralize preemptirq tracepoints and unify their usage"
tracing: irqsoff: Account for additional preempt_disable
trace: Use rcu_dereference_raw for hooks from trace-event subsystem
tracing/kprobes: Fix within_notrace_func() to check only notrace functions
...
Merge L1 Terminal Fault fixes from Thomas Gleixner:
"L1TF, aka L1 Terminal Fault, is yet another speculative hardware
engineering trainwreck. It's a hardware vulnerability which allows
unprivileged speculative access to data which is available in the
Level 1 Data Cache when the page table entry controlling the virtual
address, which is used for the access, has the Present bit cleared or
other reserved bits set.
If an instruction accesses a virtual address for which the relevant
page table entry (PTE) has the Present bit cleared or other reserved
bits set, then speculative execution ignores the invalid PTE and loads
the referenced data if it is present in the Level 1 Data Cache, as if
the page referenced by the address bits in the PTE was still present
and accessible.
While this is a purely speculative mechanism and the instruction will
raise a page fault when it is retired eventually, the pure act of
loading the data and making it available to other speculative
instructions opens up the opportunity for side channel attacks to
unprivileged malicious code, similar to the Meltdown attack.
While Meltdown breaks the user space to kernel space protection, L1TF
allows to attack any physical memory address in the system and the
attack works across all protection domains. It allows an attack of SGX
and also works from inside virtual machines because the speculation
bypasses the extended page table (EPT) protection mechanism.
The assoicated CVEs are: CVE-2018-3615, CVE-2018-3620, CVE-2018-3646
The mitigations provided by this pull request include:
- Host side protection by inverting the upper address bits of a non
present page table entry so the entry points to uncacheable memory.
- Hypervisor protection by flushing L1 Data Cache on VMENTER.
- SMT (HyperThreading) control knobs, which allow to 'turn off' SMT
by offlining the sibling CPU threads. The knobs are available on
the kernel command line and at runtime via sysfs
- Control knobs for the hypervisor mitigation, related to L1D flush
and SMT control. The knobs are available on the kernel command line
and at runtime via sysfs
- Extensive documentation about L1TF including various degrees of
mitigations.
Thanks to all people who have contributed to this in various ways -
patches, review, testing, backporting - and the fruitful, sometimes
heated, but at the end constructive discussions.
There is work in progress to provide other forms of mitigations, which
might be less horrible performance wise for a particular kind of
workloads, but this is not yet ready for consumption due to their
complexity and limitations"
* 'l1tf-final' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (75 commits)
x86/microcode: Allow late microcode loading with SMT disabled
tools headers: Synchronise x86 cpufeatures.h for L1TF additions
x86/mm/kmmio: Make the tracer robust against L1TF
x86/mm/pat: Make set_memory_np() L1TF safe
x86/speculation/l1tf: Make pmd/pud_mknotpresent() invert
x86/speculation/l1tf: Invert all not present mappings
cpu/hotplug: Fix SMT supported evaluation
KVM: VMX: Tell the nested hypervisor to skip L1D flush on vmentry
x86/speculation: Use ARCH_CAPABILITIES to skip L1D flush on vmentry
x86/speculation: Simplify sysfs report of VMX L1TF vulnerability
Documentation/l1tf: Remove Yonah processors from not vulnerable list
x86/KVM/VMX: Don't set l1tf_flush_l1d from vmx_handle_external_intr()
x86/irq: Let interrupt handlers set kvm_cpu_l1tf_flush_l1d
x86: Don't include linux/irq.h from asm/hardirq.h
x86/KVM/VMX: Introduce per-host-cpu analogue of l1tf_flush_l1d
x86/irq: Demote irq_cpustat_t::__softirq_pending to u16
x86/KVM/VMX: Move the l1tf_flush_l1d test to vmx_l1d_flush()
x86/KVM/VMX: Replace 'vmx_l1d_flush_always' with 'vmx_l1d_flush_cond'
x86/KVM/VMX: Don't set l1tf_flush_l1d to true from vmx_l1d_flush()
cpu/hotplug: detect SMT disabled by BIOS
...
Pull x86 timer updates from Thomas Gleixner:
"Early TSC based time stamping to allow better boot time analysis.
This comes with a general cleanup of the TSC calibration code which
grew warts and duct taping over the years and removes 250 lines of
code. Initiated and mostly implemented by Pavel with help from various
folks"
* 'x86-timers-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (37 commits)
x86/kvmclock: Mark kvm_get_preset_lpj() as __init
x86/tsc: Consolidate init code
sched/clock: Disable interrupts when calling generic_sched_clock_init()
timekeeping: Prevent false warning when persistent clock is not available
sched/clock: Close a hole in sched_clock_init()
x86/tsc: Make use of tsc_calibrate_cpu_early()
x86/tsc: Split native_calibrate_cpu() into early and late parts
sched/clock: Use static key for sched_clock_running
sched/clock: Enable sched clock early
sched/clock: Move sched clock initialization and merge with generic clock
x86/tsc: Use TSC as sched clock early
x86/tsc: Initialize cyc2ns when tsc frequency is determined
x86/tsc: Calibrate tsc only once
ARM/time: Remove read_boot_clock64()
s390/time: Remove read_boot_clock64()
timekeeping: Default boot time offset to local_clock()
timekeeping: Replace read_boot_clock64() with read_persistent_wall_and_boot_offset()
s390/time: Add read_persistent_wall_and_boot_offset()
x86/xen/time: Output xen sched_clock time from 0
x86/xen/time: Initialize pv xen time in init_hypervisor_platform()
...
Pull locking/atomics update from Thomas Gleixner:
"The locking, atomics and memory model brains delivered:
- A larger update to the atomics code which reworks the ordering
barriers, consolidates the atomic primitives, provides the new
atomic64_fetch_add_unless() primitive and cleans up the include
hell.
- Simplify cmpxchg() instrumentation and add instrumentation for
xchg() and cmpxchg_double().
- Updates to the memory model and documentation"
* 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (48 commits)
locking/atomics: Rework ordering barriers
locking/atomics: Instrument cmpxchg_double*()
locking/atomics: Instrument xchg()
locking/atomics: Simplify cmpxchg() instrumentation
locking/atomics/x86: Reduce arch_cmpxchg64*() instrumentation
tools/memory-model: Rename litmus tests to comply to norm7
tools/memory-model/Documentation: Fix typo, smb->smp
sched/Documentation: Update wake_up() & co. memory-barrier guarantees
locking/spinlock, sched/core: Clarify requirements for smp_mb__after_spinlock()
sched/core: Use smp_mb() in wake_woken_function()
tools/memory-model: Add informal LKMM documentation to MAINTAINERS
locking/atomics/Documentation: Describe atomic_set() as a write operation
tools/memory-model: Make scripts executable
tools/memory-model: Remove ACCESS_ONCE() from model
tools/memory-model: Remove ACCESS_ONCE() from recipes
locking/memory-barriers.txt/kokr: Update Korean translation to fix broken DMA vs. MMIO ordering example
MAINTAINERS: Add Daniel Lustig as an LKMM reviewer
tools/memory-model: Fix ISA2+pooncelock+pooncelock+pombonce name
tools/memory-model: Add litmus test for full multicopy atomicity
locking/refcount: Always allow checked forms
...
Add a function calculate_sigpending to test to see if any signals are
pending for a new task immediately following fork. Signals have to
happen either before or after fork. Today our practice is to push
all of the signals to before the fork, but that has the downside that
frequent or periodic signals can make fork take much much longer than
normal or prevent fork from completing entirely.
So we need move signals that we can after the fork to prevent that.
This updates the code to set TIF_SIGPENDING on a new task if there
are signals or other activities that have moved so that they appear
to happen after the fork.
As the code today restarts if it sees any such activity this won't
immediately have an effect, as there will be no reason for it
to set TIF_SIGPENDING immediately after the fork.
Adding calculate_sigpending means the code in fork can safely be
changed to not always restart if a signal is pending.
The new calculate_sigpending function sets sigpending if there
are pending bits in jobctl, pending signals, the freezer needs
to freeze the new task or the live kernel patching framework
need the new thread to take the slow path to userspace.
I have verified that setting TIF_SIGPENDING does make a new process
take the slow path to userspace before it executes it's first userspace
instruction.
I have looked at the callers of signal_wake_up and the code paths
setting TIF_SIGPENDING and I don't see anything else that needs to be
handled. The code probably doesn't need to set TIF_SIGPENDING for the
kernel live patching as it uses a separate thread flag as well. But
at this point it seems safer reuse the recalc_sigpending logic and get
the kernel live patching folks to sort out their story later.
V2: I have moved the test into schedule_tail where siglock can
be grabbed and recalc_sigpending can be reused directly.
Further as the last action of setting up a new task this
guarantees that TIF_SIGPENDING will be properly set in the
new process.
The helper calculate_sigpending takes the siglock and
uncontitionally sets TIF_SIGPENDING and let's recalc_sigpending
clear TIF_SIGPENDING if it is unnecessary. This allows reusing
the existing code and keeps maintenance of the conditions simple.
Oleg Nesterov <oleg@redhat.com> suggested the movement
and pointed out the need to take siglock if this code
was going to be called while the new task is discoverable.
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
This patch detaches the preemptirq tracepoints from the tracers and
keeps it separate.
Advantages:
* Lockdep and irqsoff event can now run in parallel since they no longer
have their own calls.
* This unifies the usecase of adding hooks to an irqsoff and irqson
event, and a preemptoff and preempton event.
3 users of the events exist:
- Lockdep
- irqsoff and preemptoff tracers
- irqs and preempt trace events
The unification cleans up several ifdefs and makes the code in preempt
tracer and irqsoff tracers simpler. It gets rid of all the horrific
ifdeferry around PROVE_LOCKING and makes configuration of the different
users of the tracepoints more easy and understandable. It also gets rid
of the time_* function calls from the lockdep hooks used to call into
the preemptirq tracer which is not needed anymore. The negative delta in
lines of code in this patch is quite large too.
In the patch we introduce a new CONFIG option PREEMPTIRQ_TRACEPOINTS
as a single point for registering probes onto the tracepoints. With
this,
the web of config options for preempt/irq toggle tracepoints and its
users becomes:
PREEMPT_TRACER PREEMPTIRQ_EVENTS IRQSOFF_TRACER PROVE_LOCKING
| | \ | |
\ (selects) / \ \ (selects) /
TRACE_PREEMPT_TOGGLE ----> TRACE_IRQFLAGS
\ /
\ (depends on) /
PREEMPTIRQ_TRACEPOINTS
Other than the performance tests mentioned in the previous patch, I also
ran the locking API test suite. I verified that all tests cases are
passing.
I also injected issues by not registering lockdep probes onto the
tracepoints and I see failures to confirm that the probes are indeed
working.
This series + lockdep probes not registered (just to inject errors):
[ 0.000000] hard-irqs-on + irq-safe-A/21: ok | ok | ok |
[ 0.000000] soft-irqs-on + irq-safe-A/21: ok | ok | ok |
[ 0.000000] sirq-safe-A => hirqs-on/12:FAILED|FAILED| ok |
[ 0.000000] sirq-safe-A => hirqs-on/21:FAILED|FAILED| ok |
[ 0.000000] hard-safe-A + irqs-on/12:FAILED|FAILED| ok |
[ 0.000000] soft-safe-A + irqs-on/12:FAILED|FAILED| ok |
[ 0.000000] hard-safe-A + irqs-on/21:FAILED|FAILED| ok |
[ 0.000000] soft-safe-A + irqs-on/21:FAILED|FAILED| ok |
[ 0.000000] hard-safe-A + unsafe-B #1/123: ok | ok | ok |
[ 0.000000] soft-safe-A + unsafe-B #1/123: ok | ok | ok |
With this series + lockdep probes registered, all locking tests pass:
[ 0.000000] hard-irqs-on + irq-safe-A/21: ok | ok | ok |
[ 0.000000] soft-irqs-on + irq-safe-A/21: ok | ok | ok |
[ 0.000000] sirq-safe-A => hirqs-on/12: ok | ok | ok |
[ 0.000000] sirq-safe-A => hirqs-on/21: ok | ok | ok |
[ 0.000000] hard-safe-A + irqs-on/12: ok | ok | ok |
[ 0.000000] soft-safe-A + irqs-on/12: ok | ok | ok |
[ 0.000000] hard-safe-A + irqs-on/21: ok | ok | ok |
[ 0.000000] soft-safe-A + irqs-on/21: ok | ok | ok |
[ 0.000000] hard-safe-A + unsafe-B #1/123: ok | ok | ok |
[ 0.000000] soft-safe-A + unsafe-B #1/123: ok | ok | ok |
Link: http://lkml.kernel.org/r/20180730222423.196630-4-joel@joelfernandes.org
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
There are checks in migrate_swap_stop() that check if the task/CPU
combination is as per migrate_swap_arg before migrating.
However atleast one of the two tasks to be swapped by migrate_swap() could
have migrated to a completely different CPU before updating the
migrate_swap_arg. The new CPU where the task is currently running could
be a different node too. If the task has migrated, numa balancer might
end up placing a task in a wrong node. Instead of achieving node
consolidation, it may end up spreading the load across nodes.
To avoid that pass the CPUs as additional parameters.
While here, place migrate_swap under CONFIG_NUMA_BALANCING.
Running SPECjbb2005 on a 4 node machine and comparing bops/JVM
JVMS LAST_PATCH WITH_PATCH %CHANGE
16 25377.3 25226.6 -0.59
1 72287 73326 1.437
Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Rik van Riel <riel@surriel.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1529514181-9842-10-git-send-email-srikar@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Although we can rely on cpuacct to present the CPU usage of task
groups, it is hard to tell how intense the competition is between
these groups on CPU resources.
Monitoring the wait time or sched_debug of each process could be
very expensive, and there is no good way to accurately represent the
conflict with these info, we need the wait time on group dimension.
Thus we introduce group's wait_sum to represent the resource conflict
between task groups, which is simply the sum of the wait time of
the group's cfs_rq.
The 'cpu.stat' is modified to show the statistic, like:
nr_periods 0
nr_throttled 0
throttled_time 0
wait_sum 2035098795584
Now we can monitor the changes of wait_sum to tell how much a
a task group is suffering in the fight of CPU resources.
For example:
(wait_sum - last_wait_sum) * 100 / (nr_cpu * period_ns) == X%
means the task group paid X percentage of period on waiting
for the CPU.
Signed-off-by: Michael Wang <yun.wang@linux.alibaba.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/ff7dae3b-e5f9-7157-1caa-ff02c6b23dc1@linux.alibaba.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reuse cpu_util_irq() that has been defined for schedutil and set irq util
to 0 when !CONFIG_IRQ_TIME_ACCOUNTING.
But the compiler is not able to optimize the sequence (at least with
aarch64 GCC 7.2.1):
free *= (max - irq);
free /= max;
when irq is fixed to 0
Add a new inline function scale_irq_capacity() that will scale utilization
when irq is accounted. Reuse this funciton in schedutil which applies
similar formula.
Suggested-by: Ingo Molnar <mingo@redhat.com>
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: rjw@rjwysocki.net
Link: http://lkml.kernel.org/r/1532001606-6689-1-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Both the implementation and the users' expectation [1] for the various
wakeup primitives have evolved over time, but the documentation has not
kept up with these changes: brings it into 2018.
[1] http://lkml.kernel.org/r/20180424091510.GB4064@hirez.programming.kicks-ass.net
Also applied feedback from Alan Stern.
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Andrea Parri <andrea.parri@amarulasolutions.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Akira Yokosawa <akiyks@gmail.com>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Daniel Lustig <dlustig@nvidia.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Jade Alglave <j.alglave@ucl.ac.uk>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luc Maranget <luc.maranget@inria.fr>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Cc: linux-arch@vger.kernel.org
Cc: parri.andrea@gmail.com
Link: http://lkml.kernel.org/r/20180716180605.16115-12-paulmck@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There are 11 interpretations of the requirements described in the header
comment for smp_mb__after_spinlock(): one for each LKMM maintainer, and
one currently encoded in the Cat file. Stick to the latter (until a more
satisfactory solution is available).
This also reworks some snippets related to the barrier to illustrate the
requirements and to link them to the idioms which are relied upon at its
call sites.
Suggested-by: Boqun Feng <boqun.feng@gmail.com>
Signed-off-by: Andrea Parri <andrea.parri@amarulasolutions.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Cc: akiyks@gmail.com
Cc: dhowells@redhat.com
Cc: j.alglave@ucl.ac.uk
Cc: linux-arch@vger.kernel.org
Cc: luc.maranget@inria.fr
Cc: npiggin@gmail.com
Cc: parri.andrea@gmail.com
Cc: stern@rowland.harvard.edu
Link: http://lkml.kernel.org/r/20180716180605.16115-11-paulmck@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
get_cpu() disables preemption for the entire sched_fork() function.
This get_cpu() was introduced in commit:
dd41f596cd ("sched: cfs core code")
... which also invoked sched_balance_self() and this function
required preemption do be off.
Today, sched_balance_self() seems to be moved to ->task_fork callback
which is invoked while the ->pi_lock is held.
set_load_weight() could invoke reweight_task() which then via $callchain
might end up in smp_processor_id() but since `update_load' is false
this won't happen.
I didn't find any this_cpu*() or similar usage during the initialisation
of the task_struct.
The `cpu' value (from get_cpu()) is only used later in __set_task_cpu()
while the ->pi_lock lock is held.
Based on this it is possible to remove get_cpu() and use
smp_processor_id() for the `cpu' variable without breaking anything.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20180706130615.g2ex2kmfu5kcvlq6@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
interrupt and steal time are the only remaining activities tracked by
rt_avg. Like for sched classes, we can use PELT to track their average
utilization of the CPU. But unlike sched class, we don't track when
entering/leaving interrupt; Instead, we take into account the time spent
under interrupt context when we update rqs' clock (rq_clock_task).
This also means that we have to decay the normal context time and account
for interrupt time during the update.
That's also important to note that because:
rq_clock == rq_clock_task + interrupt time
and rq_clock_task is used by a sched class to compute its utilization, the
util_avg of a sched class only reflects the utilization of the time spent
in normal context and not of the whole time of the CPU. The utilization of
interrupt gives an more accurate level of utilization of CPU.
The CPU utilization is:
avg_irq + (1 - avg_irq / max capacity) * /Sum avg_rq
Most of the time, avg_irq is small and neglictible so the use of the
approximation CPU utilization = /Sum avg_rq was enough.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten.Rasmussen@arm.com
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: claudio@evidence.eu.com
Cc: daniel.lezcano@linaro.org
Cc: dietmar.eggemann@arm.com
Cc: joel@joelfernandes.org
Cc: juri.lelli@redhat.com
Cc: luca.abeni@santannapisa.it
Cc: patrick.bellasi@arm.com
Cc: quentin.perret@arm.com
Cc: rjw@rjwysocki.net
Cc: valentin.schneider@arm.com
Cc: viresh.kumar@linaro.org
Link: http://lkml.kernel.org/r/1530200714-4504-7-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Gaurav reports that commit:
85f1abe001 ("kthread, sched/wait: Fix kthread_parkme() completion issue")
isn't working for him. Because of the following race:
> controller Thread CPUHP Thread
> takedown_cpu
> kthread_park
> kthread_parkme
> Set KTHREAD_SHOULD_PARK
> smpboot_thread_fn
> set Task interruptible
>
>
> wake_up_process
> if (!(p->state & state))
> goto out;
>
> Kthread_parkme
> SET TASK_PARKED
> schedule
> raw_spin_lock(&rq->lock)
> ttwu_remote
> waiting for __task_rq_lock
> context_switch
>
> finish_lock_switch
>
>
>
> Case TASK_PARKED
> kthread_park_complete
>
>
> SET Running
Furthermore, Oleg noticed that the whole scheduler TASK_PARKED
handling is buggered because the TASK_DEAD thing is done with
preemption disabled, the current code can still complete early on
preemption :/
So basically revert that earlier fix and go with a variant of the
alternative mentioned in the commit. Promote TASK_PARKED to special
state to avoid the store-store issue on task->state leading to the
WARN in kthread_unpark() -> __kthread_bind().
But in addition, add wait_task_inactive() to kthread_park() to ensure
the task really is PARKED when we return from kthread_park(). This
avoids the whole kthread still gets migrated nonsense -- although it
would be really good to get this done differently.
Reported-by: Gaurav Kohli <gkohli@codeaurora.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 85f1abe001 ("kthread, sched/wait: Fix kthread_parkme() completion issue")
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Some people have reported that the warning in sched_tick_remote()
occasionally triggers, especially in favour of some RCU-Torture
pressure:
WARNING: CPU: 11 PID: 906 at kernel/sched/core.c:3138 sched_tick_remote+0xb6/0xc0
Modules linked in:
CPU: 11 PID: 906 Comm: kworker/u32:3 Not tainted 4.18.0-rc2+ #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-1 04/01/2014
Workqueue: events_unbound sched_tick_remote
RIP: 0010:sched_tick_remote+0xb6/0xc0
Code: e8 0f 06 b8 00 c6 03 00 fb eb 9d 8b 43 04 85 c0 75 8d 48 8b 83 e0 0a 00 00 48 85 c0 75 81 eb 88 48 89 df e8 bc fe ff ff eb aa <0f> 0b eb
+c5 66 0f 1f 44 00 00 bf 17 00 00 00 e8 b6 2e fe ff 0f b6
Call Trace:
process_one_work+0x1df/0x3b0
worker_thread+0x44/0x3d0
kthread+0xf3/0x130
? set_worker_desc+0xb0/0xb0
? kthread_create_worker_on_cpu+0x70/0x70
ret_from_fork+0x35/0x40
This happens when the remote tick applies on an idle task. Usually the
idle_cpu() check avoids that, but it is performed before we lock the
runqueue and it is therefore racy. It was intended to be that way in
order to prevent from useless runqueue locks since idle task tick
callback is a no-op.
Now if the racy check slips out of our hands and we end up remotely
ticking an idle task, the empty task_tick_idle() is harmless. Still
it won't pass the WARN_ON_ONCE() test that ensures rq_clock_task() is
not too far from curr->se.exec_start because update_curr_idle() doesn't
update the exec_start value like other scheduler policies. Hence the
reported false positive.
So let's have another check, while the rq is locked, to make sure we
don't remote tick on an idle task. The lockless idle_cpu() still applies
to avoid unecessary rq lock contention.
Reported-by: Jacek Tomaka <jacekt@dug.com>
Reported-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reported-by: Anna-Maria Gleixner <anna-maria@linutronix.de>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1530203381-31234-1-git-send-email-frederic@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The static key sched_smt_present is only updated at boot time when SMT
siblings have been detected. Booting with maxcpus=1 and bringing the
siblings online after boot rebuilds the scheduling domains correctly but
does not update the static key, so the SMT code is not enabled.
Let the key be updated in the scheduler CPU hotplug code to fix this.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
During a context switch, we first switch_mm() to the next task's mm,
then switch_to() that new task. This means that vmalloc'd regions which
had previously been faulted in can transiently disappear in the context
of the prev task.
Functions instrumented by KCOV may try to access a vmalloc'd kcov_area
during this window, and as the fault handling code is instrumented, this
results in a recursive fault.
We must avoid accessing any kcov_area during this window. We can do so
with a new flag in kcov_mode, set prior to switching the mm, and cleared
once the new task is live. Since task_struct::kcov_mode isn't always a
specific enum kcov_mode value, this is made an unsigned int.
The manipulation is hidden behind kcov_{prepare,finish}_switch() helpers,
which are empty for !CONFIG_KCOV kernels.
The code uses macros because I can't use static inline functions without a
circular include dependency between <linux/sched.h> and <linux/kcov.h>,
since the definition of task_struct uses things defined in <linux/kcov.h>
Link: http://lkml.kernel.org/r/20180504135535.53744-4-mark.rutland@arm.com
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Expose a new system call allowing each thread to register one userspace
memory area to be used as an ABI between kernel and user-space for two
purposes: user-space restartable sequences and quick access to read the
current CPU number value from user-space.
* Restartable sequences (per-cpu atomics)
Restartables sequences allow user-space to perform update operations on
per-cpu data without requiring heavy-weight atomic operations.
The restartable critical sections (percpu atomics) work has been started
by Paul Turner and Andrew Hunter. It lets the kernel handle restart of
critical sections. [1] [2] The re-implementation proposed here brings a
few simplifications to the ABI which facilitates porting to other
architectures and speeds up the user-space fast path.
Here are benchmarks of various rseq use-cases.
Test hardware:
arm32: ARMv7 Processor rev 4 (v7l) "Cubietruck", 2-core
x86-64: Intel E5-2630 v3@2.40GHz, 16-core, hyperthreading
The following benchmarks were all performed on a single thread.
* Per-CPU statistic counter increment
getcpu+atomic (ns/op) rseq (ns/op) speedup
arm32: 344.0 31.4 11.0
x86-64: 15.3 2.0 7.7
* LTTng-UST: write event 32-bit header, 32-bit payload into tracer
per-cpu buffer
getcpu+atomic (ns/op) rseq (ns/op) speedup
arm32: 2502.0 2250.0 1.1
x86-64: 117.4 98.0 1.2
* liburcu percpu: lock-unlock pair, dereference, read/compare word
getcpu+atomic (ns/op) rseq (ns/op) speedup
arm32: 751.0 128.5 5.8
x86-64: 53.4 28.6 1.9
* jemalloc memory allocator adapted to use rseq
Using rseq with per-cpu memory pools in jemalloc at Facebook (based on
rseq 2016 implementation):
The production workload response-time has 1-2% gain avg. latency, and
the P99 overall latency drops by 2-3%.
* Reading the current CPU number
Speeding up reading the current CPU number on which the caller thread is
running is done by keeping the current CPU number up do date within the
cpu_id field of the memory area registered by the thread. This is done
by making scheduler preemption set the TIF_NOTIFY_RESUME flag on the
current thread. Upon return to user-space, a notify-resume handler
updates the current CPU value within the registered user-space memory
area. User-space can then read the current CPU number directly from
memory.
Keeping the current cpu id in a memory area shared between kernel and
user-space is an improvement over current mechanisms available to read
the current CPU number, which has the following benefits over
alternative approaches:
- 35x speedup on ARM vs system call through glibc
- 20x speedup on x86 compared to calling glibc, which calls vdso
executing a "lsl" instruction,
- 14x speedup on x86 compared to inlined "lsl" instruction,
- Unlike vdso approaches, this cpu_id value can be read from an inline
assembly, which makes it a useful building block for restartable
sequences.
- The approach of reading the cpu id through memory mapping shared
between kernel and user-space is portable (e.g. ARM), which is not the
case for the lsl-based x86 vdso.
On x86, yet another possible approach would be to use the gs segment
selector to point to user-space per-cpu data. This approach performs
similarly to the cpu id cache, but it has two disadvantages: it is
not portable, and it is incompatible with existing applications already
using the gs segment selector for other purposes.
Benchmarking various approaches for reading the current CPU number:
ARMv7 Processor rev 4 (v7l)
Machine model: Cubietruck
- Baseline (empty loop): 8.4 ns
- Read CPU from rseq cpu_id: 16.7 ns
- Read CPU from rseq cpu_id (lazy register): 19.8 ns
- glibc 2.19-0ubuntu6.6 getcpu: 301.8 ns
- getcpu system call: 234.9 ns
x86-64 Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz:
- Baseline (empty loop): 0.8 ns
- Read CPU from rseq cpu_id: 0.8 ns
- Read CPU from rseq cpu_id (lazy register): 0.8 ns
- Read using gs segment selector: 0.8 ns
- "lsl" inline assembly: 13.0 ns
- glibc 2.19-0ubuntu6 getcpu: 16.6 ns
- getcpu system call: 53.9 ns
- Speed (benchmark taken on v8 of patchset)
Running 10 runs of hackbench -l 100000 seems to indicate, contrary to
expectations, that enabling CONFIG_RSEQ slightly accelerates the
scheduler:
Configuration: 2 sockets * 8-core Intel(R) Xeon(R) CPU E5-2630 v3 @
2.40GHz (directly on hardware, hyperthreading disabled in BIOS, energy
saving disabled in BIOS, turboboost disabled in BIOS, cpuidle.off=1
kernel parameter), with a Linux v4.6 defconfig+localyesconfig,
restartable sequences series applied.
* CONFIG_RSEQ=n
avg.: 41.37 s
std.dev.: 0.36 s
* CONFIG_RSEQ=y
avg.: 40.46 s
std.dev.: 0.33 s
- Size
On x86-64, between CONFIG_RSEQ=n/y, the text size increase of vmlinux is
567 bytes, and the data size increase of vmlinux is 5696 bytes.
[1] https://lwn.net/Articles/650333/
[2] http://www.linuxplumbersconf.org/2013/ocw/system/presentations/1695/original/LPC%20-%20PerCpu%20Atomics.pdf
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dave Watson <davejwatson@fb.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: "H . Peter Anvin" <hpa@zytor.com>
Cc: Chris Lameter <cl@linux.com>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Andrew Hunter <ahh@google.com>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: "Paul E . McKenney" <paulmck@linux.vnet.ibm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ben Maurer <bmaurer@fb.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: linux-api@vger.kernel.org
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/20151027235635.16059.11630.stgit@pjt-glaptop.roam.corp.google.com
Link: http://lkml.kernel.org/r/20150624222609.6116.86035.stgit@kitami.mtv.corp.google.com
Link: https://lkml.kernel.org/r/20180602124408.8430-3-mathieu.desnoyers@efficios.com
Pull scheduler updates from Ingo Molnar:
- power-aware scheduling improvements (Patrick Bellasi)
- NUMA balancing improvements (Mel Gorman)
- vCPU scheduling fixes (Rohit Jain)
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/fair: Update util_est before updating schedutil
sched/cpufreq: Modify aggregate utilization to always include blocked FAIR utilization
sched/deadline/Documentation: Add overrun signal and GRUB-PA documentation
sched/core: Distinguish between idle_cpu() calls based on desired effect, introduce available_idle_cpu()
sched/wait: Include <linux/wait.h> in <linux/swait.h>
sched/numa: Stagger NUMA balancing scan periods for new threads
sched/core: Don't schedule threads on pre-empted vCPUs
sched/fair: Avoid calling sync_entity_load_avg() unnecessarily
sched/fair: Rearrange select_task_rq_fair() to optimize it
Pull RCU updates from Ingo Molnar:
- updates to the handling of expedited grace periods
- updates to reduce lock contention in the rcu_node combining tree
[ These are in preparation for the consolidation of RCU-bh,
RCU-preempt, and RCU-sched into a single flavor, which was
requested by Linus in response to a security flaw whose root cause
included confusion between the multiple flavors of RCU ]
- torture-test updates that save their users some time and effort
- miscellaneous fixes
* 'core-rcu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (44 commits)
rcu/x86: Provide early rcu_cpu_starting() callback
torture: Make kvm-find-errors.sh find build warnings
rcutorture: Abbreviate kvm.sh summary lines
rcutorture: Print end-of-test state in kvm.sh summary
rcutorture: Print end-of-test state
torture: Fold parse-torture.sh into parse-console.sh
torture: Add a script to edit output from failed runs
rcu: Update list of rcu_future_grace_period() trace events
rcu: Drop early GP request check from rcu_gp_kthread()
rcu: Simplify and inline cpu_needs_another_gp()
rcu: The rcu_gp_cleanup() function does not need cpu_needs_another_gp()
rcu: Make rcu_start_this_gp() check for out-of-range requests
rcu: Add funnel locking to rcu_start_this_gp()
rcu: Make rcu_start_future_gp() caller select grace period
rcu: Inline rcu_start_gp_advanced() into rcu_start_future_gp()
rcu: Clear request other than RCU_GP_FLAG_INIT at GP end
rcu: Cleanup, don't put ->completed into an int
rcu: Switch __rcu_process_callbacks() to rcu_accelerate_cbs()
rcu: Avoid __call_rcu_core() root rcu_node ->lock acquisition
rcu: Make rcu_migrate_callbacks wake GP kthread when needed
...
select_task_rq() is used in a few paths to select the CPU upon which a
thread should be run - for example it is used by try_to_wake_up() & by
fork or exec balancing. As-is it allows use of any online CPU that is
present in the task's cpus_allowed mask.
This presents a problem because there is a period whilst CPUs are
brought online where a CPU is marked online, but is not yet fully
initialized - ie. the period where CPUHP_AP_ONLINE_IDLE <= state <
CPUHP_ONLINE. Usually we don't run any user tasks during this window,
but there are corner cases where this can happen. An example observed
is:
- Some user task A, running on CPU X, forks to create task B.
- sched_fork() calls __set_task_cpu() with cpu=X, setting task B's
task_struct::cpu field to X.
- CPU X is offlined.
- Task A, currently somewhere between the __set_task_cpu() in
copy_process() and the call to wake_up_new_task(), is migrated to
CPU Y by migrate_tasks() when CPU X is offlined.
- CPU X is onlined, but still in the CPUHP_AP_ONLINE_IDLE state. The
scheduler is now active on CPU X, but there are no user tasks on
the runqueue.
- Task A runs on CPU Y & reaches wake_up_new_task(). This calls
select_task_rq() with cpu=X, taken from task B's task_struct,
and select_task_rq() allows CPU X to be returned.
- Task A enqueues task B on CPU X's runqueue, via activate_task() &
enqueue_task().
- CPU X now has a user task on its runqueue before it has reached the
CPUHP_ONLINE state.
In most cases, the user tasks that schedule on the newly onlined CPU
have no idea that anything went wrong, but one case observed to be
problematic is if the task goes on to invoke the sched_setaffinity
syscall. The newly onlined CPU reaches the CPUHP_AP_ONLINE_IDLE state
before the CPU that brought it online calls stop_machine_unpark(). This
means that for a portion of the window of time between
CPUHP_AP_ONLINE_IDLE & CPUHP_ONLINE the newly onlined CPU's struct
cpu_stopper has its enabled field set to false. If a user thread is
executed on the CPU during this window and it invokes sched_setaffinity
with a CPU mask that does not include the CPU it's running on, then when
__set_cpus_allowed_ptr() calls stop_one_cpu() intending to invoke
migration_cpu_stop() and perform the actual migration away from the CPU
it will simply return -ENOENT rather than calling migration_cpu_stop().
We then return from the sched_setaffinity syscall back to the user task
that is now running on a CPU which it just asked not to run on, and
which is not present in its cpus_allowed mask.
This patch resolves the problem by having select_task_rq() enforce that
user tasks run on CPUs that are active - the same requirement that
select_fallback_rq() already enforces. This should ensure that newly
onlined CPUs reach the CPUHP_AP_ACTIVE state before being able to
schedule user tasks, and also implies that bringup_wait_for_ap() will
have called stop_machine_unpark() which resolves the sched_setaffinity
issue above.
I haven't yet investigated them, but it may be of interest to review
whether any of the actions performed by hotplug states between
CPUHP_AP_ONLINE_IDLE & CPUHP_AP_ACTIVE could have similar unintended
effects on user tasks that might schedule before they are reached, which
might widen the scope of the problem from just affecting the behaviour
of sched_setaffinity.
Signed-off-by: Paul Burton <paul.burton@mips.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20180526154648.11635-2-paul.burton@mips.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
As already enforced by the WARN() in __set_cpus_allowed_ptr(), the rules
for running on an online && !active CPU are stricter than just being a
kthread, you need to be a per-cpu kthread.
If you're not strictly per-CPU, you have better CPUs to run on and
don't need the partially booted one to get your work done.
The exception is to allow smpboot threads to bootstrap the CPU itself
and get kernel 'services' initialized before we allow userspace on it.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 955dbdf4ce ("sched: Allow migrating kthreads into online but inactive CPUs")
Link: http://lkml.kernel.org/r/20170725165821.cejhb7v2s3kecems@hirez.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
- Updates to the handling of expedited grace periods, perhaps most
notably parallelizing their initialization. Other changes
include fixes from Boqun Feng.
- Miscellaneous fixes. These include an nvme fix from Nitzan Carmi
that I am carrying because it depends on a new SRCU function
cleanup_srcu_struct_quiesced(). This branch also includes fixes
from Byungchul Park and Yury Norov.
- Updates to reduce lock contention in the rcu_node combining tree.
These are in preparation for the consolidation of RCU-bh,
RCU-preempt, and RCU-sched into a single flavor, which was
requested by Linus Torvalds in response to a security flaw
whose root cause included confusion between the multiple flavors
of RCU.
- Torture-test updates that save their users some time and effort.
Conflicts:
drivers/nvme/host/core.c
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The cond_resched_softirq() macro is not used anywhere in mainline, so
this commit simplifies the kernel by eliminating it.
Suggested-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Ingo Molnar <mingo@redhat.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Tested-by: Nicholas Piggin <npiggin@gmail.com>
In the following commit:
247f2f6f3c ("sched/core: Don't schedule threads on pre-empted vCPUs")
... we distinguish between idle_cpu() when the vCPU is not running for
scheduling threads.
However, the idle_cpu() function is used in other places for
actually checking whether the state of the CPU is idle or not.
Hence split the use of that function based on the desired return value,
by introducing the available_idle_cpu() function.
This fixes a (slight) regression in that initial vCPU commit, because
some code paths (like the load-balancer) don't care and shouldn't care
if the vCPU is preempted or not, they just want to know if there's any
tasks on the CPU.
Signed-off-by: Rohit Jain <rohit.k.jain@oracle.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dhaval.giani@oracle.com
Cc: linux-kernel@vger.kernel.org
Cc: matt@codeblueprint.co.uk
Cc: steven.sistare@oracle.com
Cc: subhra.mazumdar@oracle.com
Link: http://lkml.kernel.org/r/1525883988-10356-1-git-send-email-rohit.k.jain@oracle.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Threads share an address space and each can change the protections of the
same address space to trap NUMA faults. This is redundant and potentially
counter-productive as any thread doing the update will suffice. Potentially
only one thread is required but that thread may be idle or it may not have
any locality concerns and pick an unsuitable scan rate.
This patch uses independent scan period but they are staggered based on
the number of address space users when the thread is created. The intent
is that threads will avoid scanning at the same time and have a chance
to adapt their scan rate later if necessary. This reduces the total scan
activity early in the lifetime of the threads.
The different in headline performance across a range of machines and
workloads is marginal but the system CPU usage is reduced as well as overall
scan activity. The following is the time reported by NAS Parallel Benchmark
using unbound openmp threads and a D size class:
4.17.0-rc1 4.17.0-rc1
vanilla stagger-v1r1
Time bt.D 442.77 ( 0.00%) 419.70 ( 5.21%)
Time cg.D 171.90 ( 0.00%) 180.85 ( -5.21%)
Time ep.D 33.10 ( 0.00%) 32.90 ( 0.60%)
Time is.D 9.59 ( 0.00%) 9.42 ( 1.77%)
Time lu.D 306.75 ( 0.00%) 304.65 ( 0.68%)
Time mg.D 54.56 ( 0.00%) 52.38 ( 4.00%)
Time sp.D 1020.03 ( 0.00%) 903.77 ( 11.40%)
Time ua.D 400.58 ( 0.00%) 386.49 ( 3.52%)
Note it's not a universal win but we have no prior knowledge of which
thread matters but the number of threads created often exceeds the size
of the node when the threads are not bound. However, there is a reducation
of overall system CPU usage:
4.17.0-rc1 4.17.0-rc1
vanilla stagger-v1r1
sys-time-bt.D 48.78 ( 0.00%) 48.22 ( 1.15%)
sys-time-cg.D 25.31 ( 0.00%) 26.63 ( -5.22%)
sys-time-ep.D 1.65 ( 0.00%) 0.62 ( 62.42%)
sys-time-is.D 40.05 ( 0.00%) 24.45 ( 38.95%)
sys-time-lu.D 37.55 ( 0.00%) 29.02 ( 22.72%)
sys-time-mg.D 47.52 ( 0.00%) 34.92 ( 26.52%)
sys-time-sp.D 119.01 ( 0.00%) 109.05 ( 8.37%)
sys-time-ua.D 51.52 ( 0.00%) 45.13 ( 12.40%)
NUMA scan activity is also reduced:
NUMA alloc local 1042828 1342670
NUMA base PTE updates 140481138 93577468
NUMA huge PMD updates 272171 180766
NUMA page range updates 279832690 186129660
NUMA hint faults 1395972 1193897
NUMA hint local faults 877925 855053
NUMA hint local percent 62 71
NUMA pages migrated 12057909 9158023
Similar observations are made for other thread-intensive workloads. System
CPU usage is lower even though the headline gains in performance tend to be
small. For example, specjbb 2005 shows almost no difference in performance
but scan activity is reduced by a third on a 4-socket box. I didn't find
a workload (thread intensive or otherwise) that suffered badly.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/r/20180504154109.mvrha2qo5wdl65vr@techsingularity.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
> kernel/sched/core.c:6921 cpu_weight_nice_write_s64() warn: potential spectre issue 'sched_prio_to_weight'
Userspace controls @nice, so sanitize the value before using it to
index an array.
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <stable@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Gaurav reported a perceived problem with TASK_PARKED, which turned out
to be a broken wait-loop pattern in __kthread_parkme(), but the
reported issue can (and does) in fact happen for states that do not do
condition based sleeps.
When the 'current->state = TASK_RUNNING' store of a previous
(concurrent) try_to_wake_up() collides with the setting of a 'special'
sleep state, we can loose the sleep state.
Normal condition based wait-loops are immune to this problem, but for
sleep states that are not condition based are subject to this problem.
There already is a fix for TASK_DEAD. Abstract that and also apply it
to TASK_STOPPED and TASK_TRACED, both of which are also without
condition based wait-loop.
Reported-by: Gaurav Kohli <gkohli@codeaurora.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Oleg Nesterov <oleg@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Even with the wait-loop fixed, there is a further issue with
kthread_parkme(). Upon hotplug, when we do takedown_cpu(),
smpboot_park_threads() can return before all those threads are in fact
blocked, due to the placement of the complete() in __kthread_parkme().
When that happens, sched_cpu_dying() -> migrate_tasks() can end up
migrating such a still runnable task onto another CPU.
Normally the task will have hit schedule() and gone to sleep by the
time we do kthread_unpark(), which will then do __kthread_bind() to
re-bind the task to the correct CPU.
However, when we loose the initial TASK_PARKED store to the concurrent
wakeup issue described previously, do the complete(), get migrated, it
is possible to either:
- observe kthread_unpark()'s clearing of SHOULD_PARK and terminate
the park and set TASK_RUNNING, or
- __kthread_bind()'s wait_task_inactive() to observe the competing
TASK_RUNNING store.
Either way the WARN() in __kthread_bind() will trigger and fail to
correctly set the CPU affinity.
Fix this by only issuing the complete() when the kthread has scheduled
out. This does away with all the icky 'still running' nonsense.
The alternative is to promote TASK_PARKED to a special state, this
guarantees wait_task_inactive() cannot observe a 'stale' TASK_RUNNING
and we'll end up doing the right thing, but this preserves the whole
icky business of potentially migating the still runnable thing.
Reported-by: Gaurav Kohli <gkohli@codeaurora.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull scheduler fixes from Thomas Gleixner:
"A few scheduler fixes:
- Prevent a bogus warning vs. runqueue clock update flags in
do_sched_rt_period_timer()
- Simplify the helper functions which handle requests for skipping
the runqueue clock updat.
- Do not unlock the tunables mutex in the error path of the cpu
frequency scheduler utils. Its not held.
- Enforce proper alignement for 'struct util_est' in sched_avg to
prevent a misalignment fault on IA64"
* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/core: Force proper alignment of 'struct util_est'
sched/core: Simplify helpers for rq clock update skip requests
sched/rt: Fix rq->clock_update_flags < RQCF_ACT_SKIP warning
sched/cpufreq/schedutil: Fix error path mutex unlock
KASAN splats indicate that in some cases we free a live mm, then
continue to access it, with potentially disastrous results. This is
likely due to a mismatched mmdrop() somewhere in the kernel, but so far
the culprit remains elusive.
Let's have __mmdrop() verify that the mm isn't live for the current
task, similar to the existing check for init_mm. This way, we can catch
this class of issue earlier, and without requiring KASAN.
Currently, idle_task_exit() leaves active_mm stale after it switches to
init_mm. This isn't harmful, but will trigger the new assertions, so we
must adjust idle_task_exit() to update active_mm.
Link: http://lkml.kernel.org/r/20180312140103.19235-1-mark.rutland@arm.com
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
By renaming the functions we can get rid of the skip parameter
and have better code redability. It makes zero sense to have
things such as:
rq_clock_skip_update(rq, false)
When the skip request is in fact not going to happen. Ever. Rename
things such that we end up with:
rq_clock_skip_update(rq)
rq_clock_cancel_skipupdate(rq)
Signed-off-by: Davidlohr Bueso <dbueso@suse.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Cc: matt@codeblueprint.co.uk
Cc: rostedt@goodmis.org
Link: http://lkml.kernel.org/r/20180404161539.nhadkff2aats74jh@linux-n805
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull removal of in-kernel calls to syscalls from Dominik Brodowski:
"System calls are interaction points between userspace and the kernel.
Therefore, system call functions such as sys_xyzzy() or
compat_sys_xyzzy() should only be called from userspace via the
syscall table, but not from elsewhere in the kernel.
At least on 64-bit x86, it will likely be a hard requirement from
v4.17 onwards to not call system call functions in the kernel: It is
better to use use a different calling convention for system calls
there, where struct pt_regs is decoded on-the-fly in a syscall wrapper
which then hands processing over to the actual syscall function. This
means that only those parameters which are actually needed for a
specific syscall are passed on during syscall entry, instead of
filling in six CPU registers with random user space content all the
time (which may cause serious trouble down the call chain). Those
x86-specific patches will be pushed through the x86 tree in the near
future.
Moreover, rules on how data may be accessed may differ between kernel
data and user data. This is another reason why calling sys_xyzzy() is
generally a bad idea, and -- at most -- acceptable in arch-specific
code.
This patchset removes all in-kernel calls to syscall functions in the
kernel with the exception of arch/. On top of this, it cleans up the
three places where many syscalls are referenced or prototyped, namely
kernel/sys_ni.c, include/linux/syscalls.h and include/linux/compat.h"
* 'syscalls-next' of git://git.kernel.org/pub/scm/linux/kernel/git/brodo/linux: (109 commits)
bpf: whitelist all syscalls for error injection
kernel/sys_ni: remove {sys_,sys_compat} from cond_syscall definitions
kernel/sys_ni: sort cond_syscall() entries
syscalls/x86: auto-create compat_sys_*() prototypes
syscalls: sort syscall prototypes in include/linux/compat.h
net: remove compat_sys_*() prototypes from net/compat.h
syscalls: sort syscall prototypes in include/linux/syscalls.h
kexec: move sys_kexec_load() prototype to syscalls.h
x86/sigreturn: use SYSCALL_DEFINE0
x86: fix sys_sigreturn() return type to be long, not unsigned long
x86/ioport: add ksys_ioperm() helper; remove in-kernel calls to sys_ioperm()
mm: add ksys_readahead() helper; remove in-kernel calls to sys_readahead()
mm: add ksys_mmap_pgoff() helper; remove in-kernel calls to sys_mmap_pgoff()
mm: add ksys_fadvise64_64() helper; remove in-kernel call to sys_fadvise64_64()
fs: add ksys_fallocate() wrapper; remove in-kernel calls to sys_fallocate()
fs: add ksys_p{read,write}64() helpers; remove in-kernel calls to syscalls
fs: add ksys_truncate() wrapper; remove in-kernel calls to sys_truncate()
fs: add ksys_sync_file_range helper(); remove in-kernel calls to syscall
kernel: add ksys_setsid() helper; remove in-kernel call to sys_setsid()
kernel: add ksys_unshare() helper; remove in-kernel calls to sys_unshare()
...
Using the sched-internal do_sched_yield() helper allows us to get rid of
the sched-internal call to the sys_sched_yield() syscall.
This patch is part of a series which removes in-kernel calls to syscalls.
On this basis, the syscall entry path can be streamlined. For details, see
http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net
Cc: Ingo Molnar <mingo@redhat.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Pull cgroup fixes from Tejun Heo:
"Two commits to fix the following subtle cgroup2 behavior bugs:
- cpu.max was rejecting config when it shouldn't
- thread mode enable was allowed when it shouldn't"
* 'for-4.16-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup:
cgroup: fix rule checking for threaded mode switching
sched, cgroup: Don't reject lower cpu.max on ancestors
The primary observation is that nohz enter/exit is always from the
current CPU, therefore NOHZ_TICK_STOPPED does not in fact need to be
an atomic.
Secondary is that we appear to have 2 nearly identical hooks in the
nohz enter code, set_cpu_sd_state_idle() and
nohz_balance_enter_idle(). Fold the whole set_cpu_sd_state thing into
nohz_balance_{enter,exit}_idle.
Removes an atomic op from both enter and exit paths.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Since we already iterate CPUs looking for work on NEWIDLE, use this
iteration to age the blocked load. If the domain for which this is
done completely spand the idle set, we can push the ILB based aging
forward.
Suggested-by: Brendan Jackman <brendan.jackman@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Split the NOHZ idle balancer into doing two separate actions:
- update blocked load statistic
- actually load-balance
Since the latter requires the former, ensure this happens. For now
always tag both bits at the same time.
Prepares for a future where we can toggle only the STATS bit.
Suggested-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Using atomic_t allows us to use the more flexible bitops provided
there. Also its smaller.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Make it easier to concatenate all the scheduler .c files for single-module
compilation.
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Do the following cleanups and simplifications:
- sched/sched.h already includes <asm/paravirt.h>, so no need to
include it in sched/core.c again.
- order the <linux/sched/*.h> headers alphabetically
- add all <linux/sched/*.h> headers to kernel/sched/sched.h
- remove all unnecessary includes from the .c files that
are already included in kernel/sched/sched.h.
Finally, make all scheduler .c files use a single common header:
#include "sched.h"
... which now contains a union of the relied upon headers.
This makes the various .c files easier to read and easier to handle.
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
A good number of small style inconsistencies have accumulated
in the scheduler core, so do a pass over them to harmonize
all these details:
- fix speling in comments,
- use curly braces for multi-line statements,
- remove unnecessary parentheses from integer literals,
- capitalize consistently,
- remove stray newlines,
- add comments where necessary,
- remove invalid/unnecessary comments,
- align structure definitions and other data types vertically,
- add missing newlines for increased readability,
- fix vertical tabulation where it's misaligned,
- harmonize preprocessor conditional block labeling
and vertical alignment,
- remove line-breaks where they uglify the code,
- add newline after local variable definitions,
No change in functionality:
md5:
1191fa0a890cfa8132156d2959d7e9e2 built-in.o.before.asm
1191fa0a890cfa8132156d2959d7e9e2 built-in.o.after.asm
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Now that the 1Hz tick is offloaded to workqueues, we can safely remove
the residual code that used to handle it locally.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Chris Metcalf <cmetcalf@mellanox.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Wanpeng Li <kernellwp@gmail.com>
Link: http://lkml.kernel.org/r/1519186649-3242-7-git-send-email-frederic@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When a CPU runs in full dynticks mode, a 1Hz tick remains in order to
keep the scheduler stats alive. However this residual tick is a burden
for bare metal tasks that can't stand any interruption at all, or want
to minimize them.
The usual boot parameters "nohz_full=" or "isolcpus=nohz" will now
outsource these scheduler ticks to the global workqueue so that a
housekeeping CPU handles those remotely. The sched_class::task_tick()
implementations have been audited and look safe to be called remotely
as the target runqueue and its current task are passed in parameter
and don't seem to be accessed locally.
Note that in the case of using isolcpus, it's still up to the user to
affine the global workqueues to the housekeeping CPUs through
/sys/devices/virtual/workqueue/cpumask or domains isolation
"isolcpus=nohz,domain".
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Chris Metcalf <cmetcalf@mellanox.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Wanpeng Li <kernellwp@gmail.com>
Link: http://lkml.kernel.org/r/1519186649-3242-6-git-send-email-frederic@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Do that rename in order to normalize the hrtick namespace.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Chris Metcalf <cmetcalf@mellanox.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Wanpeng Li <kernellwp@gmail.com>
Link: http://lkml.kernel.org/r/1519186649-3242-2-git-send-email-frederic@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Mark noticed that he had sporadic "spinlock recursion" warnings from
the DEBUG_SPINLOCK code. Now rq->lock is special in that the owner
changes in the middle of a context switch.
It so happens that we fix up the lock.owner too late, @prev can run
(remotely) the moment prev->on_cpu is cleared, this then allows @prev
to again try and acquire this rq->lock and trigger this warning.
So we have to switch lock.owner before clearing prev->on_cpu.
Do this by moving the DEBUG_SPINLOCK annotation from after switch_to()
to before switch_to() and collect all lockdep annotations there into
prepare_lock_switch() to mirror the existing finish_lock_switch().
Debugged-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
While adding cgroup2 interface for the cpu controller, 0d5936344f
("sched: Implement interface for cgroup unified hierarchy") forgot to
update input validation and left it to reject cpu.max config if any
descendant has set a higher value.
cgroup2 officially supports delegation and a descendant must not be
able to restrict what its ancestors can configure. For absolute
limits such as cpu.max and memory.max, this means that the config at
each level should only act as the upper limit at that level and
shouldn't interfere with what other cgroups can configure.
This patch updates config validation on cgroup2 so that the cpu
controller follows the same convention.
Signed-off-by: Tejun Heo <tj@kernel.org>
Fixes: 0d5936344f ("sched: Implement interface for cgroup unified hierarchy")
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org # v4.15+
The select_idle_sibling() (SIS) rewrite in commit:
10e2f1acd0 ("sched/core: Rewrite and improve select_idle_siblings()")
... replaced a domain iteration with a search that broadly speaking
does a wrapped walk of the scheduler domain sharing a last-level-cache.
While this had a number of improvements, one consequence is that two tasks
that share a waker/wakee relationship push each other around a socket. Even
though two tasks may be active, all cores are evenly used. This is great from
a search perspective and spreads a load across individual cores, but it has
adverse consequences for cpufreq. As each CPU has relatively low utilisation,
cpufreq may decide the utilisation is too low to used a higher P-state and
overall computation throughput suffers.
While individual cpufreq and cpuidle drivers may compensate by artifically
boosting P-state (at c0) or avoiding lower C-states (during idle), it does
not help if hardware-based cpufreq (e.g. HWP) is used.
This patch tracks a recently used CPU based on what CPU a task was running
on when it last was a waker a CPU it was recently using when a task is a
wakee. During SIS, the recently used CPU is used as a target if it's still
allowed by the task and is idle.
The benefit may be non-obvious so consider an example of two tasks
communicating back and forth. Task A may be an application doing IO where
task B is a kworker or kthread like journald. Task A may issue IO, wake
B and B wakes up A on completion. With the existing scheme this may look
like the following (potentially different IDs if SMT is in use but similar
principal applies).
A (cpu 0) wake B (wakes on cpu 1)
B (cpu 1) wake A (wakes on cpu 2)
A (cpu 2) wake B (wakes on cpu 3)
etc.
A careful reader may wonder why CPU 0 was not idle when B wakes A the
first time and it's simply due to the fact that A can be rescheduled to
another CPU and the pattern is that prev == target when B tries to wakeup A
and the information about CPU 0 has been lost.
With this patch, the pattern is more likely to be:
A (cpu 0) wake B (wakes on cpu 1)
B (cpu 1) wake A (wakes on cpu 0)
A (cpu 0) wake B (wakes on cpu 1)
etc
i.e. two communicating casts are more likely to use just two cores instead
of all available cores sharing a LLC.
The most dramatic speedup was noticed on dbench using the XFS filesystem on
UMA as clients interact heavily with workqueues in that configuration. Note
that a similar speedup is not observed on ext4 as the wakeup pattern
is different:
4.15.0-rc9 4.15.0-rc9
waprev-v1 biasancestor-v1
Hmean 1 287.54 ( 0.00%) 817.01 ( 184.14%)
Hmean 2 1268.12 ( 0.00%) 1781.24 ( 40.46%)
Hmean 4 1739.68 ( 0.00%) 1594.47 ( -8.35%)
Hmean 8 2464.12 ( 0.00%) 2479.56 ( 0.63%)
Hmean 64 1455.57 ( 0.00%) 1434.68 ( -1.44%)
The results can be less dramatic on NUMA where automatic balancing interferes
with the test. It's also known that network benchmarks running on localhost
also benefit quite a bit from this patch (roughly 10% on netperf RR for UDP
and TCP depending on the machine). Hackbench also seens small improvements
(6-11% depending on machine and thread count). The facebook schbench was also
tested but in most cases showed little or no different to wakeup latencies.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20180130104555.4125-5-mgorman@techsingularity.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The whole of ttwu_stat() is guarded by a single schedstat_enabled(),
there is absolutely no point in then issuing another static_branch for
every single schedstat_inc() in there.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Provide core serializing membarrier command to support memory reclaim
by JIT.
Each architecture needs to explicitly opt into that support by
documenting in their architecture code how they provide the core
serializing instructions required when returning from the membarrier
IPI, and after the scheduler has updated the curr->mm pointer (before
going back to user-space). They should then select
ARCH_HAS_MEMBARRIER_SYNC_CORE to enable support for that command on
their architecture.
Architectures selecting this feature need to either document that
they issue core serializing instructions when returning to user-space,
or implement their architecture-specific sync_core_before_usermode().
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrea Parri <parri.andrea@gmail.com>
Cc: Andrew Hunter <ahh@google.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Avi Kivity <avi@scylladb.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Dave Watson <davejwatson@fb.com>
Cc: David Sehr <sehr@google.com>
Cc: Greg Hackmann <ghackmann@google.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Maged Michael <maged.michael@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Will Deacon <will.deacon@arm.com>
Cc: linux-api@vger.kernel.org
Cc: linux-arch@vger.kernel.org
Link: http://lkml.kernel.org/r/20180129202020.8515-9-mathieu.desnoyers@efficios.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Document the membarrier requirement on having a full memory barrier in
__schedule() after coming from user-space, before storing to rq->curr.
It is provided by smp_mb__after_spinlock() in __schedule().
Document that membarrier requires a full barrier on transition from
kernel thread to userspace thread. We currently have an implicit barrier
from atomic_dec_and_test() in mmdrop() that ensures this.
The x86 switch_mm_irqs_off() full barrier is currently provided by many
cpumask update operations as well as write_cr3(). Document that
write_cr3() provides this barrier.
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrea Parri <parri.andrea@gmail.com>
Cc: Andrew Hunter <ahh@google.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Avi Kivity <avi@scylladb.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Dave Watson <davejwatson@fb.com>
Cc: David Sehr <sehr@google.com>
Cc: Greg Hackmann <ghackmann@google.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Maged Michael <maged.michael@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Will Deacon <will.deacon@arm.com>
Cc: linux-api@vger.kernel.org
Link: http://lkml.kernel.org/r/20180129202020.8515-4-mathieu.desnoyers@efficios.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Allow PowerPC to skip the full memory barrier in switch_mm(), and
only issue the barrier when scheduling into a task belonging to a
process that has registered to use expedited private.
Threads targeting the same VM but which belong to different thread
groups is a tricky case. It has a few consequences:
It turns out that we cannot rely on get_nr_threads(p) to count the
number of threads using a VM. We can use
(atomic_read(&mm->mm_users) == 1 && get_nr_threads(p) == 1)
instead to skip the synchronize_sched() for cases where the VM only has
a single user, and that user only has a single thread.
It also turns out that we cannot use for_each_thread() to set
thread flags in all threads using a VM, as it only iterates on the
thread group.
Therefore, test the membarrier state variable directly rather than
relying on thread flags. This means
membarrier_register_private_expedited() needs to set the
MEMBARRIER_STATE_PRIVATE_EXPEDITED flag, issue synchronize_sched(), and
only then set MEMBARRIER_STATE_PRIVATE_EXPEDITED_READY which allows
private expedited membarrier commands to succeed.
membarrier_arch_switch_mm() now tests for the
MEMBARRIER_STATE_PRIVATE_EXPEDITED flag.
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Andrea Parri <parri.andrea@gmail.com>
Cc: Andrew Hunter <ahh@google.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Avi Kivity <avi@scylladb.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Dave Watson <davejwatson@fb.com>
Cc: David Sehr <sehr@google.com>
Cc: Greg Hackmann <ghackmann@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Maged Michael <maged.michael@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Will Deacon <will.deacon@arm.com>
Cc: linux-api@vger.kernel.org
Cc: linux-arch@vger.kernel.org
Cc: linuxppc-dev@lists.ozlabs.org
Link: http://lkml.kernel.org/r/20180129202020.8515-3-mathieu.desnoyers@efficios.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull scheduler updates from Ingo Molnar:
"The main changes in this cycle were:
- Implement frequency/CPU invariance and OPP selection for
SCHED_DEADLINE (Juri Lelli)
- Tweak the task migration logic for better multi-tasking
workload scalability (Mel Gorman)
- Misc cleanups, fixes and improvements"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/deadline: Make bandwidth enforcement scale-invariant
sched/cpufreq: Move arch_scale_{freq,cpu}_capacity() outside of #ifdef CONFIG_SMP
sched/cpufreq: Remove arch_scale_freq_capacity()'s 'sd' parameter
sched/cpufreq: Always consider all CPUs when deciding next freq
sched/cpufreq: Split utilization signals
sched/cpufreq: Change the worker kthread to SCHED_DEADLINE
sched/deadline: Move CPU frequency selection triggering points
sched/cpufreq: Use the DEADLINE utilization signal
sched/deadline: Implement "runtime overrun signal" support
sched/fair: Only immediately migrate tasks due to interrupts if prev and target CPUs share cache
sched/fair: Correct obsolete comment about cpufreq_update_util()
sched/fair: Remove impossible condition from find_idlest_group_cpu()
sched/cpufreq: Don't pass flags to sugov_set_iowait_boost()
sched/cpufreq: Initialize sg_cpu->flags to 0
sched/fair: Consider RT/IRQ pressure in capacity_spare_wake()
sched/fair: Use 'unsigned long' for utilization, consistently
sched/core: Rework and clarify prepare_lock_switch()
sched/fair: Remove unused 'curr' parameter from wakeup_gran
sched/headers: Constify object_is_on_stack()
Pull RCU updates from Ingo Molnar:
"The main RCU changes in this cycle were:
- Updates to use cond_resched() instead of cond_resched_rcu_qs()
where feasible (currently everywhere except in kernel/rcu and in
kernel/torture.c). Also a couple of fixes to avoid sending IPIs to
offline CPUs.
- Updates to simplify RCU's dyntick-idle handling.
- Updates to remove almost all uses of smp_read_barrier_depends() and
read_barrier_depends().
- Torture-test updates.
- Miscellaneous fixes"
* 'core-rcu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (72 commits)
torture: Save a line in stutter_wait(): while -> for
torture: Eliminate torture_runnable and perf_runnable
torture: Make stutter less vulnerable to compilers and races
locking/locktorture: Fix num reader/writer corner cases
locking/locktorture: Fix rwsem reader_delay
torture: Place all torture-test modules in one MAINTAINERS group
rcutorture/kvm-build.sh: Skip build directory check
rcutorture: Simplify functions.sh include path
rcutorture: Simplify logging
rcutorture/kvm-recheck-*: Improve result directory readability check
rcutorture/kvm.sh: Support execution from any directory
rcutorture/kvm.sh: Use consistent help text for --qemu-args
rcutorture/kvm.sh: Remove unused variable, `alldone`
rcutorture: Remove unused script, config2frag.sh
rcutorture/configinit: Fix build directory error message
rcutorture: Preempt RCU-preempt readers more vigorously
torture: Reduce #ifdefs for preempt_schedule()
rcu: Remove have_rcu_nocb_mask from tree_plugin.h
rcu: Add comment giving debug strategy for double call_rcu()
tracing, rcu: Hide trace event rcu_nocb_wake when not used
...
Before commit:
e33a9bba85 ("sched/core: move IO scheduling accounting from io_schedule_timeout() into scheduler")
delayacct_blkio_end() was called after context-switching into the task which
completed I/O.
This resulted in double counting: the task would account a delay both waiting
for I/O and for time spent in the runqueue.
With e33a9bba85, delayacct_blkio_end() is called by try_to_wake_up().
In ttwu, we have not yet context-switched. This is more correct, in that
the delay accounting ends when the I/O is complete.
But delayacct_blkio_end() relies on 'get_current()', and we have not yet
context-switched into the task whose I/O completed. This results in the
wrong task having its delay accounting statistics updated.
Instead of doing that, pass the task_struct being woken to delayacct_blkio_end(),
so that it can update the statistics of the correct task.
Signed-off-by: Josh Snyder <joshs@netflix.com>
Acked-by: Tejun Heo <tj@kernel.org>
Acked-by: Balbir Singh <bsingharora@gmail.com>
Cc: <stable@vger.kernel.org>
Cc: Brendan Gregg <bgregg@netflix.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-block@vger.kernel.org
Fixes: e33a9bba85 ("sched/core: move IO scheduling accounting from io_schedule_timeout() into scheduler")
Link: http://lkml.kernel.org/r/1513613712-571-1-git-send-email-joshs@netflix.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This patch adds the possibility of getting the delivery of a SIGXCPU
signal whenever there is a runtime overrun. The request is done through
the sched_flags field within the sched_attr structure.
Forward port of https://lkml.org/lkml/2009/10/16/170
Tested-by: Mathieu Poirier <mathieu.poirier@linaro.org>
Signed-off-by: Juri Lelli <juri.lelli@gmail.com>
Signed-off-by: Claudio Scordino <claudio@evidence.eu.com>
Signed-off-by: Luca Abeni <luca.abeni@santannapisa.it>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tommaso Cucinotta <tommaso.cucinotta@sssup.it>
Link: http://lkml.kernel.org/r/1513077024-25461-1-git-send-email-claudio@evidence.eu.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The prepare_lock_switch() function has an unused parameter, and also the
function name was not descriptive. To improve readability and remove
the extra parameter, do the following changes:
* Move prepare_lock_switch() from kernel/sched/sched.h to
kernel/sched/core.c, rename it to prepare_task(), and remove the
unused parameter.
* Split the smp_store_release() out from finish_lock_switch() to a
function named finish_task.
* Comments ajdustments.
Signed-off-by: Rodrigo Siqueira <rodrigosiqueiramelo@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20171215140603.gxe5i2y6fg5ojfpp@smtp.gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull RCU updates from Paul E. McKenney:
- Updates to use cond_resched() instead of cond_resched_rcu_qs()
where feasible (currently everywhere except in kernel/rcu and
in kernel/torture.c). Also a couple of fixes to avoid sending
IPIs to offline CPUs.
- Updates to simplify RCU's dyntick-idle handling.
- Updates to remove almost all uses of smp_read_barrier_depends()
and read_barrier_depends().
- Miscellaneous fixes.
- Torture-test updates.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Fix the following kernel-doc warnings after code restructuring:
../kernel/sched/core.c:5113: warning: No description found for parameter 't'
../kernel/sched/core.c:5113: warning: Excess function parameter 'interval' description in 'sched_rr_get_interval'
get rid of set_fs()")
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: abca5fc535 ("sched_rr_get_interval(): move compat to native,
Link: http://lkml.kernel.org/r/995c6ded-b32e-bbe4-d9f5-4d42d121aff1@infradead.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The rcutorture test suite occasionally provokes a splat due to invoking
resched_cpu() on an offline CPU:
WARNING: CPU: 2 PID: 8 at /home/paulmck/public_git/linux-rcu/arch/x86/kernel/smp.c:128 native_smp_send_reschedule+0x37/0x40
Modules linked in:
CPU: 2 PID: 8 Comm: rcu_preempt Not tainted 4.14.0-rc4+ #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Ubuntu-1.8.2-1ubuntu1 04/01/2014
task: ffff902ede9daf00 task.stack: ffff96c50010c000
RIP: 0010:native_smp_send_reschedule+0x37/0x40
RSP: 0018:ffff96c50010fdb8 EFLAGS: 00010096
RAX: 000000000000002e RBX: ffff902edaab4680 RCX: 0000000000000003
RDX: 0000000080000003 RSI: 0000000000000000 RDI: 00000000ffffffff
RBP: ffff96c50010fdb8 R08: 0000000000000000 R09: 0000000000000001
R10: 0000000000000000 R11: 00000000299f36ae R12: 0000000000000001
R13: ffffffff9de64240 R14: 0000000000000001 R15: ffffffff9de64240
FS: 0000000000000000(0000) GS:ffff902edfc80000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00000000f7d4c642 CR3: 000000001e0e2000 CR4: 00000000000006e0
Call Trace:
resched_curr+0x8f/0x1c0
resched_cpu+0x2c/0x40
rcu_implicit_dynticks_qs+0x152/0x220
force_qs_rnp+0x147/0x1d0
? sync_rcu_exp_select_cpus+0x450/0x450
rcu_gp_kthread+0x5a9/0x950
kthread+0x142/0x180
? force_qs_rnp+0x1d0/0x1d0
? kthread_create_on_node+0x40/0x40
ret_from_fork+0x27/0x40
Code: 14 01 0f 92 c0 84 c0 74 14 48 8b 05 14 4f f4 00 be fd 00 00 00 ff 90 a0 00 00 00 5d c3 89 fe 48 c7 c7 38 89 ca 9d e8 e5 56 08 00 <0f> ff 5d c3 0f 1f 44 00 00 8b 05 52 9e 37 02 85 c0 75 38 55 48
---[ end trace 26df9e5df4bba4ac ]---
This splat cannot be generated by expedited grace periods because they
always invoke resched_cpu() on the current CPU, which is good because
expedited grace periods require that resched_cpu() unconditionally
succeed. However, other parts of RCU can tolerate resched_cpu() acting
as a no-op, at least as long as it doesn't happen too often.
This commit therefore makes resched_cpu() invoke resched_curr() only if
the CPU is either online or is the current CPU.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Pull compat and uaccess updates from Al Viro:
- {get,put}_compat_sigset() series
- assorted compat ioctl stuff
- more set_fs() elimination
- a few more timespec64 conversions
- several removals of pointless access_ok() in places where it was
followed only by non-__ variants of primitives
* 'misc.compat' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (24 commits)
coredump: call do_unlinkat directly instead of sys_unlink
fs: expose do_unlinkat for built-in callers
ext4: take handling of EXT4_IOC_GROUP_ADD into a helper, get rid of set_fs()
ipmi: get rid of pointless access_ok()
pi433: sanitize ioctl
cxlflash: get rid of pointless access_ok()
mtdchar: get rid of pointless access_ok()
r128: switch compat ioctls to drm_ioctl_kernel()
selection: get rid of field-by-field copyin
VT_RESIZEX: get rid of field-by-field copyin
i2c compat ioctls: move to ->compat_ioctl()
sched_rr_get_interval(): move compat to native, get rid of set_fs()
mips: switch to {get,put}_compat_sigset()
sparc: switch to {get,put}_compat_sigset()
s390: switch to {get,put}_compat_sigset()
ppc: switch to {get,put}_compat_sigset()
parisc: switch to {get,put}_compat_sigset()
get_compat_sigset()
get rid of {get,put}_compat_itimerspec()
io_getevents: Use timespec64 to represent timeouts
...
Pull cgroup updates from Tejun Heo:
"Cgroup2 cpu controller support is finally merged.
- Basic cpu statistics support to allow monitoring by default without
the CPU controller enabled.
- cgroup2 cpu controller support.
- /sys/kernel/cgroup files to help dealing with new / optional
features"
* 'for-4.15' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup:
cgroup: export list of cgroups v2 features using sysfs
cgroup: export list of delegatable control files using sysfs
cgroup: mark @cgrp __maybe_unused in cpu_stat_show()
MAINTAINERS: relocate cpuset.c
cgroup, sched: Move basic cpu stats from cgroup.stat to cpu.stat
sched: Implement interface for cgroup unified hierarchy
sched: Misc preps for cgroup unified hierarchy interface
sched/cputime: Add dummy cputime_adjust() implementation for CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
cgroup: statically initialize init_css_set->dfl_cgrp
cgroup: Implement cgroup2 basic CPU usage accounting
cpuacct: Introduce cgroup_account_cputime[_field]()
sched/cputime: Expose cputime_adjust()
Pull scheduler updates from Ingo Molnar:
"The main updates in this cycle were:
- Group balancing enhancements and cleanups (Brendan Jackman)
- Move CPU isolation related functionality into its separate
kernel/sched/isolation.c file, with related 'housekeeping_*()'
namespace and nomenclature et al. (Frederic Weisbecker)
- Improve the interactive/cpu-intense fairness calculation (Josef
Bacik)
- Improve the PELT code and related cleanups (Peter Zijlstra)
- Improve the logic of pick_next_task_fair() (Uladzislau Rezki)
- Improve the RT IPI based balancing logic (Steven Rostedt)
- Various micro-optimizations:
- better !CONFIG_SCHED_DEBUG optimizations (Patrick Bellasi)
- better idle loop (Cheng Jian)
- ... plus misc fixes, cleanups and updates"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (54 commits)
sched/core: Optimize sched_feat() for !CONFIG_SCHED_DEBUG builds
sched/sysctl: Fix attributes of some extern declarations
sched/isolation: Document isolcpus= boot parameter flags, mark it deprecated
sched/isolation: Add basic isolcpus flags
sched/isolation: Move isolcpus= handling to the housekeeping code
sched/isolation: Handle the nohz_full= parameter
sched/isolation: Introduce housekeeping flags
sched/isolation: Split out new CONFIG_CPU_ISOLATION=y config from CONFIG_NO_HZ_FULL
sched/isolation: Rename is_housekeeping_cpu() to housekeeping_cpu()
sched/isolation: Use its own static key
sched/isolation: Make the housekeeping cpumask private
sched/isolation: Provide a dynamic off-case to housekeeping_any_cpu()
sched/isolation, watchdog: Use housekeeping_cpumask() instead of ad-hoc version
sched/isolation: Move housekeeping related code to its own file
sched/idle: Micro-optimize the idle loop
sched/isolcpus: Fix "isolcpus=" boot parameter handling when !CONFIG_CPUMASK_OFFSTACK
x86/tsc: Append the 'tsc=' description for the 'tsc=unstable' boot parameter
sched/rt: Simplify the IPI based RT balancing logic
block/ioprio: Use a helper to check for RT prio
sched/rt: Add a helper to test for a RT task
...
When the kernel is compiled with !CONFIG_SCHED_DEBUG support, we expect that
all SCHED_FEAT are turned into compile time constants being propagated
to support compiler optimizations.
Specifically, we expect that code blocks like this:
if (sched_feat(FEATURE_NAME) [&& <other_conditions>]) {
/* FEATURE CODE */
}
are turned into dead-code in case FEATURE_NAME defaults to FALSE, and thus
being removed by the compiler from the finale image.
For this mechanism to properly work it's required for the compiler to
have full access, from each translation unit, to whatever is the value
defined by the sched_feat macro. This macro is defined as:
#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
and thus, the compiler can optimize that code only if the value of
sysctl_sched_features is visible within each translation unit.
Since:
029632fbb ("sched: Make separate sched*.c translation units")
the scheduler code has been split into separate translation units
however the definition of sysctl_sched_features is part of
kernel/sched/core.c while, for all the other scheduler modules, it is
visible only via kernel/sched/sched.h as an:
extern const_debug unsigned int sysctl_sched_features
Unfortunately, an extern reference does not allow the compiler to apply
constants propagation. Thus, on !CONFIG_SCHED_DEBUG kernel we still end up
with code to load a memory reference and (eventually) doing an unconditional
jump of a chunk of code.
This mechanism is unavoidable when sched_features can be turned on and off at
run-time. However, this is not the case for "production" kernels compiled with
!CONFIG_SCHED_DEBUG. In this case, sysctl_sched_features is just a constant value
which cannot be changed at run-time and thus memory loads and jumps can be
avoided altogether.
This patch fixes the case of !CONFIG_SCHED_DEBUG kernel by declaring a local version
of the sysctl_sched_features constant for each translation unit. This will
ultimately allow the compiler to perform constants propagation and dead-code
pruning.
Tests have been done, with !CONFIG_SCHED_DEBUG on a v4.14-rc8 with and without
the patch, by running 30 iterations of:
perf bench sched messaging --pipe --thread --group 4 --loop 50000
on a 40 cores Intel(R) Xeon(R) CPU E5-2690 v2 @ 3.00GHz using the
powersave governor to rule out variations due to frequency scaling.
Statistics on the reported completion time:
count mean std min 99% max
v4.14-rc8 30.0 15.7831 0.176032 15.442 16.01226 16.014
v4.14-rc8+patch 30.0 15.5033 0.189681 15.232 15.93938 15.962
... show a 1.8% speedup on average completion time and 0.5% speedup in the
99 percentile.
Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com>
Signed-off-by: Chris Redpath <chris.redpath@arm.com>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Reviewed-by: Brendan Jackman <brendan.jackman@arm.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Link: http://lkml.kernel.org/r/20171108184101.16006-1-patrick.bellasi@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We want to centralize the isolation features, to be done by the housekeeping
subsystem and scheduler domain isolation is a significant part of it.
No intended behaviour change, we just reuse the housekeeping cpumask
and core code.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Chris Metcalf <cmetcalf@mellanox.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Wanpeng Li <kernellwp@gmail.com>
Link: http://lkml.kernel.org/r/1509072159-31808-11-git-send-email-frederic@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Before we implement isolcpus under housekeeping, we need the isolation
features to be more finegrained. For example some people want NOHZ_FULL
without the full scheduler isolation, others want full scheduler
isolation without NOHZ_FULL.
So let's cut all these isolation features piecewise, at the risk of
overcutting it right now. We can still merge some flags later if they
always make sense together.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Chris Metcalf <cmetcalf@mellanox.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Wanpeng Li <kernellwp@gmail.com>
Link: http://lkml.kernel.org/r/1509072159-31808-9-git-send-email-frederic@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Fit it into the housekeeping_*() namespace.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Chris Metcalf <cmetcalf@mellanox.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Wanpeng Li <kernellwp@gmail.com>
Link: http://lkml.kernel.org/r/1509072159-31808-7-git-send-email-frederic@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The housekeeping code is currently tied to the NOHZ code. As we are
planning to make housekeeping independent from it, start with moving
the relevant code to its own file.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Chris Metcalf <cmetcalf@mellanox.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Wanpeng Li <kernellwp@gmail.com>
Link: http://lkml.kernel.org/r/1509072159-31808-2-git-send-email-frederic@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The basic cpu stat is currently shown with "cpu." prefix in
cgroup.stat, and the same information is duplicated in cpu.stat when
cpu controller is enabled. This is ugly and not very scalable as we
want to expand the coverage of stat information which is always
available.
This patch makes cgroup core always create "cpu.stat" file and show
the basic cpu stat there and calls the cpu controller to show the
extra stats when enabled. This ensures that the same information
isn't presented in multiple places and makes future expansion of basic
stats easier.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Right now, rcutorture warns if an rcu_torture_writer() kthread stalls,
but this warning is not always all that helpful. This commit therefore
makes the first such warning include a stack dump.
This in turn requires that sched_show_task() be exported to GPL modules,
so this commit makes that change as well.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
There is some confusion as to which of cond_resched() or
cond_resched_rcu_qs() should be added to long in-kernel loops.
This commit therefore eliminates the decision by adding RCU quiescent
states to cond_resched(). This commit also simplifies the code that
used to interact with cond_resched_rcu_qs(), and that now interacts with
cond_resched(), to reduce its overhead. This reduction is necessary to
allow the heavier-weight cond_resched_rcu_qs() mechanism to be invoked
everywhere that cond_resched() is invoked.
Part of that reduction in overhead converts the jiffies_till_sched_qs
kernel parameter to read-only at runtime, thus eliminating the need for
bounds checking.
Reported-by: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
[ paulmck: Keep PREEMPT=n cond_resched a no-op, per Peter Zijlstra. ]