2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-26 14:14:01 +08:00
Commit Graph

3 Commits

Author SHA1 Message Date
Daniel Vetter
bf89209a6d drm/mga200g: Hold a proper reference for cursor_set
Looking up an obj, immediate dropping the acquired reference and then
continuing to use it isn't how this is supposed to work. Fix this by
holding a reference for the entire function.

While at it stop grabbing dev->struct_mutex, it doesn't protect
anything here.

Reviewed-by: Thierry Reding <treding@nvidia.com>
Signed-off-by: Daniel Vetter <daniel.vetter@intel.com>
2015-08-10 13:37:20 +02:00
Dave Airlie
53dac83053 drm/mgag200: fix oops in cursor code.
In some cases we enter the cursor code with file_priv = NULL causing an oops,
we also can try to unpin something that isn't pinned, and this is a good fix for it.

Cc: stable@vger.kernel.org
Signed-off-by: Dave Airlie <airlied@redhat.com>
2014-01-16 14:43:04 +10:00
Christopher Harvey
a080db9fdd drm/mgag200: Hardware cursor support
G200 cards support, at best, 16 colour palleted images for the cursor
so we do a conversion in the cursor_set function, and reject cursors
with more than 16 colours, or cursors with partial transparency. Xorg
falls back gracefully to software cursors in this case.

We can't disable/enable the cursor hardware without causing momentary
corruption around the cursor. Instead, once the cursor is on we leave
it on, and simulate turning the cursor off by moving it
offscreen. This works well.

Since we can't disable -> update -> enable the cursors, we double
buffer cursor icons, then just move the base address that points to
the old cursor, to the new. This also works well, but uses an extra
page of memory.

The cursor buffers are lazily-allocated on first cursor_set. This is
to make sure they don't take priority over any framebuffers in case of
limited memory.

Here is a representation of how the bitmap for the cursor is mapped in G200 memory :

  Each line of color cursor use 6 Slices of 8 bytes. Slices 0 to 3
  are used for the 4bpp bitmap, slice 4 for XOR mask and slice 5 for
  AND mask. Each line has the following format:

      //      Byte 0  Byte 1  Byte 2  Byte 3  Byte 4  Byte 5  Byte 6 Byte 7
      //
      // S0:  P00-01  P02-03  P04-05  P06-07  P08-09  P10-11  P12-13 P14-15
      // S1:  P16-17  P18-19  P20-21  P22-23  P24-25  P26-27  P28-29 P30-31
      // S2:  P32-33  P34-35  P36-37  P38-39  P40-41  P42-43  P44-45 P46-47
      // S3:  P48-49  P50-51  P52-53  P54-55  P56-57  P58-59  P60-61 P62-63
      // S4:  X63-56  X55-48  X47-40  X39-32  X31-24  X23-16  X15-08 X07-00
      // S5:  A63-56  A55-48  A47-40  A39-32  A31-24  A23-16  A15-08 A07-00
      //
      //       S0 to S5      = Slices 0 to 5
      //       P00 to P63    = Bitmap - pixels 0 to 63
      //       X00 to X63    = always 0 - pixels 0 to 63
      //       A00 to A63    = transparent markers - pixels 0 to 63
      //                       1 means colour, 0 means transparent

Signed-off-by: Christopher Harvey <charvey@matrox.com>
Signed-off-by: Mathieu Larouche <mathieu.larouche@matrox.com>
Acked-by: Julia Lemire <jlemire@matrox.com>
Tested-by: Julia Lemire <jlemire@matrox.com>
Signed-off-by: Dave Airlie <airlied@gmail.com>
2013-06-17 19:42:48 +10:00