At xfs_iext_add(), if extent(s) are being appended to the last page in
the indirection array and the new extent(s) don't fit in the page, the
number of extents(erp->er_extcount) in a new allocated entry should be
the minimum value between count and XFS_LINEAR_EXTS, instead of count.
For now, there is no existing test case can demonstrates a problem with
the er_extcount being set incorrectly here, but it obviously like a bug.
Signed-off-by: Jie Liu <jeff.liu@oracle.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Currently the xfs_inode.h header has a dependency on the definition
of the BMAP btree records as the inode fork includes an array of
xfs_bmbt_rec_host_t objects in it's definition.
Move all the btree format definitions from xfs_btree.h,
xfs_bmap_btree.h, xfs_alloc_btree.h and xfs_ialloc_btree.h to
xfs_format.h to continue the process of centralising the on-disk
format definitions. With this done, the xfs inode definitions are no
longer dependent on btree header files.
The enables a massive culling of unnecessary includes, with close to
200 #include directives removed from the XFS kernel code base.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
xfs_trans.h has a dependency on xfs_log.h for a couple of
structures. Most code that does transactions doesn't need to know
anything about the log, but this dependency means that they have to
include xfs_log.h. Decouple the xfs_trans.h and xfs_log.h header
files and clean up the includes to be in dependency order.
In doing this, remove the direct include of xfs_trans_reserve.h from
xfs_trans.h so that we remove the dependency between xfs_trans.h and
xfs_mount.h. Hence the xfs_trans.h include can be moved to the
indicate the actual dependencies other header files have on it.
Note that these are kernel only header files, so this does not
translate to any userspace changes at all.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
At xfs_iext_realloc_direct(), the new_size is changed by adding
if_bytes if originally the extent records are stored at the inline
extent buffer, and we have to switch from it to a direct extent
list for those new allocated extents, this is wrong. e.g,
Create a file with three extents which was showing as following,
xfs_io -f -c "truncate 100m" /xfs/testme
for i in $(seq 0 5 10); do
offset=$(($i * $((1 << 20))))
xfs_io -c "pwrite $offset 1m" /xfs/testme
done
Inline
------
irec: if_bytes bytes_diff new_size
1st 0 16 16
2nd 16 16 32
Switching
--------- rnew_size
3rd 32 16 48 + 32 = 80 roundup=128
In this case, the desired value of new_size should be 48, and then
it will be roundup to 64 and be assigned to rnew_size.
However, this issue has been covered by resetting the if_bytes to
the new_size which is calculated at the begnning of xfs_iext_add()
before leaving out this function, and in turn make the rnew_size
correctly again. Hence, this can not be detected via xfstestes.
This patch fix above problem and revise the new_size comments at
xfs_iext_realloc_direct() to make it more readable. Also, fix the
comments while switching from the inline extent buffer to a direct
extent list to reflect this change.
Signed-off-by: Jie Liu <jeff.liu@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
The "di_size" variable comes from the disk and it's a signed 64 bit.
We check the upper limit but we should check for negative numbers as
well.
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
There are a few small helper functions in xfs_util, all related to
xfs_inode modifications. Move them all to xfs_inode.c so all
xfs_inode operations are consiolidated in the one place.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Now we have xfs_inode.c for holding kernel-only XFS inode
operations, move all the inode operations from xfs_vnodeops.c to
this new file as it holds another set of kernel-only inode
operations. The name of this file traces back to the days of Irix
and it's vnodes which we don't have anymore.
Essentially this move consolidates the inode locking functions
and a bunch of XFS inode operations into the one file. Eventually
the high level functions will be merged into the VFS interface
functions in xfs_iops.c.
This leaves only internal preallocation, EOF block manipulation and
hole punching functions in vnodeops.c. Move these to xfs_bmap_util.c
where we are already consolidating various in-kernel physical extent
manipulation and querying functions.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
These come from syncing the shared userspace and kernel code. Small
whitespace and trivial cleanups.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
The inode fork definitions are a combination of on-disk format
definition and in-memory tracking and manipulation. They are both
shared with userspace, so move them all into their own file so
sharing is easy to do and track. This removes all inode fork
related information from xfs_inode.h.
Do the same for the all the C code that currently resides in
xfs_inode.c for the same reason.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>