2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-27 14:43:58 +08:00
Commit Graph

13 Commits

Author SHA1 Message Date
Aneesh Kumar K.V
72c1253574 kvm: powerpc: book3s: pr: move PR related tracepoints to a separate header
This patch moves PR related tracepoints to a separate header. This
enables in converting PR to a kernel module which will be done in
later patches

Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-10-17 15:36:22 +02:00
Paul Mackerras
d78bca7296 KVM: PPC: Book3S PR: Use mmu_notifier_retry() in kvmppc_mmu_map_page()
When the MM code is invalidating a range of pages, it calls the KVM
kvm_mmu_notifier_invalidate_range_start() notifier function, which calls
kvm_unmap_hva_range(), which arranges to flush all the existing host
HPTEs for guest pages.  However, the Linux PTEs for the range being
flushed are still valid at that point.  We are not supposed to establish
any new references to pages in the range until the ...range_end()
notifier gets called.  The PPC-specific KVM code doesn't get any
explicit notification of that; instead, we are supposed to use
mmu_notifier_retry() to test whether we are or have been inside a
range flush notifier pair while we have been getting a page and
instantiating a host HPTE for the page.

This therefore adds a call to mmu_notifier_retry inside
kvmppc_mmu_map_page().  This call is inside a region locked with
kvm->mmu_lock, which is the same lock that is called by the KVM
MMU notifier functions, thus ensuring that no new notification can
proceed while we are in the locked region.  Inside this region we
also create the host HPTE and link the corresponding hpte_cache
structure into the lists used to find it later.  We cannot allocate
the hpte_cache structure inside this locked region because that can
lead to deadlock, so we allocate it outside the region and free it
if we end up not using it.

This also moves the updates of vcpu3s->hpte_cache_count inside the
regions locked with vcpu3s->mmu_lock, and does the increment in
kvmppc_mmu_hpte_cache_map() when the pte is added to the cache
rather than when it is allocated, in order that the hpte_cache_count
is accurate.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-10-17 14:49:35 +02:00
Paul Mackerras
a4a0f2524a KVM: PPC: Book3S PR: Allow guest to use 64k pages
This adds the code to interpret 64k HPTEs in the guest hashed page
table (HPT), 64k SLB entries, and to tell the guest about 64k pages
in kvm_vm_ioctl_get_smmu_info().  Guest 64k pages are still shadowed
by 4k pages.

This also adds another hash table to the four we have already in
book3s_mmu_hpte.c to allow us to find all the PTEs that we have
instantiated that match a given 64k guest page.

The tlbie instruction changed starting with POWER6 to use a bit in
the RB operand to indicate large page invalidations, and to use other
RB bits to indicate the base and actual page sizes and the segment
size.  64k pages came in slightly earlier, with POWER5++.
We use one bit in vcpu->arch.hflags to indicate that the emulated
cpu supports 64k pages, and another to indicate that it has the new
tlbie definition.

The KVM_PPC_GET_SMMU_INFO ioctl presents a bit of a problem, because
the MMU capabilities depend on which CPU model we're emulating, but it
is a VM ioctl not a VCPU ioctl and therefore doesn't get passed a VCPU
fd.  In addition, commonly-used userspace (QEMU) calls it before
setting the PVR for any VCPU.  Therefore, as a best effort we look at
the first vcpu in the VM and return 64k pages or not depending on its
capabilities.  We also make the PVR default to the host PVR on recent
CPUs that support 1TB segments (and therefore multiple page sizes as
well) so that KVM_PPC_GET_SMMU_INFO will include 64k page and 1TB
segment support on those CPUs.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-10-17 14:45:03 +02:00
Sasha Levin
b67bfe0d42 hlist: drop the node parameter from iterators
I'm not sure why, but the hlist for each entry iterators were conceived

        list_for_each_entry(pos, head, member)

The hlist ones were greedy and wanted an extra parameter:

        hlist_for_each_entry(tpos, pos, head, member)

Why did they need an extra pos parameter? I'm not quite sure. Not only
they don't really need it, it also prevents the iterator from looking
exactly like the list iterator, which is unfortunate.

Besides the semantic patch, there was some manual work required:

 - Fix up the actual hlist iterators in linux/list.h
 - Fix up the declaration of other iterators based on the hlist ones.
 - A very small amount of places were using the 'node' parameter, this
 was modified to use 'obj->member' instead.
 - Coccinelle didn't handle the hlist_for_each_entry_safe iterator
 properly, so those had to be fixed up manually.

The semantic patch which is mostly the work of Peter Senna Tschudin is here:

@@
iterator name hlist_for_each_entry, hlist_for_each_entry_continue, hlist_for_each_entry_from, hlist_for_each_entry_rcu, hlist_for_each_entry_rcu_bh, hlist_for_each_entry_continue_rcu_bh, for_each_busy_worker, ax25_uid_for_each, ax25_for_each, inet_bind_bucket_for_each, sctp_for_each_hentry, sk_for_each, sk_for_each_rcu, sk_for_each_from, sk_for_each_safe, sk_for_each_bound, hlist_for_each_entry_safe, hlist_for_each_entry_continue_rcu, nr_neigh_for_each, nr_neigh_for_each_safe, nr_node_for_each, nr_node_for_each_safe, for_each_gfn_indirect_valid_sp, for_each_gfn_sp, for_each_host;

type T;
expression a,c,d,e;
identifier b;
statement S;
@@

-T b;
    <+... when != b
(
hlist_for_each_entry(a,
- b,
c, d) S
|
hlist_for_each_entry_continue(a,
- b,
c) S
|
hlist_for_each_entry_from(a,
- b,
c) S
|
hlist_for_each_entry_rcu(a,
- b,
c, d) S
|
hlist_for_each_entry_rcu_bh(a,
- b,
c, d) S
|
hlist_for_each_entry_continue_rcu_bh(a,
- b,
c) S
|
for_each_busy_worker(a, c,
- b,
d) S
|
ax25_uid_for_each(a,
- b,
c) S
|
ax25_for_each(a,
- b,
c) S
|
inet_bind_bucket_for_each(a,
- b,
c) S
|
sctp_for_each_hentry(a,
- b,
c) S
|
sk_for_each(a,
- b,
c) S
|
sk_for_each_rcu(a,
- b,
c) S
|
sk_for_each_from
-(a, b)
+(a)
S
+ sk_for_each_from(a) S
|
sk_for_each_safe(a,
- b,
c, d) S
|
sk_for_each_bound(a,
- b,
c) S
|
hlist_for_each_entry_safe(a,
- b,
c, d, e) S
|
hlist_for_each_entry_continue_rcu(a,
- b,
c) S
|
nr_neigh_for_each(a,
- b,
c) S
|
nr_neigh_for_each_safe(a,
- b,
c, d) S
|
nr_node_for_each(a,
- b,
c) S
|
nr_node_for_each_safe(a,
- b,
c, d) S
|
- for_each_gfn_sp(a, c, d, b) S
+ for_each_gfn_sp(a, c, d) S
|
- for_each_gfn_indirect_valid_sp(a, c, d, b) S
+ for_each_gfn_indirect_valid_sp(a, c, d) S
|
for_each_host(a,
- b,
c) S
|
for_each_host_safe(a,
- b,
c, d) S
|
for_each_mesh_entry(a,
- b,
c, d) S
)
    ...+>

[akpm@linux-foundation.org: drop bogus change from net/ipv4/raw.c]
[akpm@linux-foundation.org: drop bogus hunk from net/ipv6/raw.c]
[akpm@linux-foundation.org: checkpatch fixes]
[akpm@linux-foundation.org: fix warnings]
[akpm@linux-foudnation.org: redo intrusive kvm changes]
Tested-by: Peter Senna Tschudin <peter.senna@gmail.com>
Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Gleb Natapov <gleb@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-27 19:10:24 -08:00
Alexander Graf
9b0cb3c808 KVM: PPC: Book3s: PR: Add (dumb) MMU Notifier support
Now that we have very simple MMU Notifier support for e500 in place,
also add the same simple support to book3s. It gets us one step closer
to actual fast support.

Signed-off-by: Alexander Graf <agraf@suse.de>
2012-10-05 23:38:43 +02:00
Paul Mackerras
c4befc58a0 KVM: PPC: Move fields between struct kvm_vcpu_arch and kvmppc_vcpu_book3s
This moves the slb field, which represents the state of the emulated
SLB, from the kvmppc_vcpu_book3s struct to the kvm_vcpu_arch, and the
hpte_hash_[v]pte[_long] fields from kvm_vcpu_arch to kvmppc_vcpu_book3s.
This is in accord with the principle that the kvm_vcpu_arch struct
represents the state of the emulated CPU, and the kvmppc_vcpu_book3s
struct holds the auxiliary data structures used in the emulation.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-07-12 13:16:46 +03:00
Alexander Graf
e7c1d14e3b KVM: PPC: Make invalidation code more reliable
There is a race condition in the pte invalidation code path where we can't
be sure if a pte was invalidated already. So let's move the spin lock around
to get rid of the race.

Signed-off-by: Alexander Graf <agraf@suse.de>
2010-10-24 10:52:06 +02:00
Alexander Graf
c60b4cf701 KVM: PPC: Add tracepoints for generic spte flushes
The different ways of flusing shadow ptes have their own debug prints which use
stupid old printk.

Let's move them to tracepoints, making them easier available, faster and
possible to activate on demand

Signed-off-by: Alexander Graf <agraf@suse.de>
2010-10-24 10:52:04 +02:00
Alexander Graf
8696ee4312 KVM: PPC: Move pte invalidate debug code to tracepoint
This patch moves the SPTE flush debug printk over to tracepoints.

Signed-off-by: Alexander Graf <agraf@suse.de>
2010-10-24 10:52:03 +02:00
Alexander Graf
4c4eea7769 KVM: PPC: Add tracepoint for generic mmu map
This patch moves the generic mmu map debugging over to tracepoints.

Signed-off-by: Alexander Graf <agraf@suse.de>
2010-10-24 10:52:02 +02:00
Alexander Graf
2d27fc5eac KVM: PPC: Add book3s_32 tlbie flush acceleration
On Book3s_32 the tlbie instruction flushed effective addresses by the mask
0x0ffff000. This is pretty hard to reflect with a hash that hashes ~0xfff, so
to speed up that target we should also keep a special hash around for it.

Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2010-10-24 10:50:58 +02:00
Alexander Graf
2e0908afaf KVM: PPC: RCU'ify the Book3s MMU
So far we've been running all code without locking of any sort. This wasn't
really an issue because I didn't see any parallel access to the shadow MMU
code coming.

But then I started to implement dirty bitmapping to MOL which has the video
code in its own thread, so suddenly we had the dirty bitmap code run in
parallel to the shadow mmu code. And with that came trouble.

So I went ahead and made the MMU modifying functions as parallelizable as
I could think of. I hope I didn't screw up too much RCU logic :-). If you
know your way around RCU and locking and what needs to be done when, please
take a look at this patch.

Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2010-10-24 10:50:58 +02:00
Alexander Graf
7741909bf1 KVM: PPC: Add generic hpte management functions
Currently the shadow paging code keeps an array of entries it knows about.
Whenever the guest invalidates an entry, we loop through that entry,
trying to invalidate matching parts.

While this is a really simple implementation, it is probably the most
ineffective one possible. So instead, let's keep an array of lists around
that are indexed by a hash. This way each PTE can be added by 4 list_add,
removed by 4 list_del invocations and the search only needs to loop through
entries that share the same hash.

This patch implements said lookup and exports generic functions that both
the 32-bit and 64-bit backend can use.

Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
2010-08-01 10:47:27 +03:00