try_to_munlock returns SWAP_MLOCK if the one of VMAs mapped the page has
VM_LOCKED flag. In that time, VM set PG_mlocked to the page if the page
is not pte-mapped THP which cannot be mlocked, either.
With that, __munlock_isolated_page can use PageMlocked to check whether
try_to_munlock is successful or not without relying on try_to_munlock's
retval. It helps to make try_to_unmap/try_to_unmap_one simple with
upcoming patches.
[minchan@kernel.org: remove PG_Mlocked VM_BUG_ON check]
Link: http://lkml.kernel.org/r/20170411025615.GA6545@bbox
Link: http://lkml.kernel.org/r/1489555493-14659-5-git-send-email-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Sasha Levin <alexander.levin@verizon.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If the page is mapped and rescue in try_to_unmap_one, the
page_mapcount() of a page cannot be zero, so the page_mapcount check in
try_to_unmap is enough to return SWAP_SUCCESS. IOW, SWAP_MLOCK check is
redundant so remove it.
Link: http://lkml.kernel.org/r/1489555493-14659-4-git-send-email-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If we found lazyfree page is dirty, try_to_unmap_one can just
SetPageSwapBakced in there like PG_mlocked page and just return with
SWAP_FAIL which is very natural because the page is not swappable right
now so that vmscan can activate it. There is no point to introduce new
return value SWAP_DIRTY in try_to_unmap at the moment.
Link: http://lkml.kernel.org/r/1489555493-14659-3-git-send-email-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
By reviewing code, I find that when enter do_try_to_free_pages, the
may_thrash is always clear, and it will retry shrink zones to tap
cgroup's reserves memory by setting may_thrash when the former
shrink_zones reclaim nothing.
However, when memcg is disabled or on legacy hierarchy, or there do not
have any memcg protected by low limit, it should not do this useless
retry at all, for we do not have any cgroup's reserves memory to tap,
and we have already done hard work but made no progress, which as Michal
pointed out in former version, we are trying hard to control the retry
logical of page alloctor, and the current additional round of reclaim is
just lame.
Therefore, to avoid this unneeded retrying and make code more readable,
we remove the may_thrash field in scan_control, instead, introduce
memcg_low_reclaim and memcg_low_skipped, and only retry when
memcg_low_skipped, by setting memcg_low_reclaim.
[xieyisheng1@huawei.com: remove may_thrash field, introduce mem_cgroup_reclaim]
Link: http://lkml.kernel.org/r/1490191893-5923-1-git-send-email-ysxie@foxmail.com
Link: http://lkml.kernel.org/r/1490191893-5923-1-git-send-email-ysxie@foxmail.com
Signed-off-by: Yisheng Xie <xieyisheng1@huawei.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Suggested-by: Michal Hocko <mhocko@kernel.org>
Suggested-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
By reviewing code, I find that if the migrate target is a large free
page and we ignore suitable, it may splite large target free page into
smaller block which is not good for defrag. So move the ignore block
suitable after check large free page.
As Vlastimil pointed out in RFC version that this patch is just based on
logical analyses which might be better for future-proofing the function
and it is most likely won't have any visible effect right now, for
direct compaction shouldn't have to be called if there's a
>=pageblock_order page already available.
Link: http://lkml.kernel.org/r/1489490743-5364-1-git-send-email-xieyisheng1@huawei.com
Signed-off-by: Yisheng Xie <xieyisheng1@huawei.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Hanjun Guo <guohanjun@huawei.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The current implementation calculates usemap_size in two steps:
* calculate number of bytes to cover these bits
* calculate number of "unsigned long" to cover these bytes
It would be more clear by:
* calculate number of "unsigned long" to cover these bits
* multiple it with sizeof(unsigned long)
This patch refine usemap_size() a little to make it more easy to
understand.
Link: http://lkml.kernel.org/r/20170310043713.96871-1-richard.weiyang@gmail.com
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__GFP_NOWARN, which is usually added to avoid warnings from callsites
that expect to fail and have fallbacks, currently also suppresses
allocation stall warnings. These trigger when an allocation is stuck
inside the allocator for 10 seconds or longer.
But there is no class of allocations that can get legitimately stuck in
the allocator for this long. This always indicates a problem.
Always emit stall warnings. Restrict __GFP_NOWARN to alloc failures.
Link: http://lkml.kernel.org/r/20170125181150.GA16398@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
kswapd is woken to reclaim a node based on a failed allocation request
from any eligible zone. Once reclaiming in balance_pgdat(), it will
continue reclaiming until there is an eligible zone available for the
zone it was woken for. kswapd tracks what zone it was recently woken
for in pgdat->kswapd_classzone_idx. If it has not been woken recently,
this zone will be 0.
However, the decision on whether to sleep is made on
kswapd_classzone_idx which is 0 without a recent wakeup request and that
classzone does not account for lowmem reserves. This allows kswapd to
sleep when a low small zone such as ZONE_DMA is balanced for a GFP_DMA
request even if a stream of allocations cannot use that zone. While
kswapd may be woken again shortly in the near future there are two
consequences -- the pgdat bits that control congestion are cleared
prematurely and direct reclaim is more likely as kswapd slept
prematurely.
This patch flips kswapd_classzone_idx to default to MAX_NR_ZONES (an
invalid index) when there has been no recent wakeups. If there are no
wakeups, it'll decide whether to sleep based on the highest possible
zone available (MAX_NR_ZONES - 1). It then becomes critical that the
"pgdat balanced" decisions during reclaim and when deciding to sleep are
the same. If there is a mismatch, kswapd can stay awake continually
trying to balance tiny zones.
simoop was used to evaluate it again. Two of the preparation patches
regressed the workload so they are included as the second set of
results. Otherwise this patch looks artifically excellent
4.11.0-rc1 4.11.0-rc1 4.11.0-rc1
vanilla clear-v2 keepawake-v2
Amean p50-Read 21670074.18 ( 0.00%) 19786774.76 ( 8.69%) 22668332.52 ( -4.61%)
Amean p95-Read 25456267.64 ( 0.00%) 24101956.27 ( 5.32%) 26738688.00 ( -5.04%)
Amean p99-Read 29369064.73 ( 0.00%) 27691872.71 ( 5.71%) 30991404.52 ( -5.52%)
Amean p50-Write 1390.30 ( 0.00%) 1011.91 ( 27.22%) 924.91 ( 33.47%)
Amean p95-Write 412901.57 ( 0.00%) 34874.98 ( 91.55%) 1362.62 ( 99.67%)
Amean p99-Write 6668722.09 ( 0.00%) 575449.60 ( 91.37%) 16854.04 ( 99.75%)
Amean p50-Allocation 78714.31 ( 0.00%) 84246.26 ( -7.03%) 74729.74 ( 5.06%)
Amean p95-Allocation 175533.51 ( 0.00%) 400058.43 (-127.91%) 101609.74 ( 42.11%)
Amean p99-Allocation 247003.02 ( 0.00%) 10905600.00 (-4315.17%) 125765.57 ( 49.08%)
With this patch on top, write and allocation latencies are massively
improved. The read latencies are slightly impaired but it's worth
noting that this is mostly due to the IO scheduler and not directly
related to reclaim. The vmstats are a bit of a mix but the relevant
ones are as follows;
4.10.0-rc7 4.10.0-rc7 4.10.0-rc7
mmots-20170209 clear-v1r25keepawake-v1r25
Swap Ins 0 0 0
Swap Outs 0 608 0
Direct pages scanned 69106723132699 6357298
Kswapd pages scanned 57036946 82488665 56986286
Kswapd pages reclaimed 55993488 63474329 55939113
Direct pages reclaimed 6905990 2964843 6352115
Kswapd efficiency 98% 76% 98%
Kswapd velocity 12494.375 17597.507 12488.065
Direct efficiency 99% 94% 99%
Direct velocity 1513.835 668.306 1393.148
Page writes by reclaim 0.000 4410243.000 0.000
Page writes file 0 4409635 0
Page writes anon 0 608 0
Page reclaim immediate 1036792 14175203 1042571
4.11.0-rc1 4.11.0-rc1 4.11.0-rc1
vanilla clear-v2 keepawake-v2
Swap Ins 0 12 0
Swap Outs 0 838 0
Direct pages scanned 6579706 3237270 6256811
Kswapd pages scanned 61853702 79961486 54837791
Kswapd pages reclaimed 60768764 60755788 53849586
Direct pages reclaimed 6579055 2987453 6256151
Kswapd efficiency 98% 75% 98%
Page writes by reclaim 0.000 4389496.000 0.000
Page writes file 0 4388658 0
Page writes anon 0 838 0
Page reclaim immediate 1073573 14473009 982507
Swap-outs are equivalent to baseline.
Direct reclaim is reduced but not eliminated. It's worth noting that
there are two periods of direct reclaim for this workload. The first is
when it switches from preparing the files for the actual test itself.
It's a lot of file IO followed by a lot of allocs that reclaims heavily
for a brief window. While direct reclaim is lower with clear-v2, it is
due to kswapd scanning aggressively and trying to reclaim the world
which is not the right thing to do. With the patches applied, there is
still direct reclaim but the phase change from "creating work files" to
starting multiple threads that allocate a lot of anonymous memory faster
than kswapd can reclaim.
Scanning/reclaim efficiency is restored by this patch.
Page writes from reclaim context are back at 0 which is ideal.
Pages immediately reclaimed after IO completes is slightly improved but
it is expected this will vary slightly.
On UMA, there is almost no change so this is not expected to be a
universal win.
[mgorman@suse.de: fix ->kswapd_classzone_idx initialization]
Link: http://lkml.kernel.org/r/20170406174538.5msrznj6nt6qpbx5@suse.de
Link: http://lkml.kernel.org/r/20170309075657.25121-4-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Shantanu Goel <sgoel01@yahoo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A pgdat tracks if recent reclaim encountered too many dirty, writeback
or congested pages. The flags control whether kswapd writes pages back
from reclaim context, tags pages for immediate reclaim when IO
completes, whether processes block on wait_iff_congested and whether
kswapd blocks when too many pages marked for immediate reclaim are
encountered.
The state is cleared in a check function with side-effects. With the
patch "mm, vmscan: fix zone balance check in prepare_kswapd_sleep", the
timing of when the bits get cleared changed. Due to the way the check
works, it'll clear the bits if ZONE_DMA is balanced for a GFP_DMA
allocation because it does not account for lowmem reserves properly.
For the simoop workload, kswapd is not stalling when it should due to
the premature clearing, writing pages from reclaim context like crazy
and generally being unhelpful.
This patch resets the pgdat bits related to page reclaim only when
kswapd is going to sleep. The comparison with simoop is then
4.11.0-rc1 4.11.0-rc1 4.11.0-rc1
vanilla fixcheck-v2 clear-v2
Amean p50-Read 21670074.18 ( 0.00%) 20464344.18 ( 5.56%) 19786774.76 ( 8.69%)
Amean p95-Read 25456267.64 ( 0.00%) 25721423.64 ( -1.04%) 24101956.27 ( 5.32%)
Amean p99-Read 29369064.73 ( 0.00%) 30174230.76 ( -2.74%) 27691872.71 ( 5.71%)
Amean p50-Write 1390.30 ( 0.00%) 1395.28 ( -0.36%) 1011.91 ( 27.22%)
Amean p95-Write 412901.57 ( 0.00%) 37737.74 ( 90.86%) 34874.98 ( 91.55%)
Amean p99-Write 6668722.09 ( 0.00%) 666489.04 ( 90.01%) 575449.60 ( 91.37%)
Amean p50-Allocation 78714.31 ( 0.00%) 86286.22 ( -9.62%) 84246.26 ( -7.03%)
Amean p95-Allocation 175533.51 ( 0.00%) 351812.27 (-100.42%) 400058.43 (-127.91%)
Amean p99-Allocation 247003.02 ( 0.00%) 6291171.56 (-2447.00%) 10905600.00 (-4315.17%)
Read latency is improved, write latency is mostly improved but
allocation latency is regressed. kswapd is still reclaiming
inefficiently, pages are being written back from writeback context and a
host of other issues. However, given the change, it needed to be
spelled out why the side-effect was moved.
Link: http://lkml.kernel.org/r/20170309075657.25121-3-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Shantanu Goel <sgoel01@yahoo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "Reduce amount of time kswapd sleeps prematurely", v2.
The series is unusual in that the first patch fixes one problem and
introduces other issues that are noted in the changelog. Patch 2 makes
a minor modification that is worth considering on its own but leaves the
kernel in a state where it behaves badly. It's not until patch 3 that
there is an improvement against baseline.
This was mostly motivated by examining Chris Mason's "simoop" benchmark
which puts the VM under similar pressure to HADOOP. It has been
reported that the benchmark has regressed severely during the last
number of releases. While I cannot reproduce all the same problems
Chris experienced due to hardware limitations, there was a number of
problems on a 2-socket machine with a single disk.
simoop latencies
4.11.0-rc1 4.11.0-rc1
vanilla keepawake-v2
Amean p50-Read 21670074.18 ( 0.00%) 22668332.52 ( -4.61%)
Amean p95-Read 25456267.64 ( 0.00%) 26738688.00 ( -5.04%)
Amean p99-Read 29369064.73 ( 0.00%) 30991404.52 ( -5.52%)
Amean p50-Write 1390.30 ( 0.00%) 924.91 ( 33.47%)
Amean p95-Write 412901.57 ( 0.00%) 1362.62 ( 99.67%)
Amean p99-Write 6668722.09 ( 0.00%) 16854.04 ( 99.75%)
Amean p50-Allocation 78714.31 ( 0.00%) 74729.74 ( 5.06%)
Amean p95-Allocation 175533.51 ( 0.00%) 101609.74 ( 42.11%)
Amean p99-Allocation 247003.02 ( 0.00%) 125765.57 ( 49.08%)
These are latencies. Read/write are threads reading fixed-size random
blocks from a simulated database. The allocation latency is mmaping and
faulting regions of memory. The p50, 95 and p99 reports the worst
latencies for 50% of the samples, 95% and 99% respectively.
For example, the report indicates that while the test was running 99% of
writes completed 99.75% faster. It's worth noting that on a UMA machine
that no difference in performance with simoop was observed so milage
will vary.
It's noted that there is a slight impact to read latencies but it's
mostly due to IO scheduler decisions and offset by the large reduction
in other latencies.
This patch (of 3):
The check in prepare_kswapd_sleep needs to match the one in
balance_pgdat since the latter will return as soon as any one of the
zones in the classzone is above the watermark. This is specially
important for higher order allocations since balance_pgdat will
typically reset the order to zero relying on compaction to create the
higher order pages. Without this patch, prepare_kswapd_sleep fails to
wake up kcompactd since the zone balance check fails.
It was first reported against 4.9.7 that kswapd is failing to wake up
kcompactd due to a mismatch in the zone balance check between
balance_pgdat() and prepare_kswapd_sleep().
balance_pgdat() returns as soon as a single zone satisfies the
allocation but prepare_kswapd_sleep() requires all zones to do +the
same. This causes prepare_kswapd_sleep() to never succeed except in the
order == 0 case and consequently, wakeup_kcompactd() is never called.
For the machine that originally motivated this patch, the state of
compaction from /proc/vmstat looked this way after a day and a half +of
uptime:
compact_migrate_scanned 240496
compact_free_scanned 76238632
compact_isolated 123472
compact_stall 1791
compact_fail 29
compact_success 1762
compact_daemon_wake 0
After applying the patch and about 10 hours of uptime the state looks
like this:
compact_migrate_scanned 59927299
compact_free_scanned 2021075136
compact_isolated 640926
compact_stall 4
compact_fail 2
compact_success 2
compact_daemon_wake 5160
Further notes from Mel that motivated him to pick this patch up and
resend it;
It was observed for the simoop workload (pressures the VM similar to
HADOOP) that kswapd was failing to keep ahead of direct reclaim. The
investigation noted that there was a need to rationalise kswapd
decisions to reclaim with kswapd decisions to sleep. With this patch on
a 2-socket box, there was a 49% reduction in direct reclaim scanning.
However, the impact otherwise is extremely negative. Kswapd reclaim
efficiency dropped from 98% to 76%. simoop has three latency-related
metrics for read, write and allocation (an anonymous mmap and fault).
4.11.0-rc1 4.11.0-rc1
vanilla fixcheck-v2
Amean p50-Read 21670074.18 ( 0.00%) 20464344.18 ( 5.56%)
Amean p95-Read 25456267.64 ( 0.00%) 25721423.64 ( -1.04%)
Amean p99-Read 29369064.73 ( 0.00%) 30174230.76 ( -2.74%)
Amean p50-Write 1390.30 ( 0.00%) 1395.28 ( -0.36%)
Amean p95-Write 412901.57 ( 0.00%) 37737.74 ( 90.86%)
Amean p99-Write 6668722.09 ( 0.00%) 666489.04 ( 90.01%)
Amean p50-Allocation 78714.31 ( 0.00%) 86286.22 ( -9.62%)
Amean p95-Allocation 175533.51 ( 0.00%) 351812.27 (-100.42%)
Amean p99-Allocation 247003.02 ( 0.00%) 6291171.56 (-2447.00%)
Of greater concern is that the patch causes swapping and page writes
from kswapd context rose from 0 pages to 4189753 pages during the hour
the workload ran for. By and large, the patch has very bad behaviour
but easily missed as the impact on a UMA machine is negligible.
This patch is included with the data in case a bisection leads to this
area. This patch is also a pre-requisite for the rest of the series.
Link: http://lkml.kernel.org/r/20170309075657.25121-2-mgorman@techsingularity.net
Signed-off-by: Shantanu Goel <sgoel01@yahoo.com>
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With the discussion[1], I found it seems there are every PageFlags
functions return bool at this moment so we don't need double negation
any more. Although it's not a problem to keep it, it makes future users
confused to use double negation for them, too.
Remove such possibility.
[1] https://marc.info/?l=linux-kernel&m=148881578820434
Frankly sepaking, I like every PageFlags to return bool instead of int.
It will make it clear. AFAIR, Chen Gang had tried it but don't know why
it was not merged at that time.
http://lkml.kernel.org/r/1469336184-1904-1-git-send-email-chengang@emindsoft.com.cn
Link: http://lkml.kernel.org/r/1488868597-32222-1-git-send-email-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Chen Gang <gang.chen.5i5j@gmail.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since commit 3ad38ceb27 ("x86/mm: Remove CONFIG_DEBUG_NX_TEST"),
nothing is using the exported rodata_test_data variable, so drop the
export.
This additionally updates the pr_fmt to avoid redundant strings and
adjusts some whitespace.
Link: http://lkml.kernel.org/r/20170307005313.GA85809@beast
Signed-off-by: Kees Cook <keescook@chromium.org>
Cc: Jinbum Park <jinb.park7@gmail.com>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The round_up() macro generates a couple of unnecessary instructions
in this usage:
48cd: 49 8b 47 50 mov 0x50(%r15),%rax
48d1: 48 83 e8 01 sub $0x1,%rax
48d5: 48 0d ff 0f 00 00 or $0xfff,%rax
48db: 48 83 c0 01 add $0x1,%rax
48df: 48 c1 f8 0c sar $0xc,%rax
48e3: 48 39 c3 cmp %rax,%rbx
48e6: 72 2e jb 4916 <filemap_fault+0x96>
If we change round_up() to ((x) + __round_mask(x, y)) & ~__round_mask(x, y)
then GCC can see through it and remove the mask (because that would be
dead code given the subsequent shift):
48cd: 49 8b 47 50 mov 0x50(%r15),%rax
48d1: 48 05 ff 0f 00 00 add $0xfff,%rax
48d7: 48 c1 e8 0c shr $0xc,%rax
48db: 48 39 c3 cmp %rax,%rbx
48de: 72 2e jb 490e <filemap_fault+0x8e>
But that's problematic because we'd evaluate 'y' twice. Converting
round_up into an inline function prevents it from being used in other
definitions. The easiest thing to do is just change these three usages
of round_up to use DIV_ROUND_UP. Also add an unlikely() because GCC's
heuristic is wrong in this case.
Link: http://lkml.kernel.org/r/20170207192812.5281-1-willy@infradead.org
Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
kjournald2 is central to the transaction commit processing. As such any
potential allocation from this kernel thread has to be GFP_NOFS. Make
sure to mark the whole kernel thread GFP_NOFS by the memalloc_nofs_save.
[akpm@linux-foundation.org: coding-style fixes]
Link: http://lkml.kernel.org/r/20170306131408.9828-8-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Suggested-by: Jan Kara <jack@suse.cz>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Chris Mason <clm@fb.com>
Cc: David Sterba <dsterba@suse.cz>
Cc: Brian Foster <bfoster@redhat.com>
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Cc: Nikolay Borisov <nborisov@suse.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
now that we have memalloc_nofs_{save,restore} api we can mark the whole
transaction context as implicitly GFP_NOFS. All allocations will
automatically inherit GFP_NOFS this way. This means that we do not have
to mark any of those requests with GFP_NOFS and moreover all the
ext4_kv[mz]alloc(GFP_NOFS) are also safe now because even the hardcoded
GFP_KERNEL allocations deep inside the vmalloc will be NOFS now.
[akpm@linux-foundation.org: tweak comments]
Link: http://lkml.kernel.org/r/20170306131408.9828-7-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Chris Mason <clm@fb.com>
Cc: David Sterba <dsterba@suse.cz>
Cc: Brian Foster <bfoster@redhat.com>
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Cc: Nikolay Borisov <nborisov@suse.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
kmem_zalloc_large and _xfs_buf_map_pages use memalloc_noio_{save,restore}
API to prevent from reclaim recursion into the fs because vmalloc can
invoke unconditional GFP_KERNEL allocations and these functions might be
called from the NOFS contexts. The memalloc_noio_save will enforce
GFP_NOIO context which is even weaker than GFP_NOFS and that seems to be
unnecessary. Let's use memalloc_nofs_{save,restore} instead as it
should provide exactly what we need here - implicit GFP_NOFS context.
Link: http://lkml.kernel.org/r/20170306131408.9828-6-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Chris Mason <clm@fb.com>
Cc: David Sterba <dsterba@suse.cz>
Cc: Jan Kara <jack@suse.cz>
Cc: Nikolay Borisov <nborisov@suse.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
GFP_NOFS context is used for the following 5 reasons currently:
- to prevent from deadlocks when the lock held by the allocation
context would be needed during the memory reclaim
- to prevent from stack overflows during the reclaim because the
allocation is performed from a deep context already
- to prevent lockups when the allocation context depends on other
reclaimers to make a forward progress indirectly
- just in case because this would be safe from the fs POV
- silence lockdep false positives
Unfortunately overuse of this allocation context brings some problems to
the MM. Memory reclaim is much weaker (especially during heavy FS
metadata workloads), OOM killer cannot be invoked because the MM layer
doesn't have enough information about how much memory is freeable by the
FS layer.
In many cases it is far from clear why the weaker context is even used
and so it might be used unnecessarily. We would like to get rid of
those as much as possible. One way to do that is to use the flag in
scopes rather than isolated cases. Such a scope is declared when really
necessary, tracked per task and all the allocation requests from within
the context will simply inherit the GFP_NOFS semantic.
Not only this is easier to understand and maintain because there are
much less problematic contexts than specific allocation requests, this
also helps code paths where FS layer interacts with other layers (e.g.
crypto, security modules, MM etc...) and there is no easy way to convey
the allocation context between the layers.
Introduce memalloc_nofs_{save,restore} API to control the scope of
GFP_NOFS allocation context. This is basically copying
memalloc_noio_{save,restore} API we have for other restricted allocation
context GFP_NOIO. The PF_MEMALLOC_NOFS flag already exists and it is
just an alias for PF_FSTRANS which has been xfs specific until recently.
There are no more PF_FSTRANS users anymore so let's just drop it.
PF_MEMALLOC_NOFS is now checked in the MM layer and drops __GFP_FS
implicitly same as PF_MEMALLOC_NOIO drops __GFP_IO. memalloc_noio_flags
is renamed to current_gfp_context because it now cares about both
PF_MEMALLOC_NOFS and PF_MEMALLOC_NOIO contexts. Xfs code paths preserve
their semantic. kmem_flags_convert() doesn't need to evaluate the flag
anymore.
This patch shouldn't introduce any functional changes.
Let's hope that filesystems will drop direct GFP_NOFS (resp. ~__GFP_FS)
usage as much as possible and only use a properly documented
memalloc_nofs_{save,restore} checkpoints where they are appropriate.
[akpm@linux-foundation.org: fix comment typo, reflow comment]
Link: http://lkml.kernel.org/r/20170306131408.9828-5-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Chris Mason <clm@fb.com>
Cc: David Sterba <dsterba@suse.cz>
Cc: Jan Kara <jack@suse.cz>
Cc: Brian Foster <bfoster@redhat.com>
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Cc: Nikolay Borisov <nborisov@suse.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
xfs has defined PF_FSTRANS to declare a scope GFP_NOFS semantic quite
some time ago. We would like to make this concept more generic and use
it for other filesystems as well. Let's start by giving the flag a more
generic name PF_MEMALLOC_NOFS which is in line with an exiting
PF_MEMALLOC_NOIO already used for the same purpose for GFP_NOIO
contexts. Replace all PF_FSTRANS usage from the xfs code in the first
step before we introduce a full API for it as xfs uses the flag directly
anyway.
This patch doesn't introduce any functional change.
Link: http://lkml.kernel.org/r/20170306131408.9828-4-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Chris Mason <clm@fb.com>
Cc: David Sterba <dsterba@suse.cz>
Cc: Jan Kara <jack@suse.cz>
Cc: Nikolay Borisov <nborisov@suse.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The current implementation of the reclaim lockup detection can lead to
false positives and those even happen and usually lead to tweak the code
to silence the lockdep by using GFP_NOFS even though the context can use
__GFP_FS just fine.
See
http://lkml.kernel.org/r/20160512080321.GA18496@dastard
as an example.
=================================
[ INFO: inconsistent lock state ]
4.5.0-rc2+ #4 Tainted: G O
---------------------------------
inconsistent {RECLAIM_FS-ON-R} -> {IN-RECLAIM_FS-W} usage.
kswapd0/543 [HC0[0]:SC0[0]:HE1:SE1] takes:
(&xfs_nondir_ilock_class){++++-+}, at: xfs_ilock+0x177/0x200 [xfs]
{RECLAIM_FS-ON-R} state was registered at:
mark_held_locks+0x79/0xa0
lockdep_trace_alloc+0xb3/0x100
kmem_cache_alloc+0x33/0x230
kmem_zone_alloc+0x81/0x120 [xfs]
xfs_refcountbt_init_cursor+0x3e/0xa0 [xfs]
__xfs_refcount_find_shared+0x75/0x580 [xfs]
xfs_refcount_find_shared+0x84/0xb0 [xfs]
xfs_getbmap+0x608/0x8c0 [xfs]
xfs_vn_fiemap+0xab/0xc0 [xfs]
do_vfs_ioctl+0x498/0x670
SyS_ioctl+0x79/0x90
entry_SYSCALL_64_fastpath+0x12/0x6f
CPU0
----
lock(&xfs_nondir_ilock_class);
<Interrupt>
lock(&xfs_nondir_ilock_class);
*** DEADLOCK ***
3 locks held by kswapd0/543:
stack backtrace:
CPU: 0 PID: 543 Comm: kswapd0 Tainted: G O 4.5.0-rc2+ #4
Call Trace:
lock_acquire+0xd8/0x1e0
down_write_nested+0x5e/0xc0
xfs_ilock+0x177/0x200 [xfs]
xfs_reflink_cancel_cow_range+0x150/0x300 [xfs]
xfs_fs_evict_inode+0xdc/0x1e0 [xfs]
evict+0xc5/0x190
dispose_list+0x39/0x60
prune_icache_sb+0x4b/0x60
super_cache_scan+0x14f/0x1a0
shrink_slab.part.63.constprop.79+0x1e9/0x4e0
shrink_zone+0x15e/0x170
kswapd+0x4f1/0xa80
kthread+0xf2/0x110
ret_from_fork+0x3f/0x70
To quote Dave:
"Ignoring whether reflink should be doing anything or not, that's a
"xfs_refcountbt_init_cursor() gets called both outside and inside
transactions" lockdep false positive case. The problem here is lockdep
has seen this allocation from within a transaction, hence a GFP_NOFS
allocation, and now it's seeing it in a GFP_KERNEL context. Also note
that we have an active reference to this inode.
So, because the reclaim annotations overload the interrupt level
detections and it's seen the inode ilock been taken in reclaim
("interrupt") context, this triggers a reclaim context warning where
it thinks it is unsafe to do this allocation in GFP_KERNEL context
holding the inode ilock..."
This sounds like a fundamental problem of the reclaim lock detection.
It is really impossible to annotate such a special usecase IMHO unless
the reclaim lockup detection is reworked completely. Until then it is
much better to provide a way to add "I know what I am doing flag" and
mark problematic places. This would prevent from abusing GFP_NOFS flag
which has a runtime effect even on configurations which have lockdep
disabled.
Introduce __GFP_NOLOCKDEP flag which tells the lockdep gfp tracking to
skip the current allocation request.
While we are at it also make sure that the radix tree doesn't
accidentaly override tags stored in the upper part of the gfp_mask.
Link: http://lkml.kernel.org/r/20170306131408.9828-3-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Chris Mason <clm@fb.com>
Cc: David Sterba <dsterba@suse.cz>
Cc: Jan Kara <jack@suse.cz>
Cc: Brian Foster <bfoster@redhat.com>
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Cc: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "scope GFP_NOFS api", v5.
This patch (of 7):
Commit 21caf2fc19 ("mm: teach mm by current context info to not do I/O
during memory allocation") added the memalloc_noio_(save|restore)
functions to enable people to modify the MM behavior by disabling I/O
during memory allocation.
This was further extended in commit 934f3072c1 ("mm: clear __GFP_FS
when PF_MEMALLOC_NOIO is set").
memalloc_noio_* functions prevent allocation paths recursing back into
the filesystem without explicitly changing the flags for every
allocation site.
However, lockdep hasn't been keeping up with the changes and it entirely
misses handling the memalloc_noio adjustments. Instead, it is left to
the callers of __lockdep_trace_alloc to call the function after they
have shaven the respective GFP flags which can lead to false positives:
=================================
[ INFO: inconsistent lock state ]
4.10.0-nbor #134 Not tainted
---------------------------------
inconsistent {IN-RECLAIM_FS-W} -> {RECLAIM_FS-ON-W} usage.
fsstress/3365 [HC0[0]:SC0[0]:HE1:SE1] takes:
(&xfs_nondir_ilock_class){++++?.}, at: xfs_ilock+0x141/0x230
{IN-RECLAIM_FS-W} state was registered at:
__lock_acquire+0x62a/0x17c0
lock_acquire+0xc5/0x220
down_write_nested+0x4f/0x90
xfs_ilock+0x141/0x230
xfs_reclaim_inode+0x12a/0x320
xfs_reclaim_inodes_ag+0x2c8/0x4e0
xfs_reclaim_inodes_nr+0x33/0x40
xfs_fs_free_cached_objects+0x19/0x20
super_cache_scan+0x191/0x1a0
shrink_slab+0x26f/0x5f0
shrink_node+0xf9/0x2f0
kswapd+0x356/0x920
kthread+0x10c/0x140
ret_from_fork+0x31/0x40
irq event stamp: 173777
hardirqs last enabled at (173777): __local_bh_enable_ip+0x70/0xc0
hardirqs last disabled at (173775): __local_bh_enable_ip+0x37/0xc0
softirqs last enabled at (173776): _xfs_buf_find+0x67a/0xb70
softirqs last disabled at (173774): _xfs_buf_find+0x5db/0xb70
other info that might help us debug this:
Possible unsafe locking scenario:
CPU0
----
lock(&xfs_nondir_ilock_class);
<Interrupt>
lock(&xfs_nondir_ilock_class);
*** DEADLOCK ***
4 locks held by fsstress/3365:
#0: (sb_writers#10){++++++}, at: mnt_want_write+0x24/0x50
#1: (&sb->s_type->i_mutex_key#12){++++++}, at: vfs_setxattr+0x6f/0xb0
#2: (sb_internal#2){++++++}, at: xfs_trans_alloc+0xfc/0x140
#3: (&xfs_nondir_ilock_class){++++?.}, at: xfs_ilock+0x141/0x230
stack backtrace:
CPU: 0 PID: 3365 Comm: fsstress Not tainted 4.10.0-nbor #134
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Ubuntu-1.8.2-1ubuntu1 04/01/2014
Call Trace:
kmem_cache_alloc_node_trace+0x3a/0x2c0
vm_map_ram+0x2a1/0x510
_xfs_buf_map_pages+0x77/0x140
xfs_buf_get_map+0x185/0x2a0
xfs_attr_rmtval_set+0x233/0x430
xfs_attr_leaf_addname+0x2d2/0x500
xfs_attr_set+0x214/0x420
xfs_xattr_set+0x59/0xb0
__vfs_setxattr+0x76/0xa0
__vfs_setxattr_noperm+0x5e/0xf0
vfs_setxattr+0xae/0xb0
setxattr+0x15e/0x1a0
path_setxattr+0x8f/0xc0
SyS_lsetxattr+0x11/0x20
entry_SYSCALL_64_fastpath+0x23/0xc6
Let's fix this by making lockdep explicitly do the shaving of respective
GFP flags.
Fixes: 934f3072c1 ("mm: clear __GFP_FS when PF_MEMALLOC_NOIO is set")
Link: http://lkml.kernel.org/r/20170306131408.9828-2-mhocko@kernel.org
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Chris Mason <clm@fb.com>
Cc: David Sterba <dsterba@suse.cz>
Cc: Jan Kara <jack@suse.cz>
Cc: Brian Foster <bfoster@redhat.com>
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
After "mm, vmstat: print non-populated zones in zoneinfo",
/proc/zoneinfo will show unpopulated zones.
The per-cpu pageset statistics are not relevant for unpopulated zones
and can be potentially lengthy, so supress them when they are not
interesting.
Also moves lowmem reserve protection information above pcp stats since
it is relevant for all zones per vm.lowmem_reserve_ratio.
Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1703061400500.46428@chino.kir.corp.google.com
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Initscripts can use the information (protection levels) from
/proc/zoneinfo to configure vm.lowmem_reserve_ratio at boot.
vm.lowmem_reserve_ratio is an array of ratios for each configured zone
on the system. If a zone is not populated on an arch, /proc/zoneinfo
suppresses its output.
This results in there not being a 1:1 mapping between the set of zones
emitted by /proc/zoneinfo and the zones configured by
vm.lowmem_reserve_ratio.
This patch shows statistics for non-populated zones in /proc/zoneinfo.
The zones exist and hold a spot in the vm.lowmem_reserve_ratio array.
Without this patch, it is not possible to determine which index in the
array controls which zone if one or more zones on the system are not
populated.
Remaining users of walk_zones_in_node() are unchanged. Files such as
/proc/pagetypeinfo require certain zone data to be initialized properly
for display, which is not done for unpopulated zones.
Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1703031451310.98023@chino.kir.corp.google.com
Signed-off-by: David Rientjes <rientjes@google.com>
Reviewed-by: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Introduce two helpers, is_migrate_highatomic() and is_migrate_highatomic_page().
Simplify the code, no functional changes.
[akpm@linux-foundation.org: use static inlines rather than macros, per mhocko]
Link: http://lkml.kernel.org/r/58B94F15.6060606@huawei.com
Signed-off-by: Xishi Qiu <qiuxishi@huawei.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Before using cluster lock in free_swap_and_cache(), the
swap_info_struct->lock will be held during freeing the swap entry and
acquiring page lock, so the page swap count will not change when testing
page information later. But after using cluster lock, the cluster lock
(or swap_info_struct->lock) will be held only during freeing the swap
entry. So before acquiring the page lock, the page swap count may be
changed in another thread. If the page swap count is not 0, we should
not delete the page from the swap cache. This is fixed via checking
page swap count again after acquiring the page lock.
I found the race when I review the code, so I didn't trigger the race
via a test program. If the race occurs for an anonymous page shared by
multiple processes via fork, multiple pages will be allocated and
swapped in from the swap device for the previously shared one page.
That is, the user-visible runtime effect is more memory will be used and
the access latency for the page will be higher, that is, the performance
regression.
Link: http://lkml.kernel.org/r/20170301143905.12846-1-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Tim Chen <tim.c.chen@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Cgroups currently don't report how much shmem they use, which can be
useful data to have, in particular since shmem is included in the
cache/file item while being reclaimed like anonymous memory.
Add a counter to track shmem pages during charging and uncharging.
Link: http://lkml.kernel.org/r/20170221164343.32252-1-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reported-by: Chris Down <cdown@fb.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Show MADV_FREE pages info of each vma in smaps. The interface is for
diganose or monitoring purpose, userspace could use it to understand
what happens in the application. Since userspace could dirty MADV_FREE
pages without notice from kernel, this interface is the only place we
can get accurate accounting info about MADV_FREE pages.
[mhocko@kernel.org: update Documentation/filesystems/proc.txt]
Link: http://lkml.kernel.org/r/89efde633559de1ec07444f2ef0f4963a97a2ce8.1487965799.git.shli@fb.com
Signed-off-by: Shaohua Li <shli@fb.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Minchan Kim <minchan@kernel.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now MADV_FREE pages can be easily reclaimed even for swapless system.
We can safely enable MADV_FREE for all systems.
Link: http://lkml.kernel.org/r/155648585589300bfae1d45078e7aebb3d988b87.1487965799.git.shli@fb.com
Signed-off-by: Shaohua Li <shli@fb.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If a page is swapbacked, it means it should be in swapcache in
try_to_unmap_one's path.
If a page is !swapbacked, it mean it shouldn't be in swapcache in
try_to_unmap_one's path.
Check both two cases all at once and if it fails, warn and return
SWAP_FAIL. Such bug never mean we should shut down the kernel.
[minchan@kernel.org: do not use VM_WARN_ON_ONCE as if condition[
Link: http://lkml.kernel.org/r/20170309060226.GB854@bbox
Link: http://lkml.kernel.org/r/20170307055551.GC29458@bbox
Signed-off-by: Minchan Kim <minchan@kernel.org>
Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Shaohua Li <shli@fb.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When memory pressure is high, we free MADV_FREE pages. If the pages are
not dirty in pte, the pages could be freed immediately. Otherwise we
can't reclaim them. We put the pages back to anonumous LRU list (by
setting SwapBacked flag) and the pages will be reclaimed in normal
swapout way.
We use normal page reclaim policy. Since MADV_FREE pages are put into
inactive file list, such pages and inactive file pages are reclaimed
according to their age. This is expected, because we don't want to
reclaim too many MADV_FREE pages before used once pages.
Based on Minchan's original patch
[minchan@kernel.org: clean up lazyfree page handling]
Link: http://lkml.kernel.org/r/20170303025237.GB3503@bbox
Link: http://lkml.kernel.org/r/14b8eb1d3f6bf6cc492833f183ac8c304e560484.1487965799.git.shli@fb.com
Signed-off-by: Shaohua Li <shli@fb.com>
Signed-off-by: Minchan Kim <minchan@kernel.org>
Acked-by: Minchan Kim <minchan@kernel.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
madv()'s MADV_FREE indicate pages are 'lazyfree'. They are still
anonymous pages, but they can be freed without pageout. To distinguish
these from normal anonymous pages, we clear their SwapBacked flag.
MADV_FREE pages could be freed without pageout, so they pretty much like
used once file pages. For such pages, we'd like to reclaim them once
there is memory pressure. Also it might be unfair reclaiming MADV_FREE
pages always before used once file pages and we definitively want to
reclaim the pages before other anonymous and file pages.
To speed up MADV_FREE pages reclaim, we put the pages into
LRU_INACTIVE_FILE list. The rationale is LRU_INACTIVE_FILE list is tiny
nowadays and should be full of used once file pages. Reclaiming
MADV_FREE pages will not have much interfere of anonymous and active
file pages. And the inactive file pages and MADV_FREE pages will be
reclaimed according to their age, so we don't reclaim too many MADV_FREE
pages too. Putting the MADV_FREE pages into LRU_INACTIVE_FILE_LIST also
means we can reclaim the pages without swap support. This idea is
suggested by Johannes.
This patch doesn't move MADV_FREE pages to LRU_INACTIVE_FILE list yet to
avoid bisect failure, next patch will do it.
The patch is based on Minchan's original patch.
[akpm@linux-foundation.org: coding-style fixes]
Link: http://lkml.kernel.org/r/2f87063c1e9354677b7618c647abde77b07561e5.1487965799.git.shli@fb.com
Signed-off-by: Shaohua Li <shli@fb.com>
Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Minchan Kim <minchan@kernel.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are a few places the code assumes anonymous pages should have
SwapBacked flag set. MADV_FREE pages are anonymous pages but we are
going to add them to LRU_INACTIVE_FILE list and clear SwapBacked flag
for them. The assumption doesn't hold any more, so fix them.
Link: http://lkml.kernel.org/r/3945232c0df3dd6c4ef001976f35a95f18dcb407.1487965799.git.shli@fb.com
Signed-off-by: Shaohua Li <shli@fb.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm: fix some MADV_FREE issues", v5.
We are trying to use MADV_FREE in jemalloc. Several issues are found.
Without solving the issues, jemalloc can't use the MADV_FREE feature.
- Doesn't support system without swap enabled. Because if swap is off,
we can't or can't efficiently age anonymous pages. And since
MADV_FREE pages are mixed with other anonymous pages, we can't
reclaim MADV_FREE pages. In current implementation, MADV_FREE will
fallback to MADV_DONTNEED without swap enabled. But in our
environment, a lot of machines don't enable swap. This will prevent
our setup using MADV_FREE.
- Increases memory pressure. page reclaim bias file pages reclaim
against anonymous pages. This doesn't make sense for MADV_FREE pages,
because those pages could be freed easily and refilled with very
slight penality. Even page reclaim doesn't bias file pages, there is
still an issue, because MADV_FREE pages and other anonymous pages are
mixed together. To reclaim a MADV_FREE page, we probably must scan a
lot of other anonymous pages, which is inefficient. In our test, we
usually see oom with MADV_FREE enabled and nothing without it.
- Accounting. There are two accounting problems. We don't have a global
accounting. If the system is abnormal, we don't know if it's a
problem from MADV_FREE side. The other problem is RSS accounting.
MADV_FREE pages are accounted as normal anon pages and reclaimed
lazily, so application's RSS becomes bigger. This confuses our
workloads. We have monitoring daemon running and if it finds
applications' RSS becomes abnormal, the daemon will kill the
applications even kernel can reclaim the memory easily.
To address the first the two issues, we can either put MADV_FREE pages
into a separate LRU list (Minchan's previous patches and V1 patches), or
put them into LRU_INACTIVE_FILE list (suggested by Johannes). The
patchset use the second idea. The reason is LRU_INACTIVE_FILE list is
tiny nowadays and should be full of used once file pages. So we can
still efficiently reclaim MADV_FREE pages there without interference
with other anon and active file pages. Putting the pages into inactive
file list also has an advantage which allows page reclaim to prioritize
MADV_FREE pages and used once file pages. MADV_FREE pages are put into
the lru list and clear SwapBacked flag, so PageAnon(page) &&
!PageSwapBacked(page) will indicate a MADV_FREE pages. These pages will
directly freed without pageout if they are clean, otherwise normal swap
will reclaim them.
For the third issue, the previous post adds global accounting and a
separate RSS count for MADV_FREE pages. The problem is we never get
accurate accounting for MADV_FREE pages. The pages are mapped to
userspace, can be dirtied without notice from kernel side. To get
accurate accounting, we could write protect the page, but then there is
extra page fault overhead, which people don't want to pay. Jemalloc
guys have concerns about the inaccurate accounting, so this post drops
the accounting patches temporarily. The info exported to
/proc/pid/smaps for MADV_FREE pages are kept, which is the only place we
can get accurate accounting right now.
This patch (of 6):
Johannes pointed out TTU_LZFREE is unnecessary. It's true because we
always have the flag set if we want to do an unmap. For cases we don't
do an unmap, the TTU_LZFREE part of code should never run.
Also the TTU_UNMAP is unnecessary. If no other flags set (for example,
TTU_MIGRATION), an unmap is implied.
The patch includes Johannes's cleanup and dead TTU_ACTION macro removal
code
Link: http://lkml.kernel.org/r/4be3ea1bc56b26fd98a54d0a6f70bec63f6d8980.1487965799.git.shli@fb.com
Signed-off-by: Shaohua Li <shli@fb.com>
Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Minchan Kim <minchan@kernel.org>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The backoff mechanism is not needed. If we have MAX_RECLAIM_RETRIES
loops without progress, we'll OOM anyway; backing off might cut one or
two iterations off that in the rare OOM case. If we have intermittent
success reclaiming a few pages, the backoff function gets reset also,
and so is of little help in these scenarios.
We might want a backoff function for when there IS progress, but not
enough to be satisfactory. But this isn't that. Remove it.
Link: http://lkml.kernel.org/r/20170228214007.5621-10-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Jia He <hejianet@gmail.com>
Cc: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This reverts commit d7f05528ee.
Now that reclaimability of a node is no longer based on the ratio
between pages scanned and theoretically reclaimable pages, we can remove
accounting tricks for pages skipped due to zone constraints.
Link: http://lkml.kernel.org/r/20170228214007.5621-9-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Jia He <hejianet@gmail.com>
Cc: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
NR_PAGES_SCANNED counts number of pages scanned since the last page free
event in the allocator. This was used primarily to measure the
reclaimability of zones and nodes, and determine when reclaim should
give up on them. In that role, it has been replaced in the preceding
patches by a different mechanism.
Being implemented as an efficient vmstat counter, it was automatically
exported to userspace as well. It's however unlikely that anyone
outside the kernel is using this counter in any meaningful way.
Remove the counter and the unused pgdat_reclaimable().
Link: http://lkml.kernel.org/r/20170228214007.5621-8-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Jia He <hejianet@gmail.com>
Cc: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 246e87a939 ("memcg: fix get_scan_count() for small targets")
sought to avoid high reclaim priorities for memcg by forcing it to scan
a minimum amount of pages when lru_pages >> priority yielded nothing.
This was done at a time when reclaim decisions like dirty throttling
were tied to the priority level.
Nowadays, the only meaningful thing still tied to priority dropping
below DEF_PRIORITY - 2 is gating whether laptop_mode=1 is generally
allowed to write. But that is from an era where direct reclaim was
still allowed to call ->writepage, and kswapd nowadays avoids writes
until it's scanned every clean page in the system. Potential changes to
how quick sc->may_writepage could trigger are of little concern.
Remove the force_scan stuff, as well as the ugly multi-pass target
calculation that it necessitated.
Link: http://lkml.kernel.org/r/20170228214007.5621-7-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Jia He <hejianet@gmail.com>
Cc: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 246e87a939 ("memcg: fix get_scan_count() for small targets")
sought to avoid high reclaim priorities for kswapd by forcing it to scan
a minimum amount of pages when lru_pages >> priority yielded nothing.
Commit b95a2f2d48 ("mm: vmscan: convert global reclaim to per-memcg
LRU lists"), due to switching global reclaim to a round-robin scheme
over all cgroups, had to restrict this forceful behavior to
unreclaimable zones in order to prevent massive overreclaim with many
cgroups.
The latter patch effectively neutered the behavior completely for all
but extreme memory pressure. But in those situations we might as well
drop the reclaimers to lower priority levels. Remove the check.
Link: http://lkml.kernel.org/r/20170228214007.5621-6-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Jia He <hejianet@gmail.com>
Cc: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
NUMA balancing already checks the watermarks of the target node to
decide whether it's a suitable balancing target. Whether the node is
reclaimable or not is irrelevant when we don't intend to reclaim.
Link: http://lkml.kernel.org/r/20170228214007.5621-5-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Jia He <hejianet@gmail.com>
Cc: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 1d82de618d ("mm, vmscan: make kswapd reclaim in terms of
nodes") allowed laptop_mode=1 to start writing not just when the
priority drops to DEF_PRIORITY - 2 but also when the node is
unreclaimable.
That appears to be a spurious change in this patch as I doubt the series
was tested with laptop_mode, and neither is that particular change
mentioned in the changelog. Remove it, it's still recent.
Link: http://lkml.kernel.org/r/20170228214007.5621-4-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Jia He <hejianet@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
PF_MEMALLOC direct reclaimers get throttled on a node when the sum of
all free pages in each zone fall below half the min watermark. During
the summation, we want to exclude zones that don't have reclaimables.
Checking the same pgdat over and over again doesn't make sense.
Fixes: 599d0c954f ("mm, vmscan: move LRU lists to node")
Link: http://lkml.kernel.org/r/20170228214007.5621-3-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Jia He <hejianet@gmail.com>
Cc: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm: kswapd spinning on unreclaimable nodes - fixes and
cleanups".
Jia reported a scenario in which the kswapd of a node indefinitely spins
at 100% CPU usage. We have seen similar cases at Facebook.
The kernel's current method of judging its ability to reclaim a node (or
whether to back off and sleep) is based on the amount of scanned pages
in proportion to the amount of reclaimable pages. In Jia's and our
scenarios, there are no reclaimable pages in the node, however, and the
condition for backing off is never met. Kswapd busyloops in an attempt
to restore the watermarks while having nothing to work with.
This series reworks the definition of an unreclaimable node based not on
scanning but on whether kswapd is able to actually reclaim pages in
MAX_RECLAIM_RETRIES (16) consecutive runs. This is the same criteria
the page allocator uses for giving up on direct reclaim and invoking the
OOM killer. If it cannot free any pages, kswapd will go to sleep and
leave further attempts to direct reclaim invocations, which will either
make progress and re-enable kswapd, or invoke the OOM killer.
Patch #1 fixes the immediate problem Jia reported, the remainder are
smaller fixlets, cleanups, and overall phasing out of the old method.
Patch #6 is the odd one out. It's a nice cleanup to get_scan_count(),
and directly related to #5, but in itself not relevant to the series.
If the whole series is too ambitious for 4.11, I would consider the
first three patches fixes, the rest cleanups.
This patch (of 9):
Jia He reports a problem with kswapd spinning at 100% CPU when
requesting more hugepages than memory available in the system:
$ echo 4000 >/proc/sys/vm/nr_hugepages
top - 13:42:59 up 3:37, 1 user, load average: 1.09, 1.03, 1.01
Tasks: 1 total, 1 running, 0 sleeping, 0 stopped, 0 zombie
%Cpu(s): 0.0 us, 12.5 sy, 0.0 ni, 85.5 id, 2.0 wa, 0.0 hi, 0.0 si, 0.0 st
KiB Mem: 31371520 total, 30915136 used, 456384 free, 320 buffers
KiB Swap: 6284224 total, 115712 used, 6168512 free. 48192 cached Mem
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
76 root 20 0 0 0 0 R 100.0 0.000 217:17.29 kswapd3
At that time, there are no reclaimable pages left in the node, but as
kswapd fails to restore the high watermarks it refuses to go to sleep.
Kswapd needs to back away from nodes that fail to balance. Up until
commit 1d82de618d ("mm, vmscan: make kswapd reclaim in terms of
nodes") kswapd had such a mechanism. It considered zones whose
theoretically reclaimable pages it had reclaimed six times over as
unreclaimable and backed away from them. This guard was erroneously
removed as the patch changed the definition of a balanced node.
However, simply restoring this code wouldn't help in the case reported
here: there *are* no reclaimable pages that could be scanned until the
threshold is met. Kswapd would stay awake anyway.
Introduce a new and much simpler way of backing off. If kswapd runs
through MAX_RECLAIM_RETRIES (16) cycles without reclaiming a single
page, make it back off from the node. This is the same number of shots
direct reclaim takes before declaring OOM. Kswapd will go to sleep on
that node until a direct reclaimer manages to reclaim some pages, thus
proving the node reclaimable again.
[hannes@cmpxchg.org: check kswapd failure against the cumulative nr_reclaimed count]
Link: http://lkml.kernel.org/r/20170306162410.GB2090@cmpxchg.org
[shakeelb@google.com: fix condition for throttle_direct_reclaim]
Link: http://lkml.kernel.org/r/20170314183228.20152-1-shakeelb@google.com
Link: http://lkml.kernel.org/r/20170228214007.5621-2-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Reported-by: Jia He <hejianet@gmail.com>
Tested-by: Jia He <hejianet@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Each slab kmem cache has per cpu array caches. The array caches are
created when the kmem_cache is created, either via kmem_cache_create()
or lazily when the first object is allocated in context of a kmem
enabled memcg. Array caches are replaced by writing to /proc/slabinfo.
Array caches are protected by holding slab_mutex or disabling
interrupts. Array cache allocation and replacement is done by
__do_tune_cpucache() which holds slab_mutex and calls
kick_all_cpus_sync() to interrupt all remote processors which confirms
there are no references to the old array caches.
IPIs are needed when replacing array caches. But when creating a new
array cache, there's no need to send IPIs because there cannot be any
references to the new cache. Outside of memcg kmem accounting these
IPIs occur at boot time, so they're not a problem. But with memcg kmem
accounting each container can create kmem caches, so the IPIs are
wasteful.
Avoid unnecessary IPIs when creating array caches.
Test which reports the IPI count of allocating slab in 10000 memcg:
import os
def ipi_count():
with open("/proc/interrupts") as f:
for l in f:
if 'Function call interrupts' in l:
return int(l.split()[1])
def echo(val, path):
with open(path, "w") as f:
f.write(val)
n = 10000
os.chdir("/mnt/cgroup/memory")
pid = str(os.getpid())
a = ipi_count()
for i in range(n):
os.mkdir(str(i))
echo("1G\n", "%d/memory.limit_in_bytes" % i)
echo("1G\n", "%d/memory.kmem.limit_in_bytes" % i)
echo(pid, "%d/cgroup.procs" % i)
open("/tmp/x", "w").close()
os.unlink("/tmp/x")
b = ipi_count()
print "%d loops: %d => %d (+%d ipis)" % (n, a, b, b-a)
echo(pid, "cgroup.procs")
for i in range(n):
os.rmdir(str(i))
patched: 10000 loops: 1069 => 1170 (+101 ipis)
unpatched: 10000 loops: 1192 => 48933 (+47741 ipis)
Link: http://lkml.kernel.org/r/20170416214544.109476-1-gthelen@google.com
Signed-off-by: Greg Thelen <gthelen@google.com>
Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Configfs is the interface for ocfs2-tools to set configure to kernel and
$configfs_dir/cluster/$clustername/heartbeat/dead_threshold is the one
used to configure heartbeat dead threshold. Kernel has a default value
of it but user can set O2CB_HEARTBEAT_THRESHOLD in /etc/sysconfig/o2cb
to override it.
Commit 45b997737a ("ocfs2/cluster: use per-attribute show and store
methods") changed heartbeat dead threshold name while ocfs2-tools did
not, so ocfs2-tools won't set this configurable and the default value is
always used. So revert it.
Fixes: 45b997737a ("ocfs2/cluster: use per-attribute show and store methods")
Link: http://lkml.kernel.org/r/1490665245-15374-1-git-send-email-junxiao.bi@oracle.com
Signed-off-by: Junxiao Bi <junxiao.bi@oracle.com>
Acked-by: Joseph Qi <jiangqi903@gmail.com>
Cc: Mark Fasheh <mfasheh@versity.com>
Cc: Joel Becker <jlbec@evilplan.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In many of clk_disable() implementations, it is a no-op for a NULL
pointer input, but this is one of the exceptions.
Making it treewide consistent will allow clock consumers to call
clk_disable() without NULL pointer check.
Link: http://lkml.kernel.org/r/1490692624-11931-4-git-send-email-yamada.masahiro@socionext.com
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: Stephen Boyd <sboyd@codeaurora.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Michael Turquette <mturquette@baylibre.com>
Cc: Steven Miao <realmz6@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Here are some of the more common spelling mistakes that I've found while
fixing up spelling mistakes in kernel error message text. They probably
should be added to this list so we don't keep on seeing them appearing
again.
Link: http://lkml.kernel.org/r/20170421122534.5378-1-colin.king@canonical.com
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Acked-by: Kees Cook <keescook@chromium.org>
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: Joe Perches <joe@perches.com>
Cc: Stephen Boyd <sboyd@codeaurora.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>