2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-02 18:54:10 +08:00
Commit Graph

5 Commits

Author SHA1 Message Date
Davidlohr Bueso
f5f302e212 mm,vmacache: count number of system-wide flushes
These flushes deal with sequence number overflows, such as for long lived
threads.  These are rare, but interesting from a debugging PoV.  As such,
display the number of flushes when vmacache debugging is enabled.

Signed-off-by: Davidlohr Bueso <dbueso@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13 12:42:48 -08:00
Davidlohr Bueso
6b4ebc3a90 mm,vmacache: optimize overflow system-wide flushing
For single threaded workloads, we can avoid flushing and iterating through
the entire list of tasks, making the whole function a lot faster,
requiring only a single atomic read for the mm_users.

Signed-off-by: Davidlohr Bueso <davidlohr@hp.com>
Suggested-by: Oleg Nesterov <oleg@redhat.com>
Cc: Aswin Chandramouleeswaran <aswin@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:53:57 -07:00
Davidlohr Bueso
4f115147ff mm,vmacache: add debug data
Introduce a CONFIG_DEBUG_VM_VMACACHE option to enable counting the cache
hit rate -- exported in /proc/vmstat.

Any updates to the caching scheme needs this kind of data, thus it can
save some work re-implementing the counting all the time.

Signed-off-by: Davidlohr Bueso <davidlohr@hp.com>
Cc: Aswin Chandramouleeswaran <aswin@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:53:57 -07:00
Linus Torvalds
50f5aa8a9b mm: don't pointlessly use BUG_ON() for sanity check
BUG_ON() is a big hammer, and should be used _only_ if there is some
major corruption that you cannot possibly recover from, making it
imperative that the current process (and possibly the whole machine) be
terminated with extreme prejudice.

The trivial sanity check in the vmacache code is *not* such a fatal
error.  Recovering from it is absolutely trivial, and using BUG_ON()
just makes it harder to debug for no actual advantage.

To make matters worse, the placement of the BUG_ON() (only if the range
check matched) actually makes it harder to hit the sanity check to begin
with, so _if_ there is a bug (and we just got a report from Srivatsa
Bhat that this can indeed trigger), it is harder to debug not just
because the machine is possibly dead, but because we don't have better
coverage.

BUG_ON() must *die*.  Maybe we should add a checkpatch warning for it,
because it is simply just about the worst thing you can ever do if you
hit some "this cannot happen" situation.

Reported-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Cc: Davidlohr Bueso <davidlohr@hp.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-28 14:24:09 -07:00
Davidlohr Bueso
615d6e8756 mm: per-thread vma caching
This patch is a continuation of efforts trying to optimize find_vma(),
avoiding potentially expensive rbtree walks to locate a vma upon faults.
The original approach (https://lkml.org/lkml/2013/11/1/410), where the
largest vma was also cached, ended up being too specific and random,
thus further comparison with other approaches were needed.  There are
two things to consider when dealing with this, the cache hit rate and
the latency of find_vma().  Improving the hit-rate does not necessarily
translate in finding the vma any faster, as the overhead of any fancy
caching schemes can be too high to consider.

We currently cache the last used vma for the whole address space, which
provides a nice optimization, reducing the total cycles in find_vma() by
up to 250%, for workloads with good locality.  On the other hand, this
simple scheme is pretty much useless for workloads with poor locality.
Analyzing ebizzy runs shows that, no matter how many threads are
running, the mmap_cache hit rate is less than 2%, and in many situations
below 1%.

The proposed approach is to replace this scheme with a small per-thread
cache, maximizing hit rates at a very low maintenance cost.
Invalidations are performed by simply bumping up a 32-bit sequence
number.  The only expensive operation is in the rare case of a seq
number overflow, where all caches that share the same address space are
flushed.  Upon a miss, the proposed replacement policy is based on the
page number that contains the virtual address in question.  Concretely,
the following results are seen on an 80 core, 8 socket x86-64 box:

1) System bootup: Most programs are single threaded, so the per-thread
   scheme does improve ~50% hit rate by just adding a few more slots to
   the cache.

+----------------+----------+------------------+
| caching scheme | hit-rate | cycles (billion) |
+----------------+----------+------------------+
| baseline       | 50.61%   | 19.90            |
| patched        | 73.45%   | 13.58            |
+----------------+----------+------------------+

2) Kernel build: This one is already pretty good with the current
   approach as we're dealing with good locality.

+----------------+----------+------------------+
| caching scheme | hit-rate | cycles (billion) |
+----------------+----------+------------------+
| baseline       | 75.28%   | 11.03            |
| patched        | 88.09%   | 9.31             |
+----------------+----------+------------------+

3) Oracle 11g Data Mining (4k pages): Similar to the kernel build workload.

+----------------+----------+------------------+
| caching scheme | hit-rate | cycles (billion) |
+----------------+----------+------------------+
| baseline       | 70.66%   | 17.14            |
| patched        | 91.15%   | 12.57            |
+----------------+----------+------------------+

4) Ebizzy: There's a fair amount of variation from run to run, but this
   approach always shows nearly perfect hit rates, while baseline is just
   about non-existent.  The amounts of cycles can fluctuate between
   anywhere from ~60 to ~116 for the baseline scheme, but this approach
   reduces it considerably.  For instance, with 80 threads:

+----------------+----------+------------------+
| caching scheme | hit-rate | cycles (billion) |
+----------------+----------+------------------+
| baseline       | 1.06%    | 91.54            |
| patched        | 99.97%   | 14.18            |
+----------------+----------+------------------+

[akpm@linux-foundation.org: fix nommu build, per Davidlohr]
[akpm@linux-foundation.org: document vmacache_valid() logic]
[akpm@linux-foundation.org: attempt to untangle header files]
[akpm@linux-foundation.org: add vmacache_find() BUG_ON]
[hughd@google.com: add vmacache_valid_mm() (from Oleg)]
[akpm@linux-foundation.org: coding-style fixes]
[akpm@linux-foundation.org: adjust and enhance comments]
Signed-off-by: Davidlohr Bueso <davidlohr@hp.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Reviewed-by: Michel Lespinasse <walken@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Tested-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 16:35:53 -07:00