We currently only provide points that have to wait on contention, also
lists the points we have to wait for.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
useful to establish a lock dependency in case the actual dependency is
rare or hard to trigger.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
certain configs produce:
[ 70.076229] BUG: MAX_LOCKDEP_KEYS too low!
[ 70.080230] turning off the locking correctness validator.
tune them up.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
There is a overflow by 1 case in the new shrunken hlock code.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
the names were too generic:
drivers/uio/uio.c:87: error: expected identifier or '(' before 'do'
drivers/uio/uio.c:87: error: expected identifier or '(' before 'while'
drivers/uio/uio.c:113: error: 'map_release' undeclared here (not in a function)
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Expose the new lock protection lock.
This can be used to annotate places where we take multiple locks of the
same class and avoid deadlocks by always taking another (top-level) lock
first.
NOTE: we're still bound to the MAX_LOCK_DEPTH (48) limit.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
On Fri, 2008-08-01 at 16:26 -0700, Linus Torvalds wrote:
> On Fri, 1 Aug 2008, David Miller wrote:
> >
> > Taking more than a few locks of the same class at once is bad
> > news and it's better to find an alternative method.
>
> It's not always wrong.
>
> If you can guarantee that anybody that takes more than one lock of a
> particular class will always take a single top-level lock _first_, then
> that's all good. You can obviously screw up and take the same lock _twice_
> (which will deadlock), but at least you cannot get into ABBA situations.
>
> So maybe the right thing to do is to just teach lockdep about "lock
> protection locks". That would have solved the multi-queue issues for
> networking too - all the actual network drivers would still have taken
> just their single queue lock, but the one case that needs to take all of
> them would have taken a separate top-level lock first.
>
> Never mind that the multi-queue locks were always taken in the same order:
> it's never wrong to just have some top-level serialization, and anybody
> who needs to take <n> locks might as well do <n+1>, because they sure as
> hell aren't going to be on _any_ fastpaths.
>
> So the simplest solution really sounds like just teaching lockdep about
> that one special case. It's not "nesting" exactly, although it's obviously
> related to it.
Do as Linus suggested. The lock protection lock is called nest_lock.
Note that we still have the MAX_LOCK_DEPTH (48) limit to consider, so anything
that spills that it still up shit creek.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Most the free-standing lock_acquire() usages look remarkably similar, sweep
them into a new helper.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
this can be used to reset a held lock's subclass, for arbitrary-depth
iterated data structures such as trees or lists which have per-node
locks.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
When we traverse the graph, either forwards or backwards, we
are interested in whether a certain property exists somewhere
in a node reachable in the graph.
Therefore it is never necessary to traverse through a node more
than once to get a correct answer to the given query.
Take advantage of this property using a global ID counter so that we
need not clear all the markers in all the lock_class entries before
doing a traversal. A new ID is choosen when we start to traverse, and
we continue through a lock_class only if it's ID hasn't been marked
with the new value yet.
This short-circuiting is essential especially for high CPU count
systems. The scheduler has a runqueue per cpu, and needs to take
two runqueue locks at a time, which leads to long chains of
backwards and forwards subgraphs from these runqueue lock nodes.
Without the short-circuit implemented here, a graph traversal on
a runqueue lock can take up to (1 << (N - 1)) checks on a system
with N cpus.
For anything more than 16 cpus or so, lockdep will eventually bring
the machine to a complete standstill.
Signed-off-by: David S. Miller <davem@davemloft.net>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
STATIC_LOCKDEP_MAP_INIT is defined twice in lockdep.h. I guess
it's a copy & paste.
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This patch records array of lock_class into lock_chain, and export
lock_chain information via /proc/lockdep_chains.
It is based on x86/master branch of git-x86 tree, and has been tested
on x86_64 platform.
Signed-off-by: Huang Ying <ying.huang@intel.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
In the following scenario:
code path 1:
my_function() -> lock(L1); ...; flush_workqueue(); ...
code path 2:
run_workqueue() -> my_work() -> ...; lock(L1); ...
you can get a deadlock when my_work() is queued or running
but my_function() has acquired L1 already.
This patch adds a pseudo-lock to each workqueue to make lockdep
warn about this scenario.
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Johannes Berg <johannes@sipsolutions.net>
Acked-by: Oleg Nesterov <oleg@tv-sign.ru>
Acked-by: Ingo Molnar <mingo@elte.hu>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
lockdep annotate rcu_read_{,un}lock{,_bh} in order to catch imbalanced
usage.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Provide a check to validate that we do not hold any locks when switching
back to user-space.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
__acquire
|
lock _____
| \
| __contended
| |
| wait
| _______/
|/
|
__acquired
|
__release
|
unlock
We measure acquisition and contention bouncing.
This is done by recording a cpu stamp in each lock instance.
Contention bouncing requires the cpu stamp to be set on acquisition. Hence we
move __acquired into the generic path.
__acquired is then used to measure acquisition bouncing by comparing the
current cpu with the old stamp before replacing it.
__contended is used to measure contention bouncing (only useful for preemptable
locks)
[akpm@linux-foundation.org: cleanups]
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
- update the copyright notices
- use the default hash function
- fix a thinko in a BUILD_BUG_ON
- add a WARN_ON to spot inconsitent naming
- fix a termination issue in /proc/lock_stat
[akpm@linux-foundation.org: cleanups]
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Introduce the core lock statistics code.
Lock statistics provides lock wait-time and hold-time (as well as the count
of corresponding contention and acquisitions events). Also, the first few
call-sites that encounter contention are tracked.
Lock wait-time is the time spent waiting on the lock. This provides insight
into the locking scheme, that is, a heavily contended lock is indicative of
a too coarse locking scheme.
Lock hold-time is the duration the lock was held, this provides a reference for
the wait-time numbers, so they can be put into perspective.
1)
lock
2)
... do stuff ..
unlock
3)
The time between 1 and 2 is the wait-time. The time between 2 and 3 is the
hold-time.
The lockdep held-lock tracking code is reused, because it already collects locks
into meaningful groups (classes), and because it is an existing infrastructure
for lock instrumentation.
Currently lockdep tracks lock acquisition with two hooks:
lock()
lock_acquire()
_lock()
... code protected by lock ...
unlock()
lock_release()
_unlock()
We need to extend this with two more hooks, in order to measure contention.
lock_contended() - used to measure contention events
lock_acquired() - completion of the contention
These are then placed the following way:
lock()
lock_acquire()
if (!_try_lock())
lock_contended()
_lock()
lock_acquired()
... do locked stuff ...
unlock()
lock_release()
_unlock()
(Note: the try_lock() 'trick' is used to avoid instrumenting all platform
dependent lock primitive implementations.)
It is also possible to toggle the two lockdep features at runtime using:
/proc/sys/kernel/prove_locking
/proc/sys/kernel/lock_stat
(esp. turning off the O(n^2) prove_locking functionaliy can help)
[akpm@linux-foundation.org: build fixes]
[akpm@linux-foundation.org: nuke unneeded ifdefs]
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Ingo Molnar <mingo@elte.hu>
Acked-by: Jason Baron <jbaron@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
lockdep found a bug during a run of workqueue function - this could be also
caused by a bug from other code running simultaneously.
lockdep really shouldn't be used when debug_locks == 0!
Reported-by: Folkert van Heusden <folkert@vanheusden.com>
Inspired-by: Oleg Nesterov <oleg@tv-sign.ru>
Signed-off-by: Jarek Poplawski <jarkao2@o2.pl>
Cc: Ingo Molnar <mingo@elte.hu>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
3117df0453 causes this:
In file included from arch/s390/kernel/early.c:13:
include/linux/lockdep.h:300: warning:
"struct task_struct" declared inside parameter list
include/linux/lockdep.h:300:
warning: its scope is only this definition or
declaration, which is probably not what you want
Acked-by: Ingo Molnar <mingo@elte.hu>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Generate locking graph information into /proc/lockdep, for lock hierarchy
documentation and visualization purposes.
sample output:
c089fd5c OPS: 138 FD: 14 BD: 1 --..: &tty->termios_mutex
-> [c07a3430] tty_ldisc_lock
-> [c07a37f0] &port_lock_key
-> [c07afdc0] &rq->rq_lock_key#2
The lock classes listed are all the first-hop lock dependencies that
lockdep has seen so far.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When we print an assert due to scheduling-in-atomic bugs, and if lockdep
is enabled, then the IRQ tracing information of lockdep can be printed
to pinpoint the code location that disabled interrupts. This saved me
quite a bit of debugging time in cases where the backtrace did not
identify the irq-disabling site well enough.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Remove the no longer used lockdep_internal().
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Acked-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Workqueue functions should not leak locks, assert so, printing the
last function ran.
Use macros in lockdep.h to avoid include dependency pains.
[akpm@osdl.org: build fix]
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This annotation makes it possible to assign a subclass on lock init. This
annotation is meant to reduce the _nested() annotations by assigning a
default subclass.
One could do without this annotation and rely on lockdep_set_class()
exclusively, but that would require a manual stack of struct lock_class_key
objects.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Dmitry Torokhov <dtor@mail.ru>
Do not pull in various includes through lockdep.h if lockdep is disabled.
Signed-off-by: Michael S. Tsirkin <mst@mellanox.co.il>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
lockdep_map is embedded into every lock, which blows up data structure
sizes all around the kernel. Reduce the class-cache to be for the default
class only - that is used in 99.9% of the cases and even if we dont have a
class cached, the lookup in the class-hash is lockless.
This change reduces the per-lock dep_map overhead by 56 bytes on 64-bit
platforms and by 28 bytes on 32-bit platforms.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Teach special (recursive) locking code to the lock validator. Has no effect
on non-lockdep kernels.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Do 'make oldconfig' and accept all the defaults for new config options -
reboot into the kernel and if everything goes well it should boot up fine and
you should have /proc/lockdep and /proc/lockdep_stats files.
Typically if the lock validator finds some problem it will print out
voluminous debug output that begins with "BUG: ..." and which syslog output
can be used by kernel developers to figure out the precise locking scenario.
What does the lock validator do? It "observes" and maps all locking rules as
they occur dynamically (as triggered by the kernel's natural use of spinlocks,
rwlocks, mutexes and rwsems). Whenever the lock validator subsystem detects a
new locking scenario, it validates this new rule against the existing set of
rules. If this new rule is consistent with the existing set of rules then the
new rule is added transparently and the kernel continues as normal. If the
new rule could create a deadlock scenario then this condition is printed out.
When determining validity of locking, all possible "deadlock scenarios" are
considered: assuming arbitrary number of CPUs, arbitrary irq context and task
context constellations, running arbitrary combinations of all the existing
locking scenarios. In a typical system this means millions of separate
scenarios. This is why we call it a "locking correctness" validator - for all
rules that are observed the lock validator proves it with mathematical
certainty that a deadlock could not occur (assuming that the lock validator
implementation itself is correct and its internal data structures are not
corrupted by some other kernel subsystem). [see more details and conditionals
of this statement in include/linux/lockdep.h and
Documentation/lockdep-design.txt]
Furthermore, this "all possible scenarios" property of the validator also
enables the finding of complex, highly unlikely multi-CPU multi-context races
via single single-context rules, increasing the likelyhood of finding bugs
drastically. In practical terms: the lock validator already found a bug in
the upstream kernel that could only occur on systems with 3 or more CPUs, and
which needed 3 very unlikely code sequences to occur at once on the 3 CPUs.
That bug was found and reported on a single-CPU system (!). So in essence a
race will be found "piecemail-wise", triggering all the necessary components
for the race, without having to reproduce the race scenario itself! In its
short existence the lock validator found and reported many bugs before they
actually caused a real deadlock.
To further increase the efficiency of the validator, the mapping is not per
"lock instance", but per "lock-class". For example, all struct inode objects
in the kernel have inode->inotify_mutex. If there are 10,000 inodes cached,
then there are 10,000 lock objects. But ->inotify_mutex is a single "lock
type", and all locking activities that occur against ->inotify_mutex are
"unified" into this single lock-class. The advantage of the lock-class
approach is that all historical ->inotify_mutex uses are mapped into a single
(and as narrow as possible) set of locking rules - regardless of how many
different tasks or inode structures it took to build this set of rules. The
set of rules persist during the lifetime of the kernel.
To see the rough magnitude of checking that the lock validator does, here's a
portion of /proc/lockdep_stats, fresh after bootup:
lock-classes: 694 [max: 2048]
direct dependencies: 1598 [max: 8192]
indirect dependencies: 17896
all direct dependencies: 16206
dependency chains: 1910 [max: 8192]
in-hardirq chains: 17
in-softirq chains: 105
in-process chains: 1065
stack-trace entries: 38761 [max: 131072]
combined max dependencies: 2033928
hardirq-safe locks: 24
hardirq-unsafe locks: 176
softirq-safe locks: 53
softirq-unsafe locks: 137
irq-safe locks: 59
irq-unsafe locks: 176
The lock validator has observed 1598 actual single-thread locking patterns,
and has validated all possible 2033928 distinct locking scenarios.
More details about the design of the lock validator can be found in
Documentation/lockdep-design.txt, which can also found at:
http://redhat.com/~mingo/lockdep-patches/lockdep-design.txt
[bunk@stusta.de: cleanups]
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>