2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-10 06:34:17 +08:00
Commit Graph

48001 Commits

Author SHA1 Message Date
Evgeniy Dushistov
54fb996ac1 [PATCH] ufs2 write: block allocation update
Patch adds ability to work with 64bit metadata, this made by replacing work
with 32bit pointers by inline functions.

Signed-off-by: Evgeniy Dushistov <dushistov@mail.ru>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-12 09:48:40 -08:00
Evgeniy Dushistov
3313e29267 [PATCH] ufs2 write: inodes write
This patch adds into write inode path function to write UFS2 inode, and
modifys allocate inode path to allocate and init additional inode chunks.

Also some cleanups:
- remove not used parameters in some functions
- remove i_gen field from ufs_inode_info structure,
there is i_generation in inode structure with same purposes.

Signed-off-by: Evgeniy Dushistov <dushistov@mail.ru>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-12 09:48:40 -08:00
Evgeniy Dushistov
cbcae39fa1 [PATCH] ufs2 write: mount as rw
These series of patches add UFS2 write-support.  UFS2 - is default file system
for recent versions of FreeBSD.

The main differences from UFS1 from write support point of view
are:
1)Not all inodes are allocated during formatation of disk.
2)All meta-data(pointer to data blocks) are 64bit(in UFS1 they
are 32bit).

So patch series consist of
1)make possible mount UFS2 in read-write mode
2)code to write ufs2 inodes and code to initialize inodes chunks.
3)work with 64bit meta-data

I made simple testing like create/deleting/writing/reading/truncating, also I
ran fsx-linux and untar and build kernel on UFS1 and UFS2, after that FreeBSD
fsck do not find any errors in fs.

This patch makes possible to mount ufs2 "rw", and updates UFS2 documentation:
remove note about bug(it fixed by reallocate blocks on the fly patch) and add
me in the list of people who want receive bug reports.

Signed-off-by: Evgeniy Dushistov <dushistov@mail.ru>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-12 09:48:40 -08:00
Alon Bar-Lev
cca97de118 [PATCH] ia64: 2048-byte command line
Current implementation allows the kernel to receive up to 255 characters from
the bootloader.  While the boot protocol allows greater buffers to be sent.

In current environment, the command-line is used in order to specify many
values, including suspend/resume, module arguments, splash, initramfs and
more.

255 characters are not enough anymore.

After edd issue was fixed, and dynammic kernel command-line patch was
accepted, we can extend the COMMAND_LINE_SIZE without runtime memory
requirements.

Signed-off-by: Alon Bar-Lev <alon.barlev@gmail.com>
Cc: "Luck, Tony" <tony.luck@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-12 09:48:39 -08:00
Alon Bar-Lev
bbd4bb9aa7 [PATCH] x86_64: 2048-byte command line
Current implementation allows the kernel to receive up to 255 characters from
the bootloader.  While the boot protocol allows greater buffers to be sent.

In current environment, the command-line is used in order to specify many
values, including suspend/resume, module arguments, splash, initramfs and
more.

255 characters are not enough anymore.

After edd issue was fixed, and dynammic kernel command-line patch was
accepted, we can extend the COMMAND_LINE_SIZE without runtime memory
requirements.

Signed-off-by: Alon Bar-Lev <alon.barlev@gmail.com>
Cc: Andi Kleen <ak@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-12 09:48:39 -08:00
Alon Bar-Lev
7bf9f974fb [PATCH] i386: 2048-byte command line
Current implementation allows the kernel to receive up to 255 characters from
the bootloader.  While the boot protocol allows greater buffers to be sent.

In current environment, the command-line is used in order to specify many
values, including suspend/resume, module arguments, splash, initramfs and
more.

255 characters are not enough anymore.

After edd issue was fixed, and dynammic kernel command-line patch was
accepted, we can extend the COMMAND_LINE_SIZE without runtime memory
requirements.

Signed-off-by: Alon Bar-Lev <alon.barlev@gmail.com>
Cc: Andi Kleen <ak@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-12 09:48:39 -08:00
Alon Bar-Lev
7a3a06d0e1 [PATCH] Dynamic kernel command-line: fixups
Remove in-source externs, linux/init.h is included in all cases.
This is a fixups for "Dynamic kernel command-line" patch.

It also includes some uml __init fixups so that we can __initdata also its
command_line.

Signed-off-by: Alon Bar-Lev <alon.barlev@gmail.com>
Cc: Jeff Dike <jdike@addtoit.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-12 09:48:39 -08:00
Alon Bar-Lev
d3e9cceafd [PATCH] Dynamic kernel command-line: xtensa
1. Rename saved_command_line into boot_command_line.
2. Set command_line as __initdata.

Signed-off-by: Alon Bar-Lev <alon.barlev@gmail.com>
Cc: Chris Zankel <chris@zankel.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-12 09:48:39 -08:00
Alon Bar-Lev
adf48856db [PATCH] Dynamic kernel command-line: x86_64
1. Rename saved_command_line into boot_command_line.
2. Set command_line as __initdata.

Signed-off-by: Alon Bar-Lev <alon.barlev@gmail.com>
Cc: Andi Kleen <ak@muc.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-12 09:48:39 -08:00
Alon Bar-Lev
712f77b565 [PATCH] Dynamic kernel command-line: v850
1. Rename saved_command_line into boot_command_line.
2. Set command_line as __initdata.

Signed-off-by: Alon Bar-Lev <alon.barlev@gmail.com>
Cc: Miles Bader <uclinux-v850@lsi.nec.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-12 09:48:39 -08:00
Alon Bar-Lev
19bf7e7a41 [PATCH] Dynamic kernel command-line: um
1. Rename saved_command_line into boot_command_line.
2. Set command_line as __initdata.

Signed-off-by: Alon Bar-Lev <alon.barlev@gmail.com>
Cc: Jeff Dike <jdike@addtoit.com>
Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-12 09:48:39 -08:00
Alon Bar-Lev
383464c0fb [PATCH] Dynamic kernel command-line: sparc64
Rename saved_command_line into boot_command_line.

Signed-off-by: Alon Bar-Lev <alon.barlev@gmail.com>
Cc: "David S. Miller" <davem@davemloft.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-12 09:48:39 -08:00
Alon Bar-Lev
08e7ca11ee [PATCH] Dynamic kernel command-line: sparc
Rename saved_command_line into boot_command_line.

Signed-off-by: Alon Bar-Lev <alon.barlev@gmail.com>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: "David S. Miller" <davem@davemloft.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-12 09:48:39 -08:00
Alon Bar-Lev
3e42ff6c65 [PATCH] Dynamic kernel command-line: sh64
1. Rename saved_command_line into boot_command_line.
2. Set command_line as __initdata.

Signed-off-by: Alon Bar-Lev <alon.barlev@gmail.com>
Acked-by: Paul Mundt <lethal@linux-sh.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-12 09:48:39 -08:00
Alon Bar-Lev
53c82622c2 [PATCH] Dynamic kernel command-line: sh
1. Rename saved_command_line into boot_command_line.
2. Set command_line as __initdata.

Signed-off-by: Alon Bar-Lev <alon.barlev@gmail.com>
Acked-by: Paul Mundt <lethal@linux-sh.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-12 09:48:39 -08:00
Alon Bar-Lev
e06b1a3513 [PATCH] Dynamic kernel command-line: s390
Rename saved_command_line into boot_command_line.

Signed-off-by: Alon Bar-Lev <alon.barlev@gmail.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-12 09:48:39 -08:00
Alon Bar-Lev
bf71cecbe4 [PATCH] Dynamic kernel command-line: ppc
Rename saved_command_line into boot_command_line.

Signed-off-by: Alon Bar-Lev <alon.barlev@gmail.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-12 09:48:39 -08:00
Alon Bar-Lev
b8757b21f7 [PATCH] Dynamic kernel command-line: powerpc
Rename saved_command_line into boot_command_line.

Signed-off-by: Alon Bar-Lev <alon.barlev@gmail.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-12 09:48:38 -08:00
Alon Bar-Lev
668f9931c8 [PATCH] Dynamic kernel command-line: parisc
1. Rename saved_command_line into boot_command_line.
2. Set command_line as __initdata.

Signed-off-by: Alon Bar-Lev <alon.barlev@gmail.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-12 09:48:38 -08:00
Alon Bar-Lev
43cd34645d [PATCH] Dynamic kernel command-line: mips
Rename saved_command_line into boot_command_line.

Signed-off-by: Alon Bar-Lev <alon.barlev@gmail.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-12 09:48:38 -08:00
Alon Bar-Lev
f2a09e19ca [PATCH] Dynamic kernel command-line: m68knommu
1. Rename saved_command_line into boot_command_line.
2. Set command_line as __initdata.

Signed-off-by: Alon Bar-Lev <alon.barlev@gmail.com>
Cc: Greg Ungerer <gerg@uclinux.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-12 09:48:38 -08:00
Alon Bar-Lev
187959f31e [PATCH] Dynamic kernel command-line: m68k
Rename saved_command_line into boot_command_line.

Signed-off-by: Alon Bar-Lev <alon.barlev@gmail.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Roman Zippel <zippel@linux-m68k.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-12 09:48:38 -08:00
Alon Bar-Lev
3561794d80 [PATCH] Dynamic kernel command-line: m32r
1. Rename saved_command_line into boot_command_line.
2. Set command_line as __initdata.

Signed-off-by: Alon Bar-Lev <alon.barlev@gmail.com>
Cc: Hirokazu Takata <takata@linux-m32r.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-12 09:48:38 -08:00
Alon Bar-Lev
a8d91b8477 [PATCH] Dynamic kernel command-line: ia64
1. Rename saved_command_line into boot_command_line.
2. Set command_line as __initdata.

[akpm@osdl.org: move some declarations to the right place]
Signed-off-by: Alon Bar-Lev <alon.barlev@gmail.com>
Cc: "Luck, Tony" <tony.luck@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-12 09:48:38 -08:00
Alon Bar-Lev
4e498b6610 [PATCH] Dynamic kernel command-line: i386
1. Rename saved_command_line into boot_command_line.
2. Set command_line as __initdata.

Signed-off-by: Alon Bar-Lev <alon.barlev@gmail.com>
Cc: Andi Kleen <ak@muc.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-12 09:48:38 -08:00
Alon Bar-Lev
5ff625904c [PATCH] Dynamic kernel command-line: h8300
1. Rename saved_command_line into boot_command_line.
2. Set command_line as __initdata.

Signed-off-by: Alon Bar-Lev <alon.barlev@gmail.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-12 09:48:38 -08:00
Alon Bar-Lev
9c00f76132 [PATCH] Dynamic kernel command-line: frv
1. Rename saved_command_line into boot_command_line.
2. Set command_line as __initdata.

Signed-off-by: Alon Bar-Lev <alon.barlev@gmail.com>
Cc: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-12 09:48:37 -08:00
Alon Bar-Lev
87e1f9c6dc [PATCH] Dynamic kernel command-line: cris
1. Rename saved_command_line into boot_command_line.
2. Set cris_command_line as __initdata.

Signed-off-by: Alon Bar-Lev <alon.barlev@gmail.com>
Cc: Mikael Starvik <starvik@axis.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-12 09:48:37 -08:00
Alon Bar-Lev
bf4352c0fc [PATCH] Dynamic kernel command-line: avr32
1. Rename saved_command_line into boot_command_line.
2. Set command_line as __initdata.

Signed-off-by: Alon Bar-Lev <alon.barlev@gmail.com>
Acked-by: Haavard Skinnemoen <hskinnemoen@atmel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-12 09:48:37 -08:00
Alon Bar-Lev
64d5a70f95 [PATCH] Dynamic kernel command-line: arm26
1. Rename saved_command_line into boot_command_line.
2. Set command_line as __initdata.

Signed-off-by: Alon Bar-Lev <alon.barlev@gmail.com>
Cc: Ian Molton <spyro@f2s.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-12 09:48:37 -08:00
Alon Bar-Lev
cd81899a7d [PATCH] Dynamic kernel command-line: arm
1. Rename saved_command_line into boot_command_line.
2. Set command_line as __initdata.

Signed-off-by: Alon Bar-Lev <alon.barlev@gmail.com>
Cc: Russell King <rmk@arm.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-12 09:48:37 -08:00
Alon Bar-Lev
3c253ca0f0 [PATCH] Dynamic kernel command-line: alpha
1. Rename saved_command_line into boot_command_line.
2. Set command_line as __initdata.

Signed-off-by: Alon Bar-Lev <alon.barlev@gmail.com>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-12 09:48:37 -08:00
Alon Bar-Lev
30d7e0d466 [PATCH] Dynamic kernel command-line: common
Current implementation stores a static command-line buffer allocated to
COMMAND_LINE_SIZE size.  Most architectures stores two copies of this buffer,
one for future reference and one for parameter parsing.

Current kernel command-line size for most architecture is much too small for
module parameters, video settings, initramfs paramters and much more.  The
problem is that setting COMMAND_LINE_SIZE to a grater value, allocates static
buffers.

In order to allow a greater command-line size, these buffers should be
dynamically allocated or marked as init disposable buffers, so unused memory
can be released.

This patch renames the static saved_command_line variable into
boot_command_line adding __initdata attribute, so that it can be disposed
after initialization.  This rename is required so applications that use
saved_command_line will not be affected by this change.

It reintroduces saved_command_line as dynamically allocated buffer to match
the data in boot_command_line.

It also mark secondary command-line buffer as __initdata, and copies it to
dynamically allocated static_command_line buffer components may hold reference
to it after initialization.

This patch is for linux-2.6.20-rc4-mm1 and is divided to target each
architecture.  I could not check this in any architecture so please forgive me
if I got it wrong.

The per-architecture modification is very simple, use boot_command_line in
place of saved_command_line.  The common code is the change into dynamic
command-line.

This patch:

1. Rename saved_command_line into boot_command_line, mark as init
   disposable.

2. Add dynamic allocated saved_command_line.

3. Add dynamic allocated static_command_line.

4. During startup copy: boot_command_line into saved_command_line.  arch
   command_line into static_command_line.

5. Parse static_command_line and not arch command_line, so arch
   command_line may be freed.

Signed-off-by: Alon Bar-Lev <alon.barlev@gmail.com>
Cc: Andi Kleen <ak@muc.de>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: Ian Molton <spyro@f2s.com>
Cc: Mikael Starvik <starvik@axis.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Kyle McMartin <kyle@mcmartin.ca>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Hirokazu Takata <takata@linux-m32r.org>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Kazumoto Kojima <kkojima@rr.iij4u.or.jp>
Cc: Richard Curnow <rc@rc0.org.uk>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Jeff Dike <jdike@addtoit.com>
Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Cc: Miles Bader <uclinux-v850@lsi.nec.co.jp>
Cc: Chris Zankel <chris@zankel.net>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Roman Zippel <zippel@linux-m68k.org>
Cc: Greg Ungerer <gerg@uclinux.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-12 09:48:37 -08:00
Nick Piggin
ff91691bcc [PATCH] sched: avoid div in rebalance_tick
Avoid expensive integer divide 3 times per CPU per tick.

A userspace test of this loop went from 26ns, down to 19ns on a G5; and
from 123ns down to 28ns on a P3.

(Also avoid a variable bit shift, as suggested by Alan. The effect
of this wasn't noticable on the CPUs I tested with).

Signed-off-by: Nick Piggin <npiggin@suse.de>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Alan Cox <alan@lxorguk.ukuu.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-12 09:48:37 -08:00
Michael Halcrow
0a9ac38246 [PATCH] eCryptfs: add flush_dcache_page() calls
Call flush_dcache_page() after modifying a pagecache by hand.

Signed-off-by: Michael Halcrow <mhalcrow@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-12 09:48:37 -08:00
Michael Halcrow
e2bd99ec5c [PATCH] eCryptfs: open-code flag checking and manipulation
Open-code flag checking and manipulation.

Signed-off-by: Michael Halcrow <mhalcrow@us.ibm.com>
Signed-off-by: Trevor Highland <tshighla@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-12 09:48:37 -08:00
Michael Halcrow
9d8b8ce556 [PATCH] eCryptfs: convert kmap() to kmap_atomic()
Replace kmap() with kmap_atomic().  Reduce the amount of time that mappings
are held.

Signed-off-by: Michael Halcrow <mhalcrow@us.ibm.com>
Signed-off-by: Trevor Highland <tshighla@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-12 09:48:37 -08:00
Michael Halcrow
70456600f4 [PATCH] eCryptfs: convert f_op->write() to vfs_write()
sys_write() takes a local copy of f_pos and writes that back
into the struct file. It does this so that two concurrent write()
callers don't make a mess of f_pos, and of the file contents.

ecryptfs should be calling vfs_write().  That way we also get the fsnotify
notifications, which ecryptfs presently appears to have subverted.

Convert direct calls to f_op->write() into calls to vfs_write().

Signed-off-by: Michael Halcrow <mhalcrow@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-12 09:48:37 -08:00
Michael Halcrow
e77a56ddce [PATCH] eCryptfs: Encrypted passthrough
Provide an option to provide a view of the encrypted files such that the
metadata is always in the header of the files, regardless of whether the
metadata is actually in the header or in the extended attribute.  This mode of
operation is useful for applications like incremental backup utilities that do
not preserve the extended attributes when directly accessing the lower files.

With this option enabled, the files under the eCryptfs mount point will be
read-only.

Signed-off-by: Michael Halcrow <mhalcrow@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-12 09:48:36 -08:00
Michael Halcrow
dd2a3b7ad9 [PATCH] eCryptfs: Generalize metadata read/write
Generalize the metadata reading and writing mechanisms, with two targets for
now: metadata in file header and metadata in the user.ecryptfs xattr of the
lower file.

[akpm@osdl.org: printk warning fix]
[bunk@stusta.de: make some needlessly global code static]
Signed-off-by: Michael Halcrow <mhalcrow@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-12 09:48:36 -08:00
Michael Halcrow
17398957aa [PATCH] eCryptfs: xattr flags and mount options
This patch set introduces the ability to store cryptographic metadata into an
lower file extended attribute rather than the lower file header region.

This patch set implements two new mount options:

ecryptfs_xattr_metadata
 - When set, newly created files will have their cryptographic
   metadata stored in the extended attribute region of the file rather
   than the header.

   When storing the data in the file header, there is a minimum of 8KB
   reserved for the header information for each file, making each file at
   least 12KB in size.  This can take up a lot of extra disk space if the user
   creates a lot of small files.  By storing the data in the extended
   attribute, each file will only occupy at least of 4KB of space.

   As the eCryptfs metadata set becomes larger with new features such as
   multi-key associations, most popular filesystems will not be able to store
   all of the information in the xattr region in some cases due to space
   constraints.  However, the majority of users will only ever associate one
   key per file, so most users will be okay with storing their data in the
   xattr region.

   This option should be used with caution.  I want to emphasize that the
   xattr must be maintained under all circumstances, or the file will be
   rendered permanently unrecoverable.  The last thing I want is for a user to
   forget to set an xattr flag in a backup utility, only to later discover
   that their backups are worthless.

ecryptfs_encrypted_view
 - When set, this option causes eCryptfs to present applications a
   view of encrypted files as if the cryptographic metadata were
   stored in the file header, whether the metadata is actually stored
   in the header or in the extended attributes.

   No matter what eCryptfs winds up doing in the lower filesystem, I want
   to preserve a baseline format compatibility for the encrypted files.  As of
   right now, the metadata may be in the file header or in an xattr.  There is
   no reason why the metadata could not be put in a separate file in future
   versions.

   Without the compatibility mode, backup utilities would have to know to
   back up the metadata file along with the files.  The semantics of eCryptfs
   have always been that the lower files are self-contained units of encrypted
   data, and the only additional information required to decrypt any given
   eCryptfs file is the key.  That is what has always been emphasized about
   eCryptfs lower files, and that is what users expect.  Providing the
   encrypted view option will provide a way to userspace applications wherein
   they can always get to the same old familiar eCryptfs encrypted files,
   regardless of what eCryptfs winds up doing with the metadata behind the
   scenes.

This patch:

Add extended attribute support to version bit vector, flags to indicate when
xattr or encrypted view modes are enabled, and support for the new mount
options.

Signed-off-by: Michael Halcrow <mhalcrow@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-12 09:48:36 -08:00
Michael Halcrow
dddfa461fc [PATCH] eCryptfs: Public key; packet management
Public key support code.  This reads and writes packets in the header that
contain public key encrypted file keys.  It calls the messaging code in the
previous patch to send and receive encryption and decryption request
packets from the userspace daemon.

[akpm@osdl.org: cleab fix]
Signed-off-by: Michael Halcrow <mhalcrow@us.ibm.com>
Cc: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-12 09:48:36 -08:00
Michael Halcrow
88b4a07e66 [PATCH] eCryptfs: Public key transport mechanism
This is the transport code for public key functionality in eCryptfs.  It
manages encryption/decryption request queues with a transport mechanism.
Currently, netlink is the only implemented transport.

Each inode has a unique File Encryption Key (FEK).  Under passphrase, a File
Encryption Key Encryption Key (FEKEK) is generated from a salt/passphrase
combo on mount.  This FEKEK encrypts each FEK and writes it into the header of
each file using the packet format specified in RFC 2440.  This is all
symmetric key encryption, so it can all be done via the kernel crypto API.

These new patches introduce public key encryption of the FEK.  There is no
asymmetric key encryption support in the kernel crypto API, so eCryptfs pushes
the FEK encryption and decryption out to a userspace daemon.  After
considering our requirements and determining the complexity of using various
transport mechanisms, we settled on netlink for this communication.

eCryptfs stores authentication tokens into the kernel keyring.  These tokens
correlate with individual keys.  For passphrase mode of operation, the
authentication token contains the symmetric FEKEK.  For public key, the
authentication token contains a PKI type and an opaque data blob managed by
individual PKI modules in userspace.

Each user who opens a file under an eCryptfs partition mounted in public key
mode must be running a daemon.  That daemon has the user's credentials and has
access to all of the keys to which the user should have access.  The daemon,
when started, initializes the pluggable PKI modules available on the system
and registers itself with the eCryptfs kernel module.  Userspace utilities
register public key authentication tokens into the user session keyring.
These authentication tokens correlate key signatures with PKI modules and PKI
blobs.  The PKI blobs contain PKI-specific information necessary for the PKI
module to carry out asymmetric key encryption and decryption.

When the eCryptfs module parses the header of an existing file and finds a Tag
1 (Public Key) packet (see RFC 2440), it reads in the public key identifier
(signature).  The asymmetrically encrypted FEK is in the Tag 1 packet;
eCryptfs puts together a decrypt request packet containing the signature and
the encrypted FEK, then it passes it to the daemon registered for the
current->euid via a netlink unicast to the PID of the daemon, which was
registered at the time the daemon was started by the user.

The daemon actually just makes calls to libecryptfs, which implements request
packet parsing and manages PKI modules.  libecryptfs grabs the public key
authentication token for the given signature from the user session keyring.
This auth tok tells libecryptfs which PKI module should receive the request.
libecryptfs then makes a decrypt() call to the PKI module, and it passes along
the PKI block from the auth tok.  The PKI uses the blob to figure out how it
should decrypt the data passed to it; it performs the decryption and passes
the decrypted data back to libecryptfs.  libecryptfs then puts together a
reply packet with the decrypted FEK and passes that back to the eCryptfs
module.

The eCryptfs module manages these request callouts to userspace code via
message context structs.  The module maintains an array of message context
structs and places the elements of the array on two lists: a free and an
allocated list.  When eCryptfs wants to make a request, it moves a msg ctx
from the free list to the allocated list, sets its state to pending, and fires
off the message to the user's registered daemon.

When eCryptfs receives a netlink message (via the callback), it correlates the
msg ctx struct in the alloc list with the data in the message itself.  The
msg->index contains the offset of the array of msg ctx structs.  It verifies
that the registered daemon PID is the same as the PID of the process that sent
the message.  It also validates a sequence number between the received packet
and the msg ctx.  Then, it copies the contents of the message (the reply
packet) into the msg ctx struct, sets the state in the msg ctx to done, and
wakes up the process that was sleeping while waiting for the reply.

The sleeping process was whatever was performing the sys_open().  This process
originally called ecryptfs_send_message(); it is now in
ecryptfs_wait_for_response().  When it wakes up and sees that the msg ctx
state was set to done, it returns a pointer to the message contents (the reply
packet) and returns.  If all went well, this packet contains the decrypted
FEK, which is then copied into the crypt_stat struct, and life continues as
normal.

The case for creation of a new file is very similar, only instead of a decrypt
request, eCryptfs sends out an encrypt request.

> - We have a great clod of key mangement code in-kernel.  Why is that
>   not suitable (or growable) for public key management?

eCryptfs uses Howells' keyring to store persistent key data and PKI state
information.  It defers public key cryptographic transformations to userspace
code.  The userspace data manipulation request really is orthogonal to key
management in and of itself.  What eCryptfs basically needs is a secure way to
communicate with a particular daemon for a particular task doing a syscall,
based on the UID.  Nothing running under another UID should be able to access
that channel of communication.

> - Is it appropriate that new infrastructure for public key
> management be private to a particular fs?

The messaging.c file contains a lot of code that, perhaps, could be extracted
into a separate kernel service.  In essence, this would be a sort of
request/reply mechanism that would involve a userspace daemon.  I am not aware
of anything that does quite what eCryptfs does, so I was not aware of any
existing tools to do just what we wanted.

>   What happens if one of these daemons exits without sending a quit
>   message?

There is a stale uid<->pid association in the hash table for that user.  When
the user registers a new daemon, eCryptfs cleans up the old association and
generates a new one.  See ecryptfs_process_helo().

> - _why_ does it use netlink?

Netlink provides the transport mechanism that would minimize the complexity of
the implementation, given that we can have multiple daemons (one per user).  I
explored the possibility of using relayfs, but that would involve having to
introduce control channels and a protocol for creating and tearing down
channels for the daemons.  We do not have to worry about any of that with
netlink.

Signed-off-by: Michael Halcrow <mhalcrow@us.ibm.com>
Cc: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-12 09:48:36 -08:00
Adrian Bunk
b5d5dfbd59 [PATCH] include/linux/nfsd/const.h: remove NFS_SUPER_MAGIC
NFS_SUPER_MAGIC is already defined in include/linux/magic.h

Signed-off-by: Adrian Bunk <bunk@stusta.de>
Cc: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-12 09:48:36 -08:00
Chuck Lever
77f1f67a1a [PATCH] knfsd: SUNRPC: fix up svc_create_socket() to take a sockaddr struct + length
Replace existing svc_create_socket() API to allow callers to pass addresses
larger than a sockaddr_in.

Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Cc: Aurelien Charbon <aurelien.charbon@ext.bull.net>
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-12 09:48:36 -08:00
Chuck Lever
95756482c9 [PATCH] knfsd: SUNRPC: support IPv6 addresses in RPC server's UDP receive path
Add support for IPv6 addresses in the RPC server's UDP receive path.

[akpm@linux-foundation.org: cleanups]
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Cc: Aurelien Charbon <aurelien.charbon@ext.bull.net>
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-12 09:48:36 -08:00
akpm@linux-foundation.org
cdd88b9f3e [PATCH] knfsd: SUNRPC: Support IPv6 addresses in svc_tcp_accept
Modify svc_tcp_accept to support connecting on IPv6 sockets.

Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Cc: Aurelien Charbon <aurelien.charbon@ext.bull.net>
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-12 09:48:36 -08:00
Chuck Lever
bcdb81ae29 [PATCH] knfsd: SUNRPC: add a "generic" function to see if the peer uses a secure port
The only reason svcsock.c looks at a sockaddr's port is to check whether the
remote peer is connecting from a privileged port.  Refactor this check to hide
processing that is specific to address format.

Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Cc: Aurelien Charbon <aurelien.charbon@ext.bull.net>
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-12 09:48:36 -08:00
Chuck Lever
b92503b25c [PATCH] knfsd: SUNRPC: teach svc_sendto() to deal with IPv6 addresses
CMSG_DATA comes in different sizes, depending on address family.

[akpm@linux-foundation.org: remove unneeded do/while (0)]
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Cc: Aurelien Charbon <aurelien.charbon@ext.bull.net>
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-12 09:48:36 -08:00
Chuck Lever
73df0dbaff [PATCH] knfsd: SUNRPC: Make rq_daddr field address-version independent
The rq_daddr field must support larger addresses.

Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Cc: Aurelien Charbon <aurelien.charbon@ext.bull.net>
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-12 09:48:36 -08:00