I have never seen a use of SLAB_DEBUG_INITIAL. It is only supported by
SLAB.
I think its purpose was to have a callback after an object has been freed
to verify that the state is the constructor state again? The callback is
performed before each freeing of an object.
I would think that it is much easier to check the object state manually
before the free. That also places the check near the code object
manipulation of the object.
Also the SLAB_DEBUG_INITIAL callback is only performed if the kernel was
compiled with SLAB debugging on. If there would be code in a constructor
handling SLAB_DEBUG_INITIAL then it would have to be conditional on
SLAB_DEBUG otherwise it would just be dead code. But there is no such code
in the kernel. I think SLUB_DEBUG_INITIAL is too problematic to make real
use of, difficult to understand and there are easier ways to accomplish the
same effect (i.e. add debug code before kfree).
There is a related flag SLAB_CTOR_VERIFY that is frequently checked to be
clear in fs inode caches. Remove the pointless checks (they would even be
pointless without removeal of SLAB_DEBUG_INITIAL) from the fs constructors.
This is the last slab flag that SLUB did not support. Remove the check for
unimplemented flags from SLUB.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This change fixes the case where spu_base and spufs are initialised on a
system with no SPEs - unconditionally create the spu_lists so spu_alloc
doesn't explode, and check for spu_management ops before starting spufs.
Signed-off-by: Jeremy Kerr <jk@ozlabs.org>
Signed-off-by: Arnd Bergmann <arnd.bergmann@de.ibm.com>
arch/powerpc/platforms/cell/spu_base.c | 7 ++++---
arch/powerpc/platforms/cell/spufs/inode.c | 5 +++++
2 files changed, 9 insertions(+), 3 deletions(-)
Add a 'mode=' option to spufs mount arguments. This allows more
control over access to the top-level spufs directory.
Tested on Cell.
Signed-off-by: Jeremy Kerr <jk@ozlabs.org>
Signed-off-by: Arnd Bergmann <arnd.bergmann@de.ibm.com>
When SPU isolation mode enabled, isolated_loader would be
allocated by spufs_init_isolated_loader() on module_init().
But anyone do not free it.
This patch introduces spufs_exit_isolated_loader() which is
the opposite of spufs_init_isolated_loader() and called on
module_exit().
Cc: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Akinobu Mita <mita@fixstars.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Arnd Bergmann <arnd.bergmann@de.ibm.com>
spufs module_init forgot to call a few cleanup functions
on error path. This patch also includes cosmetic changes in
spu_sched_init() (identation fix and return error code).
[modified by hch to apply ontop of the latest schedule changes]
Cc: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Akinobu Mita <mita@fixstars.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Arnd Bergmann <arnd.bergmann@de.ibm.com>
Make sure the pointers to various mappings are cleared once the last
user stopped using them. This avoids accessing freed memory when
tearing down the gang directory aswell as optimizing away
pte invalidations if no one uses these.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Arnd Bergmann <arnd.bergmann@de.ibm.com>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Many struct inode_operations in the kernel can be "const". Marking them const
moves these to the .rodata section, which avoids false sharing with potential
dirty data. In addition it'll catch accidental writes at compile time to
these shared resources.
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Many struct file_operations in the kernel can be "const". Marking them const
moves these to the .rodata section, which avoids false sharing with potential
dirty data. In addition it'll catch accidental writes at compile time to
these shared resources.
[akpm@osdl.org: sparc64 fix]
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Replace all uses of kmem_cache_t with struct kmem_cache.
The patch was generated using the following script:
#!/bin/sh
#
# Replace one string by another in all the kernel sources.
#
set -e
for file in `find * -name "*.c" -o -name "*.h"|xargs grep -l $1`; do
quilt add $file
sed -e "1,\$s/$1/$2/g" $file >/tmp/$$
mv /tmp/$$ $file
quilt refresh
done
The script was run like this
sh replace kmem_cache_t "struct kmem_cache"
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
SLAB_KERNEL is an alias of GFP_KERNEL.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This changes the spu_create system call to return an error (-ENODEV) if
and isolated spu context is requested on hardware that doesn't support
isolated mode.
Tested on systemsim with and without isolation support
Signed-off-by: Jeremy Kerr <jk@ozlabs.org>
Signed-off-by: Arnd Bergmann <arnd.bergmann@de.ibm.com>
This patch adds SPU elf notes to the coredump. It creates a separate note
for each of /regs, /fpcr, /lslr, /decr, /decr_status, /mem, /signal1,
/signal1_type, /signal2, /signal2_type, /event_mask, /event_status,
/mbox_info, /ibox_info, /wbox_info, /dma_info, /proxydma_info, /object-id.
A new macro, ARCH_HAVE_EXTRA_NOTES, was created for architectures to
specify they have extra elf core notes.
A new macro, ELF_CORE_EXTRA_NOTES_SIZE, was created so the size of the
additional notes could be calculated and added to the notes phdr entry.
A new macro, ELF_CORE_WRITE_EXTRA_NOTES, was created so the new notes
would be written after the existing notes.
The SPU coredump code resides in spufs. Stub functions are provided in the
kernel which are hooked into the spufs code which does the actual work via
register_arch_coredump_calls().
A new set of __spufs_<file>_read/get() functions was provided to allow the
coredump code to read from the spufs files without having to lock the
SPU context for each file read from.
Cc: <linux-arch@vger.kernel.org>
Signed-off-by: Dwayne Grant McConnell <decimal@us.ibm.com>
Signed-off-by: Arnd Bergmann <arnd.bergmann@de.ibm.com>
In order to fit with the "don't-run-spus-outside-of-spu_run" model, this
patch starts the isolated-mode loader in spu_run, rather than
spu_create. If spu_run is passed an isolated-mode context that isn't in
isolated mode state, it will run the loader.
This fixes potential races with the isolated SPE app doing a
stop-and-signal before the PPE has called spu_run: bugzilla #29111.
Also (in conjunction with a mambo patch), this addresses #28565, as we
always set the runcntrl register when entering spu_run.
It is up to libspe to ensure that isolated-mode apps are cleaned up
after running to completion - ie, put the app through the "ISOLATE EXIT"
state (see Ch11 of the CBEA).
Signed-off-by: Jeremy Kerr <jk@ozlabs.org>
Signed-off-by: Arnd Bergmann <arnd.bergmann@de.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
When the user changes the runcontrol register, an SPU might be
running without a process being attached to it and waiting for
events. In order to prevent this, make sure we always disable
the priv1 master control when we're not inside of spu_run.
Signed-off-by: Arnd Bergmann <arnd.bergmann@de.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
When in isolated mode, SPEs have access to an area of persistent
storage, which is per-SPE. In order for isolated-mode apps to
communicate arbitrary data through this storage, we need to ensure that
isolated physical SPEs can be reused for subsequent applications.
Add a file ("recycle") in a spethread dir to enable isolated-mode
recycling. By writing to this file, the kernel will reload the
isolated-mode loader kernel, allowing a new app to be run on the same
physical SPE.
This requires the spu_acquire_exclusive function to enforce exclusive
access to the SPE while the loader is initialised.
Signed-off-by: Jeremy Kerr <jk@ozlabs.org>
Signed-off-by: Arnd Bergmann <arnd.bergmann@de.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
This patch adds general support for isolated mode SPE apps.
Isolated apps are started indirectly, by a dedicated loader "kernel".
This patch starts the loader when spe_create is invoked with the
ISOLATE flag. We do this at spe_create time to allow libspe to pass the
isolated app in before calling spe_run.
The loader is read from the device tree, at the location
"/spu-isolation/loader". If the loader is not present, an attempt to
start an isolated SPE binary will fail with -ENODEV.
Update: loader needs to be correctly aligned - copy to a kmalloced buf.
Update: remove workaround for systemsim/spurom 'L-bit' bug, which has
been fixed.
Update: don't write to runcntl on spu_run_init: SPU is already running.
Update: do spu_setup_isolated earlier
Tested on systemsim.
Signed-off-by: Jeremy Kerr <jk@ozlabs.org>
Signed-off-by: Arnd Bergmann <arnd.bergmann@de.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
This adds two new flags to spu_create:
SPU_CREATE_NONSCHED: create a context that is never moved
away from an SPE once it has started running. This flag
can only be used by tasks with the CAP_SYS_NICE capability.
SPU_CREATE_ISOLATED: create a nonschedulable context that
enters isolation mode upon first run. This requires the
SPU_CREATE_NONSCHED flag.
Signed-off-by: Jeremy Kerr <jk@ozlabs.org>
Signed-off-by: Arnd Bergmann <arnd.bergmann@de.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Add the concept of a gang to spufs as a new type of object.
So far, this has no impact whatsover on scheduling, but makes
it possible to add that later.
A new type of object in spufs is now a spu_gang. It is created
with the spu_create system call with the flags argument set
to SPU_CREATE_GANG (0x2). Inside of a spu_gang, it
is then possible to create spu_context objects, which until
now was only possible at the root of spufs.
There is a new member in struct spu_context pointing to
the spu_gang it belongs to, if any. The spu_gang maintains
a list of spu_context structures that are its children.
This information can then be used in the scheduler in the
future.
There is still a bug that needs to be resolved in this
basic infrastructure regarding the order in which objects
are removed. When the spu_gang file descriptor is closed
before the spu_context descriptors, we leak the dentry
and inode for the gang. Any ideas how to cleanly solve
this are appreciated.
Signed-off-by: Arnd Bergmann <arnd.bergmann@de.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
This tries to fix spufs so we have an interface closer to what is
specified in the man page for events returned in the third argument of
spu_run.
Fortunately, libspe has never been using the returned contents of that
register, as they were the same as the return code of spu_run (duh!).
Unlike the specification that we never implemented correctly, we now
require a SPU_CREATE_EVENTS_ENABLED flag passed to spu_create, in
order to get the new behavior. When this flag is not passed, spu_run
will simply ignore the third argument now.
Signed-off-by: Arnd Bergmann <arnd.bergmann@de.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
This eliminates the i_blksize field from struct inode. Filesystems that want
to provide a per-inode st_blksize can do so by providing their own getattr
routine instead of using the generic_fillattr() function.
Note that some filesystems were providing pretty much random (and incorrect)
values for i_blksize.
[bunk@stusta.de: cleanup]
[akpm@osdl.org: generic_fillattr() fix]
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
The following patches reduce the size of the VFS inode structure by 28 bytes
on a UP x86. (It would be more on an x86_64 system). This is a 10% reduction
in the inode size on a UP kernel that is configured in a production mode
(i.e., with no spinlock or other debugging functions enabled; if you want to
save memory taken up by in-core inodes, the first thing you should do is
disable the debugging options; they are responsible for a huge amount of bloat
in the VFS inode structure).
This patch:
The filesystem or device-specific pointer in the inode is inside a union,
which is pretty pointless given that all 30+ users of this field have been
using the void pointer. Get rid of the union and rename it to i_private, with
a comment to explain who is allowed to use the void pointer. This is just a
cleanup, but it allows us to reuse the union 'u' for something something where
the union will actually be used.
[judith@osdl.org: powerpc build fix]
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Signed-off-by: Judith Lebzelter <judith@osdl.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Extend the get_sb() filesystem operation to take an extra argument that
permits the VFS to pass in the target vfsmount that defines the mountpoint.
The filesystem is then required to manually set the superblock and root dentry
pointers. For most filesystems, this should be done with simple_set_mnt()
which will set the superblock pointer and then set the root dentry to the
superblock's s_root (as per the old default behaviour).
The get_sb() op now returns an integer as there's now no need to return the
superblock pointer.
This patch permits a superblock to be implicitly shared amongst several mount
points, such as can be done with NFS to avoid potential inode aliasing. In
such a case, simple_set_mnt() would not be called, and instead the mnt_root
and mnt_sb would be set directly.
The patch also makes the following changes:
(*) the get_sb_*() convenience functions in the core kernel now take a vfsmount
pointer argument and return an integer, so most filesystems have to change
very little.
(*) If one of the convenience function is not used, then get_sb() should
normally call simple_set_mnt() to instantiate the vfsmount. This will
always return 0, and so can be tail-called from get_sb().
(*) generic_shutdown_super() now calls shrink_dcache_sb() to clean up the
dcache upon superblock destruction rather than shrink_dcache_anon().
This is required because the superblock may now have multiple trees that
aren't actually bound to s_root, but that still need to be cleaned up. The
currently called functions assume that the whole tree is rooted at s_root,
and that anonymous dentries are not the roots of trees which results in
dentries being left unculled.
However, with the way NFS superblock sharing are currently set to be
implemented, these assumptions are violated: the root of the filesystem is
simply a dummy dentry and inode (the real inode for '/' may well be
inaccessible), and all the vfsmounts are rooted on anonymous[*] dentries
with child trees.
[*] Anonymous until discovered from another tree.
(*) The documentation has been adjusted, including the additional bit of
changing ext2_* into foo_* in the documentation.
[akpm@osdl.org: convert ipath_fs, do other stuff]
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Cc: Nathan Scott <nathans@sgi.com>
Cc: Roland Dreier <rolandd@cisco.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
At this time, all flags are invalid. Since we are
planning to actually add valid flags in the future,
we better check if any were passed by the user.
Signed-off-by: Arnd Bergmann <arnd.bergmann@de.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
spufs_rmdir tries to acquire the spufs root
i_mutex, which is already held by spufs_create_thread.
This was tracked as Bug #H9512.
Signed-off-by: Michael Ellerman <michael@ellerman.id.au>
Signed-off-by: Arnd Bergmann <arnd.bergmann@de.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Mark the f_ops members of inodes as const, as well as fix the
ripple-through this causes by places that copy this f_ops and then "do
stuff" with it.
Signed-off-by: Arjan van de Ven <arjan@infradead.org>
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
spufs_init and spufs_exit should be marked correctly so
they can be removed when not needed.
Signed-off-by: Arnd Bergmann <arnd.bergmann@de.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
This patch is layered on top of CONFIG_SPARSEMEM
and is patterned after direct mapping of LS.
This patch allows mmap() of the following regions:
"mfc", which represents the area from [0x3000 - 0x3fff];
"cntl", which represents the area from [0x4000 - 0x4fff];
"signal1" which begins at offset 0x14000; "signal2" which
begins at offset 0x1c000.
The signal1 & signal2 files may be mmap()'d by regular user
processes. The cntl and mfc file, on the other hand, may
only be accessed if the owning process has CAP_SYS_RAWIO,
because they have the potential to confuse the kernel
with regard to parallel access to the same files with
regular file operations: the kernel always holds a spinlock
when accessing registers in these areas to serialize them,
which can not be guaranteed with user mmaps,
Signed-off-by: Arnd Bergmann <arnd.bergmann@de.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
This patch converts the inode semaphore to a mutex. I have tested it on
XFS and compiled as much as one can consider on an ia64. Anyway your
luck with it might be different.
Modified-by: Ingo Molnar <mingo@elte.hu>
(finished the conversion)
Signed-off-by: Jes Sorensen <jes@sgi.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
One local variable is missing an __iomem modifier,
in another place, we pass a completely unused argument
with a missing __user modifier.
Signed-off-by: Arnd Bergmann <arndb@de.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
If creating one entry failed in spufs_fill_dir,
we never cleaned up the freshly created entries.
Fix this by calling the cleanup function on error.
Noticed by Al Viro.
Signed-off-by: Arnd Bergmann <arndb@de.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
If get_unused_fd failed in sys_spu_create, we never cleaned
up the created directory. Fix that by restructuring the
error path.
Noticed by Al Viro.
Signed-off-by: Arnd Bergmann <arndb@de.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Only checking for SPUFS_MAGIC is not reliable, because
it might not be unique in theory. Worse than that,
we accidentally allow spu_run to be performed on
any file in spufs, not just those returned from
spu_create as intended.
Noticed by Al Viro.
Signed-off-by: Arnd Bergmann <arndb@de.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
spu_forget will do mmput on the DMA address space,
which can lead to lots of other stuff getting triggered.
We better not hold a semaphore here that we might
need in the process.
Noticed by Al Viro.
Signed-off-by: Arnd Bergmann <arndb@de.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
This adds a scheduler for SPUs to make it possible to use
more logical SPUs than physical ones are present in the
system.
Currently, there is no support for preempting a running
SPU thread, they have to leave the SPU by either triggering
an event on the SPU that causes it to return to the
owning thread or by sending a signal to it.
This patch also adds operations that enable accessing an SPU
in either runnable or saved state. We use an RW semaphore
to protect the state of the SPU from changing underneath
us, while we are holding it readable. In order to change
the state, it is acquired writeable and a context save
or restore is executed before downgrading the semaphore
to read-only.
From: Mark Nutter <mnutter@us.ibm.com>,
Uli Weigand <Ulrich.Weigand@de.ibm.com>
Signed-off-by: Arnd Bergmann <arndb@de.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
This is the current version of the spu file system, used
for driving SPEs on the Cell Broadband Engine.
This release is almost identical to the version for the
2.6.14 kernel posted earlier, which is available as part
of the Cell BE Linux distribution from
http://www.bsc.es/projects/deepcomputing/linuxoncell/.
The first patch provides all the interfaces for running
spu application, but does not have any support for
debugging SPU tasks or for scheduling. Both these
functionalities are added in the subsequent patches.
See Documentation/filesystems/spufs.txt on how to use
spufs.
Signed-off-by: Arnd Bergmann <arndb@de.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>