This will be used for private function used by AMD- and Intel-specific
PMU implementations.
Signed-off-by: Wei Huang <wei@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Based on Intel's SDM, mapping huge page which do not have consistent
memory cache for each 4k page will cause undefined behavior
In order to avoiding this kind of undefined behavior, we force to use
4k pages under this case
Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
mtrr_for_each_mem_type() is ready now, use it to simplify
kvm_mtrr_get_guest_memory_type()
Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
It walks all MTRRs and gets all the memory cache type setting for the
specified range also it checks if the range is fully covered by MTRRs
Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com>
[Adjust for range_size->range_shift change. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Two functions are introduced:
- fixed_mtrr_addr_to_seg() translates the address to the fixed
MTRR segment
- fixed_mtrr_addr_seg_to_range_index() translates the address to
the index of kvm_mtrr.fixed_ranges[]
They will be used in the later patch
Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com>
[Adjust for range_size->range_shift change. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Sort all valid variable MTRRs based on its base address, it will help us to
check a range to see if it's fully contained in variable MTRRs
Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com>
[Fix list insertion sort, simplify var_mtrr_range_is_valid to just
test the V bit. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
It gets the range for the specified variable MTRR
Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com>
[Simplify boolean operations. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This table summarizes the information of fixed MTRRs and introduce some APIs
to abstract its operation which helps us to clean up the code and will be
used in later patches
Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com>
[Change range_size to range_shift, in order to avoid udivdi3 errors.
- Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
- kvm_mtrr_get_guest_memory_type() only checks one page in MTRRs so
that it's unnecessary to check to see if the range is partially
covered in MTRR
- optimize the check of overlap memory type and add some comments
to explain the precedence
Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Variable MTRR MSRs are 64 bits which are directly accessed with full length,
no reason to split them to two 32 bits
Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Drop kvm_mtrr->enable, omit the decode/code workload and get rid of
all the hard code
Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Only KVM_NR_VAR_MTRR variable MTRRs are available in KVM guest
Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
vMTRR does not depend on any host MTRR feature and fixed MTRRs have always
been implemented, so drop this field
Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
MSR_MTRRcap is a MTRR msr so move the handler to the common place, also
add some comments to make the hard code more readable
Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
MTRR code locates in x86.c and mmu.c so that move them to a separate file to
make the organization more clearer and it will be the place where we fully
implement vMTRR
Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Currently, CR0.CD is not checked when we virtualize memory cache type for
noncoherent_dma guests, this patch fixes it by :
- setting UC for all memory if CR0.CD = 1
- zapping all the last sptes in MMU if CR0.CD is changed
Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If hardware doesn't support DecodeAssist - a feature that provides
more information about the intercept in the VMCB, KVM decodes the
instruction and then updates the next_rip vmcb control field.
However, NRIP support itself depends on cpuid Fn8000_000A_EDX[NRIPS].
Since skip_emulated_instruction() doesn't verify nrip support
before accepting control.next_rip as valid, avoid writing this
field if support isn't present.
Signed-off-by: Bandan Das <bsd@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The GIC Hypervisor Configuration Register is used to enable
the delivery of virtual interupts to a guest, as well as to
define in which conditions maintenance interrupts are delivered
to the host.
This register doesn't contain any information that we need to
read back (the EOIcount is utterly useless for us).
So let's save ourselves some cycles, and not save it before
writing zero to it.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
According to the PSCI specification and the SMC/HVC calling
convention, PSCI function_ids that are not implemented must
return NOT_SUPPORTED as return value.
Current KVM implementation takes an unhandled PSCI function_id
as an error and injects an undefined instruction into the guest
if PSCI implementation is called with a function_id that is not
handled by the resident PSCI version (ie it is not implemented),
which is not the behaviour expected by a guest when calling a
PSCI function_id that is not implemented.
This patch fixes this issue by returning NOT_SUPPORTED whenever
the kvm PSCI call is executed for a function_id that is not
implemented by the PSCI kvm layer.
Cc: <stable@vger.kernel.org> # 3.18+
Cc: Christoffer Dall <christoffer.dall@linaro.org>
Acked-by: Sudeep Holla <sudeep.holla@arm.com>
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
The elr_el2 and spsr_el2 registers in fact contain the processor state
before entry into EL2. In the case of guest state it could be in either
el0 or el1.
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
The KVM-VFIO device is used by the QEMU VFIO device. It is used to
record the list of in-use VFIO groups so that KVM can manipulate
them.
Signed-off-by: Kim Phillips <kim.phillips@linaro.org>
Signed-off-by: Eric Auger <eric.auger@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Until now we have been calling kvm_guest_exit after re-enabling
interrupts when we come back from the guest, but this has the
unfortunate effect that CPU time accounting done in the context of timer
interrupts occurring while the guest is running doesn't properly notice
that the time since the last tick was spent in the guest.
Inspired by the comment in the x86 code, move the kvm_guest_exit() call
below the local_irq_enable() call and change __kvm_guest_exit() to
kvm_guest_exit(), because we are now calling this function with
interrupts enabled. We have to now explicitly disable preemption and
not enable preemption before we've called kvm_guest_exit(), since
otherwise we could be preempted and everything happening before we
eventually get scheduled again would be accounted for as guest time.
At the same time, move the trace_kvm_exit() call outside of the atomic
section, since there is no reason for us to do that with interrupts
disabled.
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
We already check KVM_CAP_IRQFD in generic once enable CONFIG_HAVE_KVM_IRQFD,
kvm_vm_ioctl_check_extension_generic()
|
+ switch (arg) {
+ ...
+ #ifdef CONFIG_HAVE_KVM_IRQFD
+ case KVM_CAP_IRQFD:
+ #endif
+ ...
+ return 1;
+ ...
+ }
|
+ kvm_vm_ioctl_check_extension()
So its not necessary to check this in arch again, and also fix one typo,
s/emlation/emulation.
Signed-off-by: Tiejun Chen <tiejun.chen@intel.com>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
On VM entry, we disable access to the VFP registers in order to
perform a lazy save/restore of these registers.
On VM exit, we restore access, test if we did enable them before,
and save/restore the guest/host registers if necessary. In this
sequence, the FPEXC register is always accessed, irrespective
of the trapping configuration.
If the guest didn't touch the VFP registers, then the HCPTR access
has now enabled such access, but we're missing a barrier to ensure
architectural execution of the new HCPTR configuration. If the HCPTR
access has been delayed/reordered, the subsequent access to FPEXC
will cause a trap, which we aren't prepared to handle at all.
The same condition exists when trapping to enable VFP for the guest.
The fix is to introduce a barrier after enabling VFP access. In the
vmexit case, it can be relaxed to only takes place if the guest hasn't
accessed its view of the VFP registers, making the access to FPEXC safe.
The set_hcptr macro is modified to deal with both vmenter/vmexit and
vmtrap operations, and now takes an optional label that is branched to
when the guest hasn't touched the VFP registers.
Reported-by: Vikram Sethi <vikrams@codeaurora.org>
Cc: stable@kernel.org # v3.9+
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
No need to cast the void pointer returned by kmalloc() in
arch/arm/kvm/mmu.c::kvm_alloc_stage2_pgd().
Signed-off-by: Firo Yang <firogm@gmail.com>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Follow up to commit e194bbdf36.
Suggested-by: Bandan Das <bsd@redhat.com>
Suggested-by: Alex Williamson <alex.williamson@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
... and we're done. :)
Because SMBASE is usually relocated above 1M on modern chipsets, and
SMM handlers might indeed rely on 4G segment limits, we only expose it
if KVM is able to run the guest in big real mode. This includes any
of VMX+emulate_invalid_guest_state, VMX+unrestricted_guest, or SVM.
Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This is now very simple to do. The only interesting part is a simple
trick to find the right memslot in gfn_to_rmap, retrieving the address
space from the spte role word. The same trick is used in the auditing
code.
The comment on top of union kvm_mmu_page_role has been stale forever,
so remove it. Speaking of stale code, remove pad_for_nice_hex_output
too: it was splitting the "access" bitfield across two bytes and thus
had effectively turned into pad_for_ugly_hex_output.
Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This patch has no semantic change, but it prepares for the introduction
of a second address space for system management mode.
A new function x86_set_memory_region (and the "slots_lock taken"
counterpart __x86_set_memory_region) is introduced in order to
operate on all address spaces when adding or deleting private
memory slots.
Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
We need to hide SMRAM from guests not running in SMM. Therefore,
all uses of kvm_read_guest* and kvm_write_guest* must be changed to
check whether the VCPU is in system management mode and use a
different set of memslots. Switch from kvm_* to the newly-introduced
kvm_vcpu_*, which call into kvm_arch_vcpu_memslots_id.
Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This is always available (with one exception in the auditing code),
and with the same auditing exception the level was coming from
sp->role.level.
Later, the spte's role will also be used to look up the right memslots
array.
Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Only two ioctls have to be modified; the address space id is
placed in the higher 16 bits of their slot id argument.
As of this patch, no architecture defines more than one
address space; x86 will be the first.
Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The big ugly one. This patch adds support for switching in and out of
system management mode, respectively upon receiving KVM_REQ_SMI and upon
executing a RSM instruction. Both 32- and 64-bit formats are supported
for the SMM state save area.
Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Do not process INITs immediately while in system management mode, keep
it instead in apic->pending_events. Tell userspace if an INIT is
pending when they issue GET_VCPU_EVENTS, and similarly handle the
new field in SET_VCPU_EVENTS.
Note that the same treatment should be done while in VMX non-root mode.
Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This patch adds the interface between x86.c and the emulator: the
SMBASE register, a new emulator flag, the RSM instruction. It also
adds a new request bit that will be used by the KVM_SMI ioctl.
Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This patch includes changes to the external API for SMM support.
Userspace can predicate the availability of the new fields and
ioctls on a new capability, KVM_CAP_X86_SMM, which is added at the end
of the patch series.
Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The hflags field will contain information about system management mode
and will be useful for the emulator. Pass the entire field rather than
just the guest-mode information.
Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
SMBASE is only readable from SMM for the VCPU, but it must be always
accessible if userspace is accessing it. Thus, all functions that
read MSRs are changed to accept a struct msr_data; the host_initiated
and index fields are pre-initialized, while the data field is filled
on return.
Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
We will want to filter away MSR_IA32_SMBASE from the emulated_msrs if
the host CPU does not support SMM virtualization. Introduce the
logic to do that, and also move paravirt MSRs to emulated_msrs for
simplicity and to get rid of KVM_SAVE_MSRS_BEGIN.
Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Malicious (or egregiously buggy) userspace can trigger it, but it
should never happen in normal operation.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
VFIO has proved itself a much better option than KVM's built-in
device assignment. It is mature, provides better isolation because
it enforces ACS, and even the userspace code is being tested on
a wider variety of hardware these days than the legacy support.
Disable legacy device assignment by default.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
One small fix for a commit targetted for 4.2 and one cleanup
regarding our printks.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.14 (GNU/Linux)
iQIcBAABAgAGBQJVbWMvAAoJEBF7vIC1phx8G9IP/1VxA0aXRyUEA0KgHIbkWYJb
DPXpznubJqgWTYGMWM9R8/frIwH3rnJZMdWDNtu3SMULQTC9HzTMcl5PAe+XEe9F
+oxU4IgUdvcbZkI49rnHn+3n99vhnQS5emmX7ivPV2YQrWFVC36gAOMlNe+S40fJ
SJ4iXANo+3LT6MaeD67Kcb+nLsrGTTP+6RtNthc4yV14fYPLdafy8+5BAvMZfLRn
xWS9In8zqQtCnaB4eJ08C4D7MuNL6yIu3s54PLunKVlvCayxThsFNk+al/QwyS74
6vJZLCFX55RLSBZLkEYH6b2k1ckF//ZgLOL29sLIHwi2Ry01guZ43PjjRa/jdkbj
cOq5rDsfcfKp8sIMJhGF5Y/UneaqBW+/vAfQrIHANDwUcCkfFh95/Gv/nF5KrcsO
0pvzi+SSnu7Y2hWL5iJIvrHAclMazEHewWnubur7UTgkzPWxA35gfBqwZir5q/pI
cG2AELzjERWYWIip4hT2z1UGSKZQNYOddrmZxN6noj0MCyIdnq/wuklOr9y5HTif
ei+k0xtaViEES4vlc0H6Jo5Cplgv28nxXBemAtNwCCL8iGVJbM7JJcbclrcIkqgc
AgIWSTd8ZsUqBZUWLX37CXqhdym1LmyE3r1A/eV42NXFWatZnDbCzy9k10y9RVGX
/i5OFil2B640rmFUEMHM
=t6ws
-----END PGP SIGNATURE-----
Merge tag 'kvm-s390-next-20150602' of git://git.kernel.org/pub/scm/linux/kernel/git/kvms390/linux into kvm-next
KVM: s390: Fix and cleanup for 4.2 (kvm/next)
One small fix for a commit targetted for 4.2 and one cleanup
regarding our printks.
Let's remove "kvm-s390" from our printk messages and make use
of pr_fmt instead.
Also replace one printk() occurrence by a equivalent pr_warn
on the way.
Suggested-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>