Fujitsu erratum 010001 applies to A64FX v0r0 and v1r0, and we try to
handle either by masking MIDR with MIDR_FUJITSU_ERRATUM_010001_MASK
before comparing it to MIDR_FUJITSU_ERRATUM_010001.
Unfortunately, MIDR_FUJITSU_ERRATUM_010001 is constructed incorrectly
using MIDR_VARIANT(), which is intended to extract the variant field
from MIDR_EL1, rather than generate the field in-place. This results in
MIDR_FUJITSU_ERRATUM_010001 being all-ones, and we only match A64FX
v0r0.
This patch uses MIDR_CPU_VAR_REV() to generate an in-place mask for the
variant field, ensuring the we match both v0r0 and v1r0.
Fixes: 3e32131abc ("arm64: Add workaround for Fujitsu A64FX erratum 010001")
Reported-by: "Okamoto, Takayuki" <tokamoto@jp.fujitsu.com>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
[catalin.marinas@arm.com: fixed the patch author]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Currently, every arch/*/include/uapi/asm/Kbuild explicitly includes
the common Kbuild.asm file. Factor out the duplicated include directives
to scripts/Makefile.asm-generic so that no architecture would opt out
of the mandatory-y mechanism.
um is not forced to include mandatory-y since it is a very exceptional
case which does not support UAPI.
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
for 32-bit guests
s390: interrupt cleanup, introduction of the Guest Information Block,
preparation for processor subfunctions in cpu models
PPC: bug fixes and improvements, especially related to machine checks
and protection keys
x86: many, many cleanups, including removing a bunch of MMU code for
unnecessary optimizations; plus AVIC fixes.
Generic: memcg accounting
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJci+7XAAoJEL/70l94x66DUMkIAKvEefhceySHYiTpfefjLjIC
16RewgHa+9CO4Oo5iXiWd90fKxtXLXmxDQOS4VGzN0rxvLGRw/fyXIxL1MDOkaAO
l8SLSNuewY4XBUgISL3PMz123r18DAGOuy9mEcYU/IMesYD2F+wy5lJ17HIGq6X2
RpoF1p3qO1jfkPTKOob6Ixd4H5beJNPKpdth7LY3PJaVhDxgouj32fxnLnATVSnN
gENQ10fnt8BCjshRYW6Z2/9bF15JCkUFR1xdBW2/xh1oj+kvPqqqk2bEN1eVQzUy
2hT/XkwtpthqjSbX8NNavWRSFnOnbMLTRKQyIXmFVsM5VoSrwtiGsCFzBgcT++I=
=XIzU
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"ARM:
- some cleanups
- direct physical timer assignment
- cache sanitization for 32-bit guests
s390:
- interrupt cleanup
- introduction of the Guest Information Block
- preparation for processor subfunctions in cpu models
PPC:
- bug fixes and improvements, especially related to machine checks
and protection keys
x86:
- many, many cleanups, including removing a bunch of MMU code for
unnecessary optimizations
- AVIC fixes
Generic:
- memcg accounting"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (147 commits)
kvm: vmx: fix formatting of a comment
KVM: doc: Document the life cycle of a VM and its resources
MAINTAINERS: Add KVM selftests to existing KVM entry
Revert "KVM/MMU: Flush tlb directly in the kvm_zap_gfn_range()"
KVM: PPC: Book3S: Add count cache flush parameters to kvmppc_get_cpu_char()
KVM: PPC: Fix compilation when KVM is not enabled
KVM: Minor cleanups for kvm_main.c
KVM: s390: add debug logging for cpu model subfunctions
KVM: s390: implement subfunction processor calls
arm64: KVM: Fix architecturally invalid reset value for FPEXC32_EL2
KVM: arm/arm64: Remove unused timer variable
KVM: PPC: Book3S: Improve KVM reference counting
KVM: PPC: Book3S HV: Fix build failure without IOMMU support
Revert "KVM: Eliminate extra function calls in kvm_get_dirty_log_protect()"
x86: kvmguest: use TSC clocksource if invariant TSC is exposed
KVM: Never start grow vCPU halt_poll_ns from value below halt_poll_ns_grow_start
KVM: Expose the initial start value in grow_halt_poll_ns() as a module parameter
KVM: grow_halt_poll_ns() should never shrink vCPU halt_poll_ns
KVM: x86/mmu: Consolidate kvm_mmu_zap_all() and kvm_mmu_zap_mmio_sptes()
KVM: x86/mmu: WARN if zapping a MMIO spte results in zapping children
...
- add debugfs support for dumping dma-debug information (Corentin Labbe)
- Kconfig cleanups (Andy Shevchenko and me)
- debugfs cleanups (Greg Kroah-Hartman)
- improve dma_map_resource and use it in the media code
- arch_setup_dma_ops / arch_teardown_dma_ops cleanups
- various small cleanups and improvements for the per-device coherent
allocator
- make the DMA mask an upper bound and don't fail "too large" dma mask
in the remaning two architectures - this will allow big driver
cleanups in the following merge windows
-----BEGIN PGP SIGNATURE-----
iQI/BAABCgApFiEEgdbnc3r/njty3Iq9D55TZVIEUYMFAlyCKUgLHGhjaEBsc3Qu
ZGUACgkQD55TZVIEUYP1vA//WNK5cxQVGZZsmsmkcNe3sCaJCZD4MpVpq/D+l87t
3j1C1qmduOPyI1m061niYk7j4B4DeyeLs+XOeUsl5Yz+FqVvDICuNHXXJQSUr3Ao
JbMfBis8Ne65Eyz0xxBltCWM7WiE6fdo7AGoR4Bzj3+f4xGOOazkRy4R6r67bU6x
v3R5dTvfbSlvvKhn+j8ksAEYb+WPUmr6Z2dnlF0mShnOCpZVy0wd0M1gtEFKrVHx
zKz9/va4/7yEcpdVqNtSDlHIsSZcFE3ZfTRWq6ZtBoRN+gNwrI0YylY7HtCfJWZG
IxMiuQ+8SHGE8+NI2d56bs4MsHbqPBRSuadJNuZaTzdxs6FDTEnlCDeXwGF1cHf2
qhVMfn17V4TZNT4NAd2wHa60cjTMoqraWeS06/b2tyXTF0uxyWj0BCjaHNJa+Ayc
KCulq1n2LmTDiOGnZJT7Oui6PO5etOHAmvgMQumBNkzQJbPGvuiYGgsciYAMSmuy
NccIrghQzR9BlG6U1srzTiGQJnpm38x1hWphtU6gQPwz5iKt3FBAfEWCic8U81QE
JKSwoYv/5ChO+sy9880t/FLO8hn/7L55IOdZEfGkQ22gFzf3W5f9v2jFQc8XN2BO
Fc6EjWERrmTzUi0f1Ooj3VPRtWuZq86KqlKByy6iZ5eXwxpGE1M0HZVoHYCW+aDd
MYc=
=nAMI
-----END PGP SIGNATURE-----
Merge tag 'dma-mapping-5.1' of git://git.infradead.org/users/hch/dma-mapping
Pull DMA mapping updates from Christoph Hellwig:
- add debugfs support for dumping dma-debug information (Corentin
Labbe)
- Kconfig cleanups (Andy Shevchenko and me)
- debugfs cleanups (Greg Kroah-Hartman)
- improve dma_map_resource and use it in the media code
- arch_setup_dma_ops / arch_teardown_dma_ops cleanups
- various small cleanups and improvements for the per-device coherent
allocator
- make the DMA mask an upper bound and don't fail "too large" dma mask
in the remaning two architectures - this will allow big driver
cleanups in the following merge windows
* tag 'dma-mapping-5.1' of git://git.infradead.org/users/hch/dma-mapping: (21 commits)
Documentation/DMA-API-HOWTO: update dma_mask sections
sparc64/pci_sun4v: allow large DMA masks
sparc64/iommu: allow large DMA masks
sparc64: refactor the ali DMA quirk
ccio: allow large DMA masks
dma-mapping: remove the DMA_MEMORY_EXCLUSIVE flag
dma-mapping: remove dma_mark_declared_memory_occupied
dma-mapping: move CONFIG_DMA_CMA to kernel/dma/Kconfig
dma-mapping: improve selection of dma_declare_coherent availability
dma-mapping: remove an incorrect __iommem annotation
of: select OF_RESERVED_MEM automatically
device.h: dma_mem is only needed for HAVE_GENERIC_DMA_COHERENT
mfd/sm501: depend on HAS_DMA
dma-mapping: add a kconfig symbol for arch_teardown_dma_ops availability
dma-mapping: add a kconfig symbol for arch_setup_dma_ops availability
dma-mapping: move debug configuration options to kernel/dma
dma-debug: add dumping facility via debugfs
dma: debug: no need to check return value of debugfs_create functions
videobuf2: replace a layering violation with dma_map_resource
dma-mapping: don't BUG when calling dma_map_resource on RAM
...
- Pseudo NMI support for arm64 using GICv3 interrupt priorities
- uaccess macros clean-up (unsafe user accessors also merged but
reverted, waiting for objtool support on arm64)
- ptrace regsets for Pointer Authentication (ARMv8.3) key management
- inX() ordering w.r.t. delay() on arm64 and riscv (acks in place by the
riscv maintainers)
- arm64/perf updates: PMU bindings converted to json-schema, unused
variable and misleading comment removed
- arm64/debug fixes to ensure checking of the triggering exception level
and to avoid the propagation of the UNKNOWN FAR value into the si_code
for debug signals
- Workaround for Fujitsu A64FX erratum 010001
- lib/raid6 ARM NEON optimisations
- NR_CPUS now defaults to 256 on arm64
- Minor clean-ups (documentation/comments, Kconfig warning, unused
asm-offsets, clang warnings)
- MAINTAINERS update for list information to the ARM64 ACPI entry
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE5RElWfyWxS+3PLO2a9axLQDIXvEFAlyCl0cACgkQa9axLQDI
XvEyKxAAiogBZLbyhcy8bTUHVzVoJE0FyAkdO2wWnnaff2Ohkhy1Y/npv33IeK2q
RknxqDIx2DUUVPJNRZGoI/WwBtTZdKaAnW4rIKG84yC1eAkFcd96WQasaZzcp1qY
HmvbJiYXM0bh+0J7i3Wgry/QzOkrltJFJW2kp6Wd5aFE+R1WyWyxT6d+Fp0J3vlA
bT70jlpBK6LXEOmmBS+04Ml02+8MvaGxIl8EInBHSfDLRLErj5E8n41rRHKUiSWz
maWI+kVoLYwOE68xiZlDftUBEeQpUSWgg2nxeK+640QSl1wJmVcRcY9nm6TZeMG2
AiZTR9a7cP5rrdSN5suUmb7d4AMMVlVMisGDlwb+9oCxeTRDzg0uwACaVgHfPqQr
UeBdHbL9nStN7uBH23H8L9mKk+tqpFmk0sgzdrKejOwysAiqWV8aazb/Na3qnVRl
J1B5opxMnGOsjXmHvtG/tiZl281Uwz5ZmzfLmIY3gUZgUgdA3511Egp0ry5y1dzJ
SkYC4Hmzb2ybQvXGIDDa3OzCwXXiqyqKsO+O8Egg1k4OIwbp3w+NHE7gKeA+dMgD
gjN7zEalCUi46Q28xiCPEb+88BpQ18czIWGQLb9mAnmYeZPjqqenXKXuRHr4lgVe
jPURJ/vqvFEglZJN1RDuQHKzHEcm5f2XE566sMZYdSoeiUCb0QM=
=2U56
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Catalin Marinas:
- Pseudo NMI support for arm64 using GICv3 interrupt priorities
- uaccess macros clean-up (unsafe user accessors also merged but
reverted, waiting for objtool support on arm64)
- ptrace regsets for Pointer Authentication (ARMv8.3) key management
- inX() ordering w.r.t. delay() on arm64 and riscv (acks in place by
the riscv maintainers)
- arm64/perf updates: PMU bindings converted to json-schema, unused
variable and misleading comment removed
- arm64/debug fixes to ensure checking of the triggering exception
level and to avoid the propagation of the UNKNOWN FAR value into the
si_code for debug signals
- Workaround for Fujitsu A64FX erratum 010001
- lib/raid6 ARM NEON optimisations
- NR_CPUS now defaults to 256 on arm64
- Minor clean-ups (documentation/comments, Kconfig warning, unused
asm-offsets, clang warnings)
- MAINTAINERS update for list information to the ARM64 ACPI entry
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (54 commits)
arm64: mmu: drop paging_init comments
arm64: debug: Ensure debug handlers check triggering exception level
arm64: debug: Don't propagate UNKNOWN FAR into si_code for debug signals
Revert "arm64: uaccess: Implement unsafe accessors"
arm64: avoid clang warning about self-assignment
arm64: Kconfig.platforms: fix warning unmet direct dependencies
lib/raid6: arm: optimize away a mask operation in NEON recovery routine
lib/raid6: use vdupq_n_u8 to avoid endianness warnings
arm64: io: Hook up __io_par() for inX() ordering
riscv: io: Update __io_[p]ar() macros to take an argument
asm-generic/io: Pass result of I/O accessor to __io_[p]ar()
arm64: Add workaround for Fujitsu A64FX erratum 010001
arm64: Rename get_thread_info()
arm64: Remove documentation about TIF_USEDFPU
arm64: irqflags: Fix clang build warnings
arm64: Enable the support of pseudo-NMIs
arm64: Skip irqflags tracing for NMI in IRQs disabled context
arm64: Skip preemption when exiting an NMI
arm64: Handle serror in NMI context
irqchip/gic-v3: Allow interrupts to be set as pseudo-NMI
...
- Update the ACPICA code in the kernel to upstream revision 20190215
including ACPI 6.3 support and more:
* New predefined methods: _NBS, _NCH, _NIC, _NIH, and _NIG (Erik
Schmauss).
* Update of the PCC Identifier structure in PDTT (Erik Schmauss).
* Support for new Generic Affinity Structure subtable in SRAT
(Erik Schmauss).
* New PCC operation region support (Erik Schmauss).
* Support for GICC statistical profiling for MADT (Erik Schmauss).
* New Error Disconnect Recover notification support (Erik Schmauss).
* New PPTT Processor Structure Flags fields support (Erik Schmauss).
* ACPI 6.3 HMAT updates (Erik Schmauss).
* GTDT Revision 3 support (Erik Schmauss).
* Legacy module-level code (MLC) support removal (Erik Schmauss).
* Update/clarification of messages for control method failures
(Bob Moore).
* Warning on creation of a zero-length opregion (Bob Moore).
* acpiexec option to dump extra info for memory leaks (Bob Moore).
* More ACPI error to firmware error conversions (Bob Moore).
* Debugger fix (Bob Moore).
* Copyrights update (Bob Moore).
- Clean up sleep states support code in ACPICA (Christoph Hellwig).
- Rework in_nmi() handling in the APEI code and add suppor for the
ARM Software Delegated Exception Interface (SDEI) to it (James
Morse).
- Fix possible out-of-bounds accesses in BERT-related core (Ross
Lagerwall).
- Fix the APEI code parsing HEST that includes a Deferred Machine
Check subtable (Yazen Ghannam).
- Use DEFINE_DEBUGFS_ATTRIBUTE for APEI-related debugfs files
(YueHaibing).
- Switch the APEI ERST code to the new generic UUID API (Andy
Shevchenko).
- Update the MAINTAINERS entry for APEI (Borislav Petkov).
- Fix and clean up the ACPI EC driver (Rafael Wysocki, Zhang Rui).
- Fix DMI checks handling in the ACPI backlight driver and add the
"Lunch Box" chassis-type check to it (Hans de Goede).
- Add support for using ACPI table overrides included in built-in
initrd images (Shunyong Yang).
- Update ACPI device enumeration to treat the PWM2 device as "always
present" on Lenovo Yoga Book (Yauhen Kharuzhy).
- Fix up the enumeration of device objects with the PRP0001 device
ID (Andy Shevchenko).
- Clean up PPTT parsing error messages (John Garry).
- Clean up debugfs files creation handling (Greg Kroah-Hartman,
Rafael Wysocki).
- Clean up the ACPI DPTF Makefile (Masahiro Yamada).
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iQIcBAABCAAGBQJcfSIaAAoJEILEb/54YlRxvL8P/2oiG+u3tm3JahQ2tk9iiX3S
4yjYMB5Gmhua3w/t6tnRHHhy3pjjgI6xH5S7WB0VPTMp57E91EQihcbLJNFiJ1Jf
zjeZtWSmoxvcVwHAXq0DZHFMRK9Xgc/1ckzWNH/pwVlBSgaYazuLr6bwtZhtorci
eNWi82abWfAp6kAXjzJkcFbEp9+H6JzseewKcT8VAKn63KZizCEzxT0PuE9c54km
QnILVB9we0aGD2i0w2BRpbz99Wse0vnoUkBcrDw0LFHCaEQjfyAa94YFVQVrkE1Q
ynH26+yQanyzH00q/HWuH7N7YdcYMYT1CgZoIKR5XtJ+CbTc63VQez4csLOgOFMM
VEwmuv5SdRQ+tLCNFn71dxRheAttKI/nGBAZWMRTLQkp412IrQP4BtWw4wFM8SHZ
3G7eReR/bBeS4u1T5KR8CVVxchinDdwnTvqQII1uEniX80AmsHsQZxtU+JdPDp+w
N6gUE+lPF8e4iT+YsrWFMoNsJ9/MoXbSPQK1oYIcL0f5+PjFMxjTbA53wDiMHAhS
9AqVW1fdSPX0ImV3DuDqHph3ekAt26QHKxIA2xj5WTRWKf+29ijO2+5zU8isT7kI
RfGzpvsSYdvPyIRLUqc/Q3d5u/ElacAaaKJNT+6gUT4AkINAZJKQRiw2dWO1g82O
HVuSc5hRfnAJ5ALfCdIG
=r6fU
-----END PGP SIGNATURE-----
Merge tag 'acpi-5.1-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull ACPI updates from Rafael Wysocki:
"These are ACPICA updates including ACPI 6.3 support among other
things, APEI updates including the ARM Software Delegated Exception
Interface (SDEI) support, ACPI EC driver fixes and cleanups and other
assorted improvements.
Specifics:
- Update the ACPICA code in the kernel to upstream revision 20190215
including ACPI 6.3 support and more:
* New predefined methods: _NBS, _NCH, _NIC, _NIH, and _NIG (Erik
Schmauss).
* Update of the PCC Identifier structure in PDTT (Erik Schmauss).
* Support for new Generic Affinity Structure subtable in SRAT
(Erik Schmauss).
* New PCC operation region support (Erik Schmauss).
* Support for GICC statistical profiling for MADT (Erik Schmauss).
* New Error Disconnect Recover notification support (Erik
Schmauss).
* New PPTT Processor Structure Flags fields support (Erik
Schmauss).
* ACPI 6.3 HMAT updates (Erik Schmauss).
* GTDT Revision 3 support (Erik Schmauss).
* Legacy module-level code (MLC) support removal (Erik Schmauss).
* Update/clarification of messages for control method failures
(Bob Moore).
* Warning on creation of a zero-length opregion (Bob Moore).
* acpiexec option to dump extra info for memory leaks (Bob Moore).
* More ACPI error to firmware error conversions (Bob Moore).
* Debugger fix (Bob Moore).
* Copyrights update (Bob Moore)
- Clean up sleep states support code in ACPICA (Christoph Hellwig)
- Rework in_nmi() handling in the APEI code and add suppor for the
ARM Software Delegated Exception Interface (SDEI) to it (James
Morse)
- Fix possible out-of-bounds accesses in BERT-related core (Ross
Lagerwall)
- Fix the APEI code parsing HEST that includes a Deferred Machine
Check subtable (Yazen Ghannam)
- Use DEFINE_DEBUGFS_ATTRIBUTE for APEI-related debugfs files
(YueHaibing)
- Switch the APEI ERST code to the new generic UUID API (Andy
Shevchenko)
- Update the MAINTAINERS entry for APEI (Borislav Petkov)
- Fix and clean up the ACPI EC driver (Rafael Wysocki, Zhang Rui)
- Fix DMI checks handling in the ACPI backlight driver and add the
"Lunch Box" chassis-type check to it (Hans de Goede)
- Add support for using ACPI table overrides included in built-in
initrd images (Shunyong Yang)
- Update ACPI device enumeration to treat the PWM2 device as "always
present" on Lenovo Yoga Book (Yauhen Kharuzhy)
- Fix up the enumeration of device objects with the PRP0001 device ID
(Andy Shevchenko)
- Clean up PPTT parsing error messages (John Garry)
- Clean up debugfs files creation handling (Greg Kroah-Hartman,
Rafael Wysocki)
- Clean up the ACPI DPTF Makefile (Masahiro Yamada)"
* tag 'acpi-5.1-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (65 commits)
ACPI / bus: Respect PRP0001 when retrieving device match data
ACPICA: Update version to 20190215
ACPI/ACPICA: Trivial: fix spelling mistakes and fix whitespace formatting
ACPICA: ACPI 6.3: add GTDT Revision 3 support
ACPICA: ACPI 6.3: HMAT updates
ACPICA: ACPI 6.3: PPTT add additional fields in Processor Structure Flags
ACPICA: ACPI 6.3: add Error Disconnect Recover Notification value
ACPICA: ACPI 6.3: MADT: add support for statistical profiling in GICC
ACPICA: ACPI 6.3: add PCC operation region support for AML interpreter
efi: cper: Fix possible out-of-bounds access
ACPI: APEI: Fix possible out-of-bounds access to BERT region
ACPICA: ACPI 6.3: SRAT: add Generic Affinity Structure subtable
ACPICA: ACPI 6.3: Add Trigger order to PCC Identifier structure in PDTT
ACPICA: ACPI 6.3: Adding predefined methods _NBS, _NCH, _NIC, _NIH, and _NIG
ACPICA: Update/clarify messages for control method failures
ACPICA: Debugger: Fix possible fault with the "test objects" command
ACPICA: Interpreter: Emit warning for creation of a zero-length op region
ACPICA: Remove legacy module-level code support
ACPI / x86: Make PWM2 device always present at Lenovo Yoga Book
ACPI / video: Extend chassis-type detection with a "Lunch Box" check
..
Merge misc updates from Andrew Morton:
- a few misc things
- ocfs2 updates
- most of MM
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (159 commits)
tools/testing/selftests/proc/proc-self-syscall.c: remove duplicate include
proc: more robust bulk read test
proc: test /proc/*/maps, smaps, smaps_rollup, statm
proc: use seq_puts() everywhere
proc: read kernel cpu stat pointer once
proc: remove unused argument in proc_pid_lookup()
fs/proc/thread_self.c: code cleanup for proc_setup_thread_self()
fs/proc/self.c: code cleanup for proc_setup_self()
proc: return exit code 4 for skipped tests
mm,mremap: bail out earlier in mremap_to under map pressure
mm/sparse: fix a bad comparison
mm/memory.c: do_fault: avoid usage of stale vm_area_struct
writeback: fix inode cgroup switching comment
mm/huge_memory.c: fix "orig_pud" set but not used
mm/hotplug: fix an imbalance with DEBUG_PAGEALLOC
mm/memcontrol.c: fix bad line in comment
mm/cma.c: cma_declare_contiguous: correct err handling
mm/page_ext.c: fix an imbalance with kmemleak
mm/compaction: pass pgdat to too_many_isolated() instead of zone
mm: remove zone_lru_lock() function, access ->lru_lock directly
...
Pull locking updates from Ingo Molnar:
"The biggest part of this tree is the new auto-generated atomics API
wrappers by Mark Rutland.
The primary motivation was to allow instrumentation without uglifying
the primary source code.
The linecount increase comes from adding the auto-generated files to
the Git space as well:
include/asm-generic/atomic-instrumented.h | 1689 ++++++++++++++++--
include/asm-generic/atomic-long.h | 1174 ++++++++++---
include/linux/atomic-fallback.h | 2295 +++++++++++++++++++++++++
include/linux/atomic.h | 1241 +------------
I preferred this approach, so that the full call stack of the (already
complex) locking APIs is still fully visible in 'git grep'.
But if this is excessive we could certainly hide them.
There's a separate build-time mechanism to determine whether the
headers are out of date (they should never be stale if we do our job
right).
Anyway, nothing from this should be visible to regular kernel
developers.
Other changes:
- Add support for dynamic keys, which removes a source of false
positives in the workqueue code, among other things (Bart Van
Assche)
- Updates to tools/memory-model (Andrea Parri, Paul E. McKenney)
- qspinlock, wake_q and lockdep micro-optimizations (Waiman Long)
- misc other updates and enhancements"
* 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (48 commits)
locking/lockdep: Shrink struct lock_class_key
locking/lockdep: Add module_param to enable consistency checks
lockdep/lib/tests: Test dynamic key registration
lockdep/lib/tests: Fix run_tests.sh
kernel/workqueue: Use dynamic lockdep keys for workqueues
locking/lockdep: Add support for dynamic keys
locking/lockdep: Verify whether lock objects are small enough to be used as class keys
locking/lockdep: Check data structure consistency
locking/lockdep: Reuse lock chains that have been freed
locking/lockdep: Fix a comment in add_chain_cache()
locking/lockdep: Introduce lockdep_next_lockchain() and lock_chain_count()
locking/lockdep: Reuse list entries that are no longer in use
locking/lockdep: Free lock classes that are no longer in use
locking/lockdep: Update two outdated comments
locking/lockdep: Make it easy to detect whether or not inside a selftest
locking/lockdep: Split lockdep_free_key_range() and lockdep_reset_lock()
locking/lockdep: Initialize the locks_before and locks_after lists earlier
locking/lockdep: Make zap_class() remove all matching lock order entries
locking/lockdep: Reorder struct lock_class members
locking/lockdep: Avoid that add_chain_cache() adds an invalid chain to the cache
...
Let arm64 subscribe to the previously added framework in which
architecture can inform whether a given huge page size is supported for
migration. This just overrides the default function
arch_hugetlb_migration_supported() and enables migration for all
possible HugeTLB page sizes on arm64.
With this, HugeTLB migration support on arm64 now covers all possible
HugeTLB options.
CONT PTE PMD CONT PMD PUD
-------- --- -------- ---
4K: 64K 2M 32M 1G
16K: 2M 32M 1G
64K: 2M 512M 16G
Link: http://lkml.kernel.org/r/1545121450-1663-6-git-send-email-anshuman.khandual@arm.com
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Reviewed-by: Steve Capper <steve.capper@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use after scope bugs detector seems to be almost entirely useless for
the linux kernel. It exists over two years, but I've seen only one
valid bug so far [1]. And the bug was fixed before it has been
reported. There were some other use-after-scope reports, but they were
false-positives due to different reasons like incompatibility with
structleak plugin.
This feature significantly increases stack usage, especially with GCC <
9 version, and causes a 32K stack overflow. It probably adds
performance penalty too.
Given all that, let's remove use-after-scope detector entirely.
While preparing this patch I've noticed that we mistakenly enable
use-after-scope detection for clang compiler regardless of
CONFIG_KASAN_EXTRA setting. This is also fixed now.
[1] http://lkml.kernel.org/r/<20171129052106.rhgbjhhis53hkgfn@wfg-t540p.sh.intel.com>
Link: http://lkml.kernel.org/r/20190111185842.13978-1-aryabinin@virtuozzo.com
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Acked-by: Will Deacon <will.deacon@arm.com> [arm64]
Cc: Qian Cai <cai@lca.pw>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull year 2038 updates from Thomas Gleixner:
"Another round of changes to make the kernel ready for 2038. After lots
of preparatory work this is the first set of syscalls which are 2038
safe:
403 clock_gettime64
404 clock_settime64
405 clock_adjtime64
406 clock_getres_time64
407 clock_nanosleep_time64
408 timer_gettime64
409 timer_settime64
410 timerfd_gettime64
411 timerfd_settime64
412 utimensat_time64
413 pselect6_time64
414 ppoll_time64
416 io_pgetevents_time64
417 recvmmsg_time64
418 mq_timedsend_time64
419 mq_timedreceiv_time64
420 semtimedop_time64
421 rt_sigtimedwait_time64
422 futex_time64
423 sched_rr_get_interval_time64
The syscall numbers are identical all over the architectures"
* 'timers-2038-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (36 commits)
riscv: Use latest system call ABI
checksyscalls: fix up mq_timedreceive and stat exceptions
unicore32: Fix __ARCH_WANT_STAT64 definition
asm-generic: Make time32 syscall numbers optional
asm-generic: Drop getrlimit and setrlimit syscalls from default list
32-bit userspace ABI: introduce ARCH_32BIT_OFF_T config option
compat ABI: use non-compat openat and open_by_handle_at variants
y2038: add 64-bit time_t syscalls to all 32-bit architectures
y2038: rename old time and utime syscalls
y2038: remove struct definition redirects
y2038: use time32 syscall names on 32-bit
syscalls: remove obsolete __IGNORE_ macros
y2038: syscalls: rename y2038 compat syscalls
x86/x32: use time64 versions of sigtimedwait and recvmmsg
timex: change syscalls to use struct __kernel_timex
timex: use __kernel_timex internally
sparc64: add custom adjtimex/clock_adjtime functions
time: fix sys_timer_settime prototype
time: Add struct __kernel_timex
time: make adjtime compat handling available for 32 bit
...
Every in-kernel use of this function defined it to KERNEL_DS (either as
an actual define, or as an inline function). It's an entirely
historical artifact, and long long long ago used to actually read the
segment selector valueof '%ds' on x86.
Which in the kernel is always KERNEL_DS.
Inspired by a patch from Jann Horn that just did this for a very small
subset of users (the ones in fs/), along with Al who suggested a script.
I then just took it to the logical extreme and removed all the remaining
gunk.
Roughly scripted with
git grep -l '(get_ds())' -- :^tools/ | xargs sed -i 's/(get_ds())/(KERNEL_DS)/'
git grep -lw 'get_ds' -- :^tools/ | xargs sed -i '/^#define get_ds()/d'
plus manual fixups to remove a few unusual usage patterns, the couple of
inline function cases and to fix up a comment that had become stale.
The 'get_ds()' function remains in an x86 kvm selftest, since in user
space it actually does something relevant.
Inspired-by: Jann Horn <jannh@google.com>
Inspired-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* acpi-apei: (29 commits)
efi: cper: Fix possible out-of-bounds access
ACPI: APEI: Fix possible out-of-bounds access to BERT region
MAINTAINERS: Add James Morse to the list of APEI reviewers
ACPI / APEI: Add support for the SDEI GHES Notification type
firmware: arm_sdei: Add ACPI GHES registration helper
ACPI / APEI: Use separate fixmap pages for arm64 NMI-like notifications
ACPI / APEI: Only use queued estatus entry during in_nmi_queue_one_entry()
ACPI / APEI: Split ghes_read_estatus() to allow a peek at the CPER length
ACPI / APEI: Make GHES estatus header validation more user friendly
ACPI / APEI: Pass ghes and estatus separately to avoid a later copy
ACPI / APEI: Let the notification helper specify the fixmap slot
ACPI / APEI: Move locking to the notification helper
arm64: KVM/mm: Move SEA handling behind a single 'claim' interface
KVM: arm/arm64: Add kvm_ras.h to collect kvm specific RAS plumbing
ACPI / APEI: Switch NOTIFY_SEA to use the estatus queue
ACPI / APEI: Move NOTIFY_SEA between the estatus-queue and NOTIFY_NMI
ACPI / APEI: Don't allow ghes_ack_error() to mask earlier errors
ACPI / APEI: Generalise the estatus queue's notify code
ACPI / APEI: Don't update struct ghes' flags in read/clear estatus
ACPI / APEI: Remove spurious GHES_TO_CLEAR check
...
This reverts commit 0bd3ef34d2.
There is ongoing work on objtool to identify incorrect uses of
user_access_{begin,end}. Until this is sorted, do not enable the
functionality on arm64. Also, on ARMv8.2 CPUs with hardware PAN and UAO
support, there is no obvious performance benefit to the unsafe user
accessors.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Building a preprocessed source file for arm64 now always produces
a warning with clang because of the page_to_virt() macro assigning
a variable to itself.
Adding a new temporary variable avoids this issue.
Fixes: 2813b9c029 ("kasan, mm, arm64: tag non slab memory allocated via pagealloc")
Reviewed-by: Andrey Konovalov <andreyknvl@google.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Ensure that inX() provides the same ordering guarantees as readX()
by hooking up __io_par() so that it maps directly to __iormb().
Reported-by: Andrew Murray <andrew.murray@arm.com>
Reviewed-by: Palmer Dabbelt <palmer@sifive.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
On the Fujitsu-A64FX cores ver(1.0, 1.1), memory access may cause
an undefined fault (Data abort, DFSC=0b111111). This fault occurs under
a specific hardware condition when a load/store instruction performs an
address translation. Any load/store instruction, except non-fault access
including Armv8 and SVE might cause this undefined fault.
The TCR_ELx.NFD1 bit is used by the kernel when CONFIG_RANDOMIZE_BASE
is enabled to mitigate timing attacks against KASLR where the kernel
address space could be probed using the FFR and suppressed fault on
SVE loads.
Since this erratum causes spurious exceptions, which may corrupt
the exception registers, we clear the TCR_ELx.NFDx=1 bits when
booting on an affected CPU.
Signed-off-by: Zhang Lei <zhang.lei@jp.fujitsu.com>
[Generated MIDR value/mask for __cpu_setup(), removed spurious-fault handler
and always disabled the NFDx bits on affected CPUs]
Signed-off-by: James Morse <james.morse@arm.com>
Tested-by: zhang.lei <zhang.lei@jp.fujitsu.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This is a follow-up to the y2038 syscall patches already merged in the tip
tree. As the final 32-bit RISC-V syscall ABI is still being decided on,
this is the last chance to make a few corrections to leave out interfaces
based on 32-bit time_t along with the old off_t and rlimit types.
The series achieves this in a few steps:
- A couple of bug fixes for minor regressions I introduced
in the original series
- A couple of older patches from Yury Norov that I had never
merged in the past, these fix up the openat/open_by_handle_at and
getrlimit/setrlimit syscalls to disallow the old versions of off_t
and rlimit.
- Hiding the deprecated system calls behind an #ifdef in
include/uapi/asm-generic/unistd.h
- Change arch/riscv to drop all these ABIs.
Originally, the plan was to also leave these out on C-Sky, but that now
has a glibc port that uses the older interfaces, so we need to leave
them in place.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iQIcBAABCAAGBQJcdEhGAAoJEGCrR//JCVInQuUQAN+mRFzRXAqhbpb63/vYGJei
nmDqB+SoxzaIKAIGAVIdMGUoFxBrY1oyS4m6/a9lzQ9G4aSkr0PruZnUID+vIo2h
rj+3FBlB/c9nvW+NG8iEtVadlRbTmoRILCWpvgIuLNd6fwvNzP3V4uu6a1QRIMx4
aUCWQfhzv18kW1EAPIroPA1gEL2HKbhDdEuN2V0SKnsKNiWkHQeswWQFAYpLgT36
eZ+L52lh+miEdtBxycxJ5lh3KsWO4dPImh+QHONZgeB9iS8v47K0R6ONKm4NMeQV
5KW55pepUq1uQUdEU9KRrh2krMih2IJbOQoN2lvb2ao5UG6erHbj0N55RQym5gSC
+TrvP3dnqfohh9hWdHDwME+5OTeOM+8SUMRnaZBJKuywzo7W1ceLpf+KZjwlk2s5
AgEX67fKrUbtBfTgVhzlYhJLWcgSD1yt64ed5SF15c5M3JZhkK8cd50dB9pM2/YB
o9VbijkYwb2KyCNUiV3nghgiiqcROvOIO7PK6z3XFFiRm/Gn2CgNZyZa7c4+Vgrr
PM/DmDvCdFqYnqBOlV2ilCLigKGN0JgwzMXnbQU77d71Yg7Bco8e/yqSucSilp2d
lEv44extu9FINWXIqvWEjRqdSq+sNgj21VSp6Zu/GaTgNCQKac2wsAZtnQgnslko
knKwwp525fjqnJEDd1aH
=/iFA
-----END PGP SIGNATURE-----
Merge tag 'y2038-syscall-abi' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/playground into timers/2038
Pull additional syscall ABI cleanup for y2038 from Arnd Bergmann:
This is a follow-up to the y2038 syscall patches already merged in the tip
tree. As the final 32-bit RISC-V syscall ABI is still being decided on,
this is the last chance to make a few corrections to leave out interfaces
based on 32-bit time_t along with the old off_t and rlimit types.
The series achieves this in a few steps:
- A couple of bug fixes for minor regressions I introduced
in the original series
- A couple of older patches from Yury Norov that I had never
merged in the past, these fix up the openat/open_by_handle_at and
getrlimit/setrlimit syscalls to disallow the old versions of off_t
and rlimit.
- Hiding the deprecated system calls behind an #ifdef in
include/uapi/asm-generic/unistd.h
- Change arch/riscv to drop all these ABIs.
Originally, the plan was to also leave these out on C-Sky, but that now
has a glibc port that uses the older interfaces, so we need to leave
them in place.
The assembly macro get_thread_info() actually returns a task_struct and is
analogous to the current/get_current macro/function.
While it could be argued that thread_info sits at the start of
task_struct and the intention could have been to return a thread_info,
instances of loads from/stores to the address obtained from
get_thread_info() use offsets that are generated with
offsetof(struct task_struct, [...]).
Rename get_thread_info() to state it returns a task_struct.
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Julien Thierry <julien.thierry@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
TIF_USEDFPU is not defined as thread flags for Arm64. So drop it from
the documentation.
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Julien Grall <julien.grall@arm.com>
Cc: linux-arm-kernel@lists.infradead.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
- A number of pre-nested code rework
- Direct physical timer assignment on VHE systems
- kvm_call_hyp type safety enforcement
- Set/Way cache sanitisation for 32bit guests
- Build system cleanups
- A bunch of janitorial fixes
-----BEGIN PGP SIGNATURE-----
iQJJBAABCgAzFiEEn9UcU+C1Yxj9lZw9I9DQutE9ekMFAlxwH3EVHG1hcmMuenlu
Z2llckBhcm0uY29tAAoJECPQ0LrRPXpD9j4P/i1lIUKfg/bxGw46wwoqF1MjOEPD
uDQ6irms65FfqFkUkIPaU1du51UcI9nwncUPeJh+E3g2wp2f5EXsAp7tksARfIWU
YCLLez5AiuYH6Otrs7YxLm8L/Sqqc3DacGWuyOamXmdWM9wZlv7F295Yfo5nX8zk
IhksfBQH4/KvOPxkzbY6yy1StKOreuXQuboecrcfUP0lxwaUcbqxHMuynP7DneCv
EHNo5TUjK975xH4jS/K61Ji9FmTlA/PgGqgn+EOw5KXGnKlphFBaTrzuE7vPLveR
XPV1VeNEuEitH/+qVhZr8k2Du+3kKqQA8Ikxv6SasYAnqyVFTPPPMtUEgZXTLpHa
6D4kIc+5jxgxF6Dyk3PKnjoNHPolCApj/uPCcTiD8dyY4smpJQ3+gxGiJkX68e92
EkJlBj0Hn4xgudHi9UWLP+eZHT+v3L8mvVLP9N9oqapwc0x4g9YqJVbJMyAnT5Pw
pLPSKTx9ApmyAEkdzRHjB89gG5cwjUzmx5BF7gASYSmTS9el9r5Kaaxx8zCmMt1R
gM1TF7rBrgyW5s+bsIBf2rqk+5WAxag+FmeCQwghuNc+uhNfboRgoJzx7qFTpxeX
KFS86QmQPRMWGR0klXgW1+hNOD8ACnqCOPGB+3d41ql3bgQ0otLItvj4RoA44JYG
0Guq7o9EZNUYqDzA
=iEs0
-----END PGP SIGNATURE-----
Merge tag 'kvmarm-for-v5.1' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into kvm-next
KVM/arm updates for Linux v5.1
- A number of pre-nested code rework
- Direct physical timer assignment on VHE systems
- kvm_call_hyp type safety enforcement
- Set/Way cache sanitisation for 32bit guests
- Build system cleanups
- A bunch of janitorial fixes
Since Suzuki K Poulose's work on Dynamic IPA support, KVM_PHYS_SHIFT will
be used only when machine_type's bits[7:0] equal to 0 (by default). Thus
the outdated comment should be fixed.
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Zenghui Yu <yuzenghui@huawei.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
On SMP ARM systems, cache maintenance by set/way should only ever be
done in the context of onlining or offlining CPUs, which is typically
done by bare metal firmware and never in a virtual machine. For this
reason, we trap set/way cache maintenance operations and replace them
with conditional flushing of the entire guest address space.
Due to this trapping, the set/way arguments passed into the set/way
ops are completely ignored, and thus irrelevant. This also means that
the set/way geometry is equally irrelevant, and we can simply report
it as 1 set and 1 way, so that legacy 32-bit ARM system software (i.e.,
the kind that only receives odd fixes) doesn't take a performance hit
due to the trapping when iterating over the cachelines.
Acked-by: Christoffer Dall <christoffer.dall@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
We currently permit CPUs in the same system to deviate in the exact
topology of the caches, and we subsequently hide this fact from user
space by exposing a sanitised value of the cache type register CTR_EL0.
However, guests running under KVM see the bare value of CTR_EL0, which
could potentially result in issues with, e.g., JITs or other pieces of
code that are sensitive to misreported cache line sizes.
So let's start trapping cache ID instructions if there is a mismatch,
and expose the sanitised version of CTR_EL0 to guests. Note that CTR_EL0
is treated as an invariant to KVM user space, so update that part as well.
Acked-by: Christoffer Dall <christoffer.dall@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Move this little function to the header files for arm/arm64 so other
code can make use of it directly.
Signed-off-by: Christoffer Dall <christoffer.dall@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
At the moment we have separate system register emulation handlers for
each timer register. Actually they are quite similar, and we rely on
kvm_arm_timer_[gs]et_reg() for the actual emulation anyways, so let's
just merge all of those handlers into one function, which just marshalls
the arguments and then hands off to a set of common accessors.
This makes extending the emulation to include EL2 timers much easier.
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
[Fixed 32-bit VM breakage and reduced to reworking existing code]
Signed-off-by: Christoffer Dall <christoffer.dall@arm.com>
[Fixed 32bit host, general cleanup]
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
We previously incorrectly named the define for this system register.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@arm.com>
In preparation for nested virtualization where we are going to have more
than a single VMID per VM, let's factor out the VMID data into a
separate VMID data structure and change the VMID allocator to operate on
this new structure instead of using a struct kvm.
This also means that udate_vttbr now becomes update_vmid, and that the
vttbr itself is generated on the fly based on the stage 2 page table
base address and the vmid.
We cache the physical address of the pgd when allocating the pgd to
avoid doing the calculation on every entry to the guest and to avoid
calling into potentially non-hyp-mapped code from hyp/EL2.
If we wanted to merge the VMID allocator with the arm64 ASID allocator
at some point in the future, it should actually become easier to do that
after this patch.
Note that to avoid mapping the kvm_vmid_bits variable into hyp, we
simply forego the masking of the vmid value in kvm_get_vttbr and rely on
update_vmid to always assign a valid vmid value (within the supported
range).
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
[maz: minor cleanups]
Reviewed-by: Julien Thierry <julien.thierry@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
We currently eagerly save/restore MPIDR. It turns out to be
slightly pointless:
- On the host, this value is known as soon as we're scheduled on a
physical CPU
- In the guest, this value cannot change, as it is set by KVM
(and this is a read-only register)
The result of the above is that we can perfectly avoid the eager
saving of MPIDR_EL1, and only keep the restore. We just have
to setup the host contexts appropriately at boot time.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@arm.com>
When running VHE, there is no need to jump via some stub to perform
a "HYP" function call, as there is a single address space.
Let's thus change kvm_call_hyp() and co to perform a direct call
in this case. Although this results in a bit of code expansion,
it allows the compiler to check for type compatibility, something
that we are missing so far.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@arm.com>
Until now, we haven't differentiated between HYP calls that
have a return value and those who don't. As we're about to
change this, introduce kvm_call_hyp_ret(), and change all
call sites that actually make use of a return value.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@arm.com>
We don't want new architectures to even provide the old 32-bit time_t
based system calls any more, or define the syscall number macros.
Add a new __ARCH_WANT_TIME32_SYSCALLS macro that gets enabled for all
existing 32-bit architectures using the generic system call table,
so we don't change any current behavior.
Since this symbol is evaluated in user space as well, we cannot use
a Kconfig CONFIG_* macro but have to define it in uapi/asm/unistd.h.
On 64-bit architectures, the same system call numbers mostly refer to
the system calls we want to keep, as they already pass 64-bit time_t.
As new architectures no longer provide these, we need new exceptions
in checksyscalls.sh.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
The newer prlimit64 syscall provides all the functionality of getrlimit
and setrlimit syscalls and adds the pid of target process, so future
architectures won't need to include getrlimit and setrlimit.
Therefore drop getrlimit and setrlimit syscalls from the generic syscall
list unless __ARCH_WANT_SET_GET_RLIMIT is defined by the architecture's
unistd.h prior to including asm-generic/unistd.h, and adjust all
architectures using the generic syscall list to define it so that no
in-tree architectures are affected.
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: linux-arch@vger.kernel.org
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-hexagon@vger.kernel.org
Cc: uclinux-h8-devel@lists.sourceforge.jp
Signed-off-by: Yury Norov <ynorov@caviumnetworks.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Mark Salter <msalter@redhat.com> [c6x]
Acked-by: James Hogan <james.hogan@imgtec.com> [metag]
Acked-by: Ley Foon Tan <lftan@altera.com> [nios2]
Acked-by: Stafford Horne <shorne@gmail.com> [openrisc]
Acked-by: Will Deacon <will.deacon@arm.com> [arm64]
Acked-by: Vineet Gupta <vgupta@synopsys.com> #arch/arc bits
Signed-off-by: Yury Norov <ynorov@marvell.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
After commit cc9f8349cb ("arm64: crypto: add NEON accelerated XOR
implementation"), Clang builds for arm64 started failing with the
following error message.
arch/arm64/lib/xor-neon.c:58:28: error: incompatible pointer types
assigning to 'const unsigned long *' from 'uint64_t *' (aka 'unsigned
long long *') [-Werror,-Wincompatible-pointer-types]
v3 = veorq_u64(vld1q_u64(dp1 + 6), vld1q_u64(dp2 + 6));
^~~~~~~~
/usr/lib/llvm-9/lib/clang/9.0.0/include/arm_neon.h:7538:47: note:
expanded from macro 'vld1q_u64'
__ret = (uint64x2_t) __builtin_neon_vld1q_v(__p0, 51); \
^~~~
There has been quite a bit of debate and triage that has gone into
figuring out what the proper fix is, viewable at the link below, which
is still ongoing. Ard suggested disabling this warning with Clang with a
pragma so no neon code will have this type of error. While this is not
at all an ideal solution, this build error is the only thing preventing
KernelCI from having successful arm64 defconfig and allmodconfig builds
on linux-next. Getting continuous integration running is more important
so new warnings/errors or boot failures can be caught and fixed quickly.
Link: https://github.com/ClangBuiltLinux/linux/issues/283
Suggested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Nathan Chancellor <natechancellor@gmail.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Pull EFI fixes from Ingo Molnar:
"This tree reverts a GICv3 commit (which was broken) and fixes it in
another way, by adding a memblock build-time entries quirk for ARM64"
* 'efi-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
efi/arm: Revert "Defer persistent reservations until after paging_init()"
arm64, mm, efi: Account for GICv3 LPI tables in static memblock reserve table
In the irqchip and EFI code, we have what basically amounts to a quirk
to work around a peculiarity in the GICv3 architecture, which permits
the system memory address of LPI tables to be programmable only once
after a CPU reset. This means kexec kernels must use the same memory
as the first kernel, and thus ensure that this memory has not been
given out for other purposes by the time the ITS init code runs, which
is not very early for secondary CPUs.
On systems with many CPUs, these reservations could overflow the
memblock reservation table, and this was addressed in commit:
eff8962888 ("efi/arm: Defer persistent reservations until after paging_init()")
However, this turns out to have made things worse, since the allocation
of page tables and heap space for the resized memblock reservation table
itself may overwrite the regions we are attempting to reserve, which may
cause all kinds of corruption, also considering that the ITS will still
be poking bits into that memory in response to incoming MSIs.
So instead, let's grow the static memblock reservation table on such
systems so it can accommodate these reservations at an earlier time.
This will permit us to revert the above commit in a subsequent patch.
[ mingo: Minor cleanups. ]
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Mike Rapoport <rppt@linux.ibm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-efi@vger.kernel.org
Link: http://lkml.kernel.org/r/20190215123333.21209-2-ard.biesheuvel@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
- Fix the way we reset vcpus, plugging the race that could happen on VHE
- Fix potentially inconsistent group setting for private interrupts
- Don't generate UNDEF when LORegion feature is present
- Relax the restriction on using stage2 PUD huge mapping
- Turn some spinlocks into raw_spinlocks to help RT compliance
-----BEGIN PGP SIGNATURE-----
iQJJBAABCgAzFiEEn9UcU+C1Yxj9lZw9I9DQutE9ekMFAlxcHeIVHG1hcmMuenlu
Z2llckBhcm0uY29tAAoJECPQ0LrRPXpD4jUP/inpLftQam7i+BNeZmaHbTEDAjOb
6i4AXnjkZfbC5fu6Kf0GXNAEvjsbQB2OuAM3G49c6eSjPz/NeY2Y1XBJkiNblmcu
toOWXHABRmUrFa6Lo3z6SE7MYBe4oZpBiX1By3qcWSdRDYM4sIz/9TdIFEIgtjgX
TrlsmPwjOsGoJs/MwRPoM74ZR6oEF8D56HwKNOQHr8jGVgMdKw6cWUood4oljNyx
ncxl63M4fuNfhc7qttp3WSyHjBK5huZvTtyoUfgfq5aPFkRkRNgTO+JOy+VHbQfy
E99l+YBKHgWf9ZE8hioSzvqqTJisO0EMeS6sGW2NvtStEIeYwEzwV6qnjeFhy/lk
yn0WqFlcqFsS6ip3AU5RzbyzxGnaeammTHEoyvOxHGaQZ2Tvw/VaQxdJLeAKe4z1
I6h8JuGj8fVtVgd45mOQTrTkGER1gSkmwQcAU7kJU6nk/fVL0lvYijBD0JUeXUcx
YR457UjgmNGUfFD2vtSfrKcff9mdZjEUvFTYTquy9G5y+nfIo8N5+EtQu3bbukDR
PHhH6Z/9TpjN1mk6uiUB+lDDgq5lYj0Q9sKxGRngAZpm4UasyTmyXNf9dS2sehzO
IiAuCqSlXKTg8h4exFqqigEuGzWirGuj5+NtJwhY5dmftJH9c8v+Ik1+XO5UzlN/
rByichaaiR4ILgVX
=PNZ5
-----END PGP SIGNATURE-----
Merge tag 'kvm-arm-fixes-for-5.0' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into kvm-master
KVM/ARM fixes for 5.0:
- Fix the way we reset vcpus, plugging the race that could happen on VHE
- Fix potentially inconsistent group setting for private interrupts
- Don't generate UNDEF when LORegion feature is present
- Relax the restriction on using stage2 PUD huge mapping
- Turn some spinlocks into raw_spinlocks to help RT compliance
Clang complains when passing asm operands that are smaller than the
registers they are mapped to:
arch/arm64/include/asm/irqflags.h:50:10: warning: value size does not
match register size specified by the constraint and modifier
[-Wasm-operand-widths]
: "r" (GIC_PRIO_IRQON)
Fix it by casting the affected input operands to a type of the correct
size.
Reported-by: Nathan Chancellor <natechancellor@gmail.com>
Tested-by: Nathan Chancellor <natechancellor@gmail.com>
Signed-off-by: Julien Thierry <julien.thierry@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
APEI's Generic Hardware Error Source structures do not describe
whether the SDEI event is shared or private, as this information is
discoverable via the API.
GHES needs to know whether an event is normal or critical to avoid
sharing locks or fixmap entries, but GHES shouldn't have to know about
the SDEI API.
Add a helper to register the GHES using the appropriate normal or
critical callback.
Signed-off-by: James Morse <james.morse@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
This series finally gets us to the point of having system calls with
64-bit time_t on all architectures, after a long time of incremental
preparation patches.
There was actually one conversion that I missed during the summer,
i.e. Deepa's timex series, which I now updated based the 5.0-rc1 changes
and review comments.
The following system calls are now added on all 32-bit architectures
using the same system call numbers:
403 clock_gettime64
404 clock_settime64
405 clock_adjtime64
406 clock_getres_time64
407 clock_nanosleep_time64
408 timer_gettime64
409 timer_settime64
410 timerfd_gettime64
411 timerfd_settime64
412 utimensat_time64
413 pselect6_time64
414 ppoll_time64
416 io_pgetevents_time64
417 recvmmsg_time64
418 mq_timedsend_time64
419 mq_timedreceiv_time64
420 semtimedop_time64
421 rt_sigtimedwait_time64
422 futex_time64
423 sched_rr_get_interval_time64
Each one of these corresponds directly to an existing system call
that includes a 'struct timespec' argument, or a structure containing
a timespec or (in case of clock_adjtime) timeval. Not included here
are new versions of getitimer/setitimer and getrusage/waitid, which
are planned for the future but only needed to make a consistent API
rather than for correct operation beyond y2038. These four system
calls are based on 'timeval', and it has not been finally decided
what the replacement kernel interface will use instead.
So far, I have done a lot of build testing across most architectures,
which has found a number of bugs. Runtime testing so far included
testing LTP on 32-bit ARM with the existing system calls, to ensure
we do not regress for existing binaries, and a test with a 32-bit
x86 build of LTP against a modified version of the musl C library
that has been adapted to the new system call interface [3].
This library can be used for testing on all architectures supported
by musl-1.1.21, but it is not how the support is getting integrated
into the official musl release. Official musl support is planned
but will require more invasive changes to the library.
Link: https://lore.kernel.org/lkml/20190110162435.309262-1-arnd@arndb.de/T/
Link: https://lore.kernel.org/lkml/20190118161835.2259170-1-arnd@arndb.de/
Link: https://git.linaro.org/people/arnd/musl-y2038.git/ [2]
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iQIcBAABCAAGBQJcXf7/AAoJEGCrR//JCVInPSUP/RhsQSCKMGtONB/vVICQhwep
PybhzBSpHWFxszzTi6BEPN1zS9B069G9mDollRBYZCckyPqL/Bv6sI/vzQZdNk01
Q6Nw92OnNE1QP8owZ5TjrZhpbtopWdqIXjsbGZlloUemvuJP2JwvKovQUcn5CPTQ
jbnqU04CVyFFJYVxAnGJ+VSeWNrjW/cm/m+rhLFjUcwW7Y3aodxsPqPP6+K9hY9P
yIWfcH42WBeEWGm1RSBOZOScQl4SGCPUAhFydl/TqyEQagyegJMIyMOv9wZ5AuTT
xK644bDVmNsrtJDZDpx+J8hytXCk1LrnKzkHR/uK80iUIraF/8D7PlaPgTmEEjko
XcrywEkvkXTVU3owCm2/sbV+8fyFKzSPipnNfN1JNxEX71A98kvMRtPjDueQq/GA
Yh81rr2YLF2sUiArkc2fNpENT7EGhrh1q6gviK3FB8YDgj1kSgPK5wC/X0uolC35
E7iC2kg4NaNEIjhKP/WKluCaTvjRbvV+0IrlJLlhLTnsqbA57ZKCCteiBrlm7wQN
4csUtCyxchR9Ac2o/lj+Mf53z68Zv74haIROp18K2dL7ZpVcOPnA3XHeauSAdoyp
wy2Ek6ilNvlNB+4x+mRntPoOsyuOUGv7JXzB9JvweLWUd9G7tvYeDJQp/0YpDppb
K4UWcKnhtEom0DgK08vY
=IZVb
-----END PGP SIGNATURE-----
Merge tag 'y2038-new-syscalls' of git://git.kernel.org:/pub/scm/linux/kernel/git/arnd/playground into timers/2038
Pull y2038 - time64 system calls from Arnd Bergmann:
This series finally gets us to the point of having system calls with 64-bit
time_t on all architectures, after a long time of incremental preparation
patches.
There was actually one conversion that I missed during the summer,
i.e. Deepa's timex series, which I now updated based the 5.0-rc1 changes
and review comments.
The following system calls are now added on all 32-bit architectures using
the same system call numbers:
403 clock_gettime64
404 clock_settime64
405 clock_adjtime64
406 clock_getres_time64
407 clock_nanosleep_time64
408 timer_gettime64
409 timer_settime64
410 timerfd_gettime64
411 timerfd_settime64
412 utimensat_time64
413 pselect6_time64
414 ppoll_time64
416 io_pgetevents_time64
417 recvmmsg_time64
418 mq_timedsend_time64
419 mq_timedreceiv_time64
420 semtimedop_time64
421 rt_sigtimedwait_time64
422 futex_time64
423 sched_rr_get_interval_time64
Each one of these corresponds directly to an existing system call that
includes a 'struct timespec' argument, or a structure containing a timespec
or (in case of clock_adjtime) timeval. Not included here are new versions
of getitimer/setitimer and getrusage/waitid, which are planned for the
future but only needed to make a consistent API rather than for correct
operation beyond y2038. These four system calls are based on 'timeval', and
it has not been finally decided what the replacement kernel interface will
use instead.
So far, I have done a lot of build testing across most architectures, which
has found a number of bugs. Runtime testing so far included testing LTP on
32-bit ARM with the existing system calls, to ensure we do not regress for
existing binaries, and a test with a 32-bit x86 build of LTP against a
modified version of the musl C library that has been adapted to the new
system call interface [3]. This library can be used for testing on all
architectures supported by musl-1.1.21, but it is not how the support is
getting integrated into the official musl release. Official musl support is
planned but will require more invasive changes to the library.
Link: https://lore.kernel.org/lkml/20190110162435.309262-1-arnd@arndb.de/T/
Link: https://lore.kernel.org/lkml/20190118161835.2259170-1-arnd@arndb.de/
Link: https://git.linaro.org/people/arnd/musl-y2038.git/ [2]
The system call tables have diverged a bit over the years, and a number
of the recent additions never made it into all architectures, for one
reason or another.
This is an attempt to clean it up as far as we can without breaking
compatibility, doing a number of steps:
- Add system calls that have not yet been integrated into all
architectures but that we definitely want there. This includes
{,f}statfs64() and get{eg,eu,g,p,u,pp}id() on alpha, which have
been missing traditionally.
- The s390 compat syscall handling is cleaned up to be more like
what we do on other architectures, while keeping the 31-bit
pointer extension. This was merged as a shared branch by the
s390 maintainers and is included here in order to base the other
patches on top.
- Add the separate ipc syscalls on all architectures that
traditionally only had sys_ipc(). This version is done without
support for IPC_OLD that is we have in sys_ipc. The
new semtimedop_time64 syscall will only be added here, not
in sys_ipc
- Add syscall numbers for a couple of syscalls that we probably
don't need everywhere, in particular pkey_* and rseq,
for the purpose of symmetry: if it's in asm-generic/unistd.h,
it makes sense to have it everywhere. I expect that any future
system calls will get assigned on all platforms together, even
when they appear to be specific to a single architecture.
- Prepare for having the same system call numbers for any future
calls. In combination with the generated tables, this hopefully
makes it easier to add new calls across all architectures
together.
All of the above are technically separate from the y2038 work,
but are done as preparation before we add the new 64-bit time_t
system calls everywhere, providing a common baseline set of system
calls.
I expect that glibc and other libraries that want to use 64-bit
time_t will require linux-5.1 kernel headers for building in
the future, and at a much later point may also require linux-5.1
or a later version as the minimum kernel at runtime. Having a
common baseline then allows the removal of many architecture or
kernel version specific workarounds.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iQIcBAABCAAGBQJcXf6XAAoJEGCrR//JCVInIm4P/AlkMmQRa/B2ziWMW6PifPoI
v18r44017rA1BPENyZvumJUdM5mDvNofOW8F2DYQ7Uiys2YtXenwe/Cf8LHn2n6c
TMXGQryQpvNmfDCyU+0UjF8m2+poFMrL4aRTXtjODh1YTsPNgeDC+KFMCAAtZmZd
cVbXFudtbdYKD/pgCX4SI1CWAMBiXe2e+ukPdJVr+iqusCMTApf+GOuyvDBZY9s/
vURb+tIS87HZ/jehWfZFSuZt+Gu7b3ijUXNC8v9qSIxNYekw62vBNl6F09HE79uB
Bv4OujAODqKvI9gGyydBzLJNzaMo0ryQdusyqcJHT7MY/8s+FwcYAXyTlQ3DbbB4
2u/c+58OwJ9Zk12p4LXZRA47U+vRhQt2rO4+zZWs2txNNJY89ZvCm/Z04KOiu5Xz
1Nnj607KGzthYRs2gs68AwzGGyf0uykIQ3RcaJLIBlX1Nd8BWO0ZgAguCvkXbQMX
XNXJTd92HmeuKKpiO0n/M4/mCeP0cafBRPCZbKlHyTl0Jeqd/HBQEO9Z8Ifwyju3
mXz9JCR9VlPCkX605keATbjtPGZf3XQtaXlQnezitDudXk8RJ33EpPcbhx76wX7M
Rux37ByqEOzk4wMGX9YQyNU7z7xuVg4sJAa2LlJqYeKXHtym+u3gG7SGP5AsYjmk
6mg2+9O2yZuLhQtOtrwm
=s4wf
-----END PGP SIGNATURE-----
Merge tag 'y2038-syscall-cleanup' of git://git.kernel.org:/pub/scm/linux/kernel/git/arnd/playground into timers/2038
Pull preparatory work for y2038 changes from Arnd Bergmann:
System call unification and cleanup
The system call tables have diverged a bit over the years, and a number of
the recent additions never made it into all architectures, for one reason
or another.
This is an attempt to clean it up as far as we can without breaking
compatibility, doing a number of steps:
- Add system calls that have not yet been integrated into all architectures
but that we definitely want there. This includes {,f}statfs64() and
get{eg,eu,g,p,u,pp}id() on alpha, which have been missing traditionally.
- The s390 compat syscall handling is cleaned up to be more like what we
do on other architectures, while keeping the 31-bit pointer
extension. This was merged as a shared branch by the s390 maintainers
and is included here in order to base the other patches on top.
- Add the separate ipc syscalls on all architectures that traditionally
only had sys_ipc(). This version is done without support for IPC_OLD
that is we have in sys_ipc. The new semtimedop_time64 syscall will only
be added here, not in sys_ipc
- Add syscall numbers for a couple of syscalls that we probably don't need
everywhere, in particular pkey_* and rseq, for the purpose of symmetry:
if it's in asm-generic/unistd.h, it makes sense to have it everywhere. I
expect that any future system calls will get assigned on all platforms
together, even when they appear to be specific to a single architecture.
- Prepare for having the same system call numbers for any future calls. In
combination with the generated tables, this hopefully makes it easier to
add new calls across all architectures together.
All of the above are technically separate from the y2038 work, but are done
as preparation before we add the new 64-bit time_t system calls everywhere,
providing a common baseline set of system calls.
I expect that glibc and other libraries that want to use 64-bit time_t will
require linux-5.1 kernel headers for building in the future, and at a much
later point may also require linux-5.1 or a later version as the minimum
kernel at runtime. Having a common baseline then allows the removal of many
architecture or kernel version specific workarounds.
Now that ghes notification helpers provide the fixmap slots and
take the lock themselves, multiple NMI-like notifications can
be used on arm64.
These should be named after their notification method as they can't
all be called 'NMI'. x86's NOTIFY_NMI already is, change the SEA
fixmap entry to be called FIX_APEI_GHES_SEA.
Future patches can add support for FIX_APEI_GHES_SEI and
FIX_APEI_GHES_SDEI_{NORMAL,CRITICAL}.
Because all of ghes.c builds on both architectures, provide a
constant for each fixmap entry that the architecture will never
use.
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
To split up APEIs in_nmi() path, the caller needs to always be
in_nmi(). Add a helper to do the work and claim the notification.
When KVM or the arch code takes an exception that might be a RAS
notification, it asks the APEI firmware-first code whether it wants
to claim the exception. A future kernel-first mechanism may be queried
afterwards, and claim the notification, otherwise we fall through
to the existing default behaviour.
The NOTIFY_SEA code was merged before considering multiple, possibly
interacting, NMI-like notifications and the need to consider kernel
first in the future. Make the 'claiming' behaviour explicit.
Restructuring the APEI code to allow multiple NMI-like notifications
means any notification that might interrupt interrupts-masked
code must always be wrapped in nmi_enter()/nmi_exit(). This will
allow APEI to use in_nmi() to use the right fixmap entries.
Mask SError over this window to prevent an asynchronous RAS error
arriving and tripping 'nmi_enter()'s BUG_ON(in_nmi()).
Signed-off-by: James Morse <james.morse@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Tested-by: Tyler Baicar <tbaicar@codeaurora.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
To split up APEIs in_nmi() path, the caller needs to always be
in_nmi(). KVM shouldn't have to know about this, pull the RAS plumbing
out into a header file.
Currently guest synchronous external aborts are claimed as RAS
notifications by handle_guest_sea(), which is hidden in the arch codes
mm/fault.c. 32bit gets a dummy declaration in system_misc.h.
There is going to be more of this in the future if/when the kernel
supports the SError-based firmware-first notification mechanism and/or
kernel-first notifications for both synchronous external abort and
SError. Each of these will come with some Kconfig symbols and a
handful of header files.
Create a header file for all this.
This patch gives handle_guest_sea() a 'kvm_' prefix, and moves the
declarations to kvm_ras.h as preparation for a future patch that moves
the ACPI-specific RAS code out of mm/fault.c.
Signed-off-by: James Morse <james.morse@arm.com>
Reviewed-by: Punit Agrawal <punit.agrawal@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Tested-by: Tyler Baicar <tbaicar@codeaurora.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The current kvm_psci_vcpu_on implementation will directly try to
manipulate the state of the VCPU to reset it. However, since this is
not done on the thread that runs the VCPU, we can end up in a strangely
corrupted state when the source and target VCPUs are running at the same
time.
Fix this by factoring out all reset logic from the PSCI implementation
and forwarding the required information along with a request to the
target VCPU.
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@arm.com>