2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-13 08:04:45 +08:00
Commit Graph

20 Commits

Author SHA1 Message Date
Petr Mladek
f46e49a9cc livepatch: Handle allocation failure in the sample of shadow variable API
klp_shadow_alloc() is not handled in the sample of shadow variable API.
It is not strictly necessary because livepatch_fix1_dummy_free() is
able to handle the potential failure. But it is an example and it should
use the API a clean way.

Signed-off-by: Petr Mladek <pmladek@suse.com>
Reviewed-by: Joe Lawrence <joe.lawrence@redhat.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Reviewed-by: Kamalesh Babulal <kamalesh@linux.vnet.ibm.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2020-01-17 11:12:06 +01:00
Petr Mladek
be6da98425 livepatch/samples/selftest: Use klp_shadow_alloc() API correctly
The commit e91c2518a5 ("livepatch: Initialize shadow variables
safely by a custom callback") leads to the following static checker
warning:

  samples/livepatch/livepatch-shadow-fix1.c:86 livepatch_fix1_dummy_alloc()
  error: 'klp_shadow_alloc()' 'leak' too small (4 vs 8)

It is because klp_shadow_alloc() is used a wrong way:

  int *leak;
  shadow_leak = klp_shadow_alloc(d, SV_LEAK, sizeof(leak), GFP_KERNEL,
				 shadow_leak_ctor, leak);

The code is supposed to store the "leak" pointer into the shadow variable.
3rd parameter correctly passes size of the data (size of pointer). But
the 5th parameter is wrong. It should pass pointer to the data (pointer
to the pointer) but it passes the pointer directly.

It works because shadow_leak_ctor() handle "ctor_data" as the data
instead of pointer to the data. But it is semantically wrong and
confusing.

The same problem is also in the module used by selftests. In this case,
"pvX" variables are introduced. They represent the data stored in
the shadow variables.

Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Petr Mladek <pmladek@suse.com>
Reviewed-by: Joe Lawrence <joe.lawrence@redhat.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Reviewed-by: Kamalesh Babulal <kamalesh@linux.vnet.ibm.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2020-01-17 11:12:06 +01:00
Petr Mladek
8f6b88662c livepatch/sample: Use the right type for the leaking data pointer
The "leak" pointer, in the sample of shadow variable API, is allocated
as sizeof(int). Let's help developers and static analyzers with
understanding the code by using the appropriate pointer type.

Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Petr Mladek <pmladek@suse.com>
Reviewed-by: Joe Lawrence <joe.lawrence@redhat.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Reviewed-by: Kamalesh Babulal <kamalesh@linux.vnet.ibm.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2020-01-17 11:12:06 +01:00
Thomas Gleixner
1ccea77e2a treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 13
Based on 2 normalized pattern(s):

  this program is free software you can redistribute it and or modify
  it under the terms of the gnu general public license as published by
  the free software foundation either version 2 of the license or at
  your option any later version this program is distributed in the
  hope that it will be useful but without any warranty without even
  the implied warranty of merchantability or fitness for a particular
  purpose see the gnu general public license for more details you
  should have received a copy of the gnu general public license along
  with this program if not see http www gnu org licenses

  this program is free software you can redistribute it and or modify
  it under the terms of the gnu general public license as published by
  the free software foundation either version 2 of the license or at
  your option any later version this program is distributed in the
  hope that it will be useful but without any warranty without even
  the implied warranty of merchantability or fitness for a particular
  purpose see the gnu general public license for more details [based]
  [from] [clk] [highbank] [c] you should have received a copy of the
  gnu general public license along with this program if not see http
  www gnu org licenses

extracted by the scancode license scanner the SPDX license identifier

  GPL-2.0-or-later

has been chosen to replace the boilerplate/reference in 355 file(s).

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Jilayne Lovejoy <opensource@jilayne.com>
Reviewed-by: Steve Winslow <swinslow@gmail.com>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190519154041.837383322@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-21 11:28:45 +02:00
Thomas Gleixner
ec8f24b7fa treewide: Add SPDX license identifier - Makefile/Kconfig
Add SPDX license identifiers to all Make/Kconfig files which:

 - Have no license information of any form

These files fall under the project license, GPL v2 only. The resulting SPDX
license identifier is:

  GPL-2.0-only

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-21 10:50:46 +02:00
Jiri Kosina
67bae14adc Merge branch 'for-5.0/upstream-fixes' into for-linus
Document change towards group maintainership of livepatching code
samples/ warning fix from Nicholas Mc Guire
2019-03-05 15:55:59 +01:00
Nicholas Mc Guire
b73d5dc722 livepatch: samples: non static warnings fix
Sparse reported warnings about non-static symbols. For the variables
a simple static attribute is fine - for the functions referenced by
livepatch via klp_func the symbol-names must be unmodified in the
symbol table and the patchable code has to be emitted. The resolution
is to attach __used attribute to the shared statically declared functions.

Link: https://lore.kernel.org/lkml/1544965657-26804-1-git-send-email-hofrat@osadl.org/
Suggested-by: Joe Lawrence <joe.lawrence@redhat.com>
Signed-off-by: Nicholas Mc Guire <hofrat@osadl.org>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2019-01-25 16:43:35 +01:00
Petr Mladek
958ef1e39d livepatch: Simplify API by removing registration step
The possibility to re-enable a registered patch was useful for immediate
patches where the livepatch module had to stay until the system reboot.
The improved consistency model allows to achieve the same result by
unloading and loading the livepatch module again.

Also we are going to add a feature called atomic replace. It will allow
to create a patch that would replace all already registered patches.
The aim is to handle dependent patches more securely. It will obsolete
the stack of patches that helped to handle the dependencies so far.
Then it might be unclear when a cumulative patch re-enabling is safe.

It would be complicated to support the many modes. Instead we could
actually make the API and code easier to understand.

Therefore, remove the two step public API. All the checks and init calls
are moved from klp_register_patch() to klp_enabled_patch(). Also the patch
is automatically freed, including the sysfs interface when the transition
to the disabled state is completed.

As a result, there is never a disabled patch on the top of the stack.
Therefore we do not need to check the stack in __klp_enable_patch().
And we could simplify the check in __klp_disable_patch().

Also the API and logic is much easier. It is enough to call
klp_enable_patch() in module_init() call. The patch can be disabled
by writing '0' into /sys/kernel/livepatch/<patch>/enabled. Then the module
can be removed once the transition finishes and sysfs interface is freed.

The only problem is how to free the structures and kobjects safely.
The operation is triggered from the sysfs interface. We could not put
the related kobject from there because it would cause lock inversion
between klp_mutex and kernfs locks, see kn->count lockdep map.

Therefore, offload the free task to a workqueue. It is perfectly fine:

  + The patch can no longer be used in the livepatch operations.

  + The module could not be removed until the free operation finishes
    and module_put() is called.

  + The operation is asynchronous already when the first
    klp_try_complete_transition() fails and another call
    is queued with a delay.

Suggested-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Petr Mladek <pmladek@suse.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2019-01-11 20:51:24 +01:00
Nicholas Mc Guire
5f30b2e823 livepatch: check kzalloc return values
kzalloc() return should always be checked - notably in example code
where this may be seen as reference. On failure of allocation in
livepatch_fix1_dummy_alloc() respectively dummy_alloc() previous
allocation is freed (thanks to Petr Mladek <pmladek@suse.com> for
catching this) and NULL returned.

Signed-off-by: Nicholas Mc Guire <hofrat@osadl.org>
Fixes: 439e7271dc ("livepatch: introduce shadow variable API")
Acked-by: Joe Lawrence <joe.lawrence@redhat.com>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2018-12-18 10:23:07 +01:00
Petr Mladek
3b2c77d000 livepatch: Allow to call a custom callback when freeing shadow variables
We might need to do some actions before the shadow variable is freed.
For example, we might need to remove it from a list or free some data
that it points to.

This is already possible now. The user can get the shadow variable
by klp_shadow_get(), do the necessary actions, and then call
klp_shadow_free().

This patch allows to do it a more elegant way. The user could implement
the needed actions in a callback that is passed to klp_shadow_free()
as a parameter. The callback usually does reverse operations to
the constructor callback that can be called by klp_shadow_*alloc().

It is especially useful for klp_shadow_free_all(). There we need to do
these extra actions for each found shadow variable with the given ID.

Note that the memory used by the shadow variable itself is still released
later by rcu callback. It is needed to protect internal structures that
keep all shadow variables. But the destructor is called immediately.
The shadow variable must not be access anyway after klp_shadow_free()
is called. The user is responsible to protect this any suitable way.

Be aware that the destructor is called under klp_shadow_lock. It is
the same as for the contructor in klp_shadow_alloc().

Signed-off-by: Petr Mladek <pmladek@suse.com>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2018-04-17 13:42:48 +02:00
Petr Mladek
e91c2518a5 livepatch: Initialize shadow variables safely by a custom callback
The existing API allows to pass a sample data to initialize the shadow
data. It works well when the data are position independent. But it fails
miserably when we need to set a pointer to the shadow structure itself.

Unfortunately, we might need to initialize the pointer surprisingly
often because of struct list_head. It is even worse because the list
might be hidden in other common structures, for example, struct mutex,
struct wait_queue_head.

For example, this was needed to fix races in ALSA sequencer. It required
to add mutex into struct snd_seq_client. See commit b3defb791b
("ALSA: seq: Make ioctls race-free") and commit d15d662e89
("ALSA: seq: Fix racy pool initializations")

This patch makes the API more safe. A custom constructor function and data
are passed to klp_shadow_*alloc() functions instead of the sample data.

Note that ctor_data are no longer a template for shadow->data. It might
point to any data that might be necessary when the constructor is called.

Also note that the constructor is called under klp_shadow_lock. It is
an internal spin_lock that synchronizes alloc() vs. get() operations,
see klp_shadow_get_or_alloc(). On one hand, this adds a risk of ABBA
deadlocks. On the other hand, it allows to do some operations safely.
For example, we could add the new structure into an existing list.
This must be done only once when the structure is allocated.

Reported-by: Nicolai Stange <nstange@suse.de>
Signed-off-by: Petr Mladek <pmladek@suse.com>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2018-04-17 13:42:48 +02:00
Miroslav Benes
d0807da78e livepatch: Remove immediate feature
Immediate flag has been used to disable per-task consistency and patch
all tasks immediately. It could be useful if the patch doesn't change any
function or data semantics.

However, it causes problems on its own. The consistency problem is
currently broken with respect to immediate patches.

func            a
patches         1i
                2i
                3

When the patch 3 is applied, only 2i function is checked (by stack
checking facility). There might be a task sleeping in 1i though. Such
task is migrated to 3, because we do not check 1i in
klp_check_stack_func() at all.

Coming atomic replace feature would be easier to implement and more
reliable without immediate.

Thus, remove immediate feature completely and save us from the problems.

Note that force feature has the similar problem. However it is
considered as a last resort. If used, administrator should not apply any
new live patches and should plan for reboot into an updated kernel.

The architectures would now need to provide HAVE_RELIABLE_STACKTRACE to
fully support livepatch.

Signed-off-by: Miroslav Benes <mbenes@suse.cz>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2018-01-11 10:58:03 +01:00
Joe Lawrence
93862e385d livepatch: add (un)patch callbacks
Provide livepatch modules a klp_object (un)patching notification
mechanism.  Pre and post-(un)patch callbacks allow livepatch modules to
setup or synchronize changes that would be difficult to support in only
patched-or-unpatched code contexts.

Callbacks can be registered for target module or vmlinux klp_objects,
but each implementation is klp_object specific.

  - Pre-(un)patch callbacks run before any (un)patching transition
    starts.

  - Post-(un)patch callbacks run once an object has been (un)patched and
    the klp_patch fully transitioned to its target state.

Example use cases include modification of global data and registration
of newly available services/handlers.

See Documentation/livepatch/callbacks.txt for details and
samples/livepatch/ for examples.

Signed-off-by: Joe Lawrence <joe.lawrence@redhat.com>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2017-10-19 10:08:56 +02:00
Joe Lawrence
439e7271dc livepatch: introduce shadow variable API
Add exported API for livepatch modules:

  klp_shadow_get()
  klp_shadow_alloc()
  klp_shadow_get_or_alloc()
  klp_shadow_free()
  klp_shadow_free_all()

that implement "shadow" variables, which allow callers to associate new
shadow fields to existing data structures.  This is intended to be used
by livepatch modules seeking to emulate additions to data structure
definitions.

See Documentation/livepatch/shadow-vars.txt for a summary of the new
shadow variable API, including a few common use cases.

See samples/livepatch/livepatch-shadow-* for example modules that
demonstrate shadow variables.

[jkosina@suse.cz: fix __klp_shadow_get_or_alloc() comment as spotted by
 Josh]
Signed-off-by: Joe Lawrence <joe.lawrence@redhat.com>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2017-09-14 23:06:12 +02:00
Josh Poimboeuf
3ec24776bf livepatch: allow removal of a disabled patch
Currently we do not allow patch module to unload since there is no
method to determine if a task is still running in the patched code.

The consistency model gives us the way because when the unpatching
finishes we know that all tasks were marked as safe to call an original
function. Thus every new call to the function calls the original code
and at the same time no task can be somewhere in the patched code,
because it had to leave that code to be marked as safe.

We can safely let the patch module go after that.

Completion is used for synchronization between module removal and sysfs
infrastructure in a similar way to commit 942e443127 ("module: Fix
mod->mkobj.kobj potentially freed too early").

Note that we still do not allow the removal for immediate model, that is
no consistency model. The module refcount may increase in this case if
somebody disables and enables the patch several times. This should not
cause any harm.

With this change a call to try_module_get() is moved to
__klp_enable_patch from klp_register_patch to make module reference
counting symmetric (module_put() is in a patch disable path) and to
allow to take a new reference to a disabled module when being enabled.

Finally, we need to be very careful about possible races between
klp_unregister_patch(), kobject_put() functions and operations
on the related sysfs files.

kobject_put(&patch->kobj) must be called without klp_mutex. Otherwise,
it might be blocked by enabled_store() that needs the mutex as well.
In addition, enabled_store() must check if the patch was not
unregisted in the meantime.

There is no need to do the same for other kobject_put() callsites
at the moment. Their sysfs operations neither take the lock nor
they access any data that might be freed in the meantime.

There was an attempt to use kobjects the right way and prevent these
races by design. But it made the patch definition more complicated
and opened another can of worms. See
https://lkml.kernel.org/r/1464018848-4303-1-git-send-email-pmladek@suse.com

[Thanks to Petr Mladek for improving the commit message.]

Signed-off-by: Miroslav Benes <mbenes@suse.cz>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2017-03-08 09:38:43 +01:00
Josh Poimboeuf
d83a7cb375 livepatch: change to a per-task consistency model
Change livepatch to use a basic per-task consistency model.  This is the
foundation which will eventually enable us to patch those ~10% of
security patches which change function or data semantics.  This is the
biggest remaining piece needed to make livepatch more generally useful.

This code stems from the design proposal made by Vojtech [1] in November
2014.  It's a hybrid of kGraft and kpatch: it uses kGraft's per-task
consistency and syscall barrier switching combined with kpatch's stack
trace switching.  There are also a number of fallback options which make
it quite flexible.

Patches are applied on a per-task basis, when the task is deemed safe to
switch over.  When a patch is enabled, livepatch enters into a
transition state where tasks are converging to the patched state.
Usually this transition state can complete in a few seconds.  The same
sequence occurs when a patch is disabled, except the tasks converge from
the patched state to the unpatched state.

An interrupt handler inherits the patched state of the task it
interrupts.  The same is true for forked tasks: the child inherits the
patched state of the parent.

Livepatch uses several complementary approaches to determine when it's
safe to patch tasks:

1. The first and most effective approach is stack checking of sleeping
   tasks.  If no affected functions are on the stack of a given task,
   the task is patched.  In most cases this will patch most or all of
   the tasks on the first try.  Otherwise it'll keep trying
   periodically.  This option is only available if the architecture has
   reliable stacks (HAVE_RELIABLE_STACKTRACE).

2. The second approach, if needed, is kernel exit switching.  A
   task is switched when it returns to user space from a system call, a
   user space IRQ, or a signal.  It's useful in the following cases:

   a) Patching I/O-bound user tasks which are sleeping on an affected
      function.  In this case you have to send SIGSTOP and SIGCONT to
      force it to exit the kernel and be patched.
   b) Patching CPU-bound user tasks.  If the task is highly CPU-bound
      then it will get patched the next time it gets interrupted by an
      IRQ.
   c) In the future it could be useful for applying patches for
      architectures which don't yet have HAVE_RELIABLE_STACKTRACE.  In
      this case you would have to signal most of the tasks on the
      system.  However this isn't supported yet because there's
      currently no way to patch kthreads without
      HAVE_RELIABLE_STACKTRACE.

3. For idle "swapper" tasks, since they don't ever exit the kernel, they
   instead have a klp_update_patch_state() call in the idle loop which
   allows them to be patched before the CPU enters the idle state.

   (Note there's not yet such an approach for kthreads.)

All the above approaches may be skipped by setting the 'immediate' flag
in the 'klp_patch' struct, which will disable per-task consistency and
patch all tasks immediately.  This can be useful if the patch doesn't
change any function or data semantics.  Note that, even with this flag
set, it's possible that some tasks may still be running with an old
version of the function, until that function returns.

There's also an 'immediate' flag in the 'klp_func' struct which allows
you to specify that certain functions in the patch can be applied
without per-task consistency.  This might be useful if you want to patch
a common function like schedule(), and the function change doesn't need
consistency but the rest of the patch does.

For architectures which don't have HAVE_RELIABLE_STACKTRACE, the user
must set patch->immediate which causes all tasks to be patched
immediately.  This option should be used with care, only when the patch
doesn't change any function or data semantics.

In the future, architectures which don't have HAVE_RELIABLE_STACKTRACE
may be allowed to use per-task consistency if we can come up with
another way to patch kthreads.

The /sys/kernel/livepatch/<patch>/transition file shows whether a patch
is in transition.  Only a single patch (the topmost patch on the stack)
can be in transition at a given time.  A patch can remain in transition
indefinitely, if any of the tasks are stuck in the initial patch state.

A transition can be reversed and effectively canceled by writing the
opposite value to the /sys/kernel/livepatch/<patch>/enabled file while
the transition is in progress.  Then all the tasks will attempt to
converge back to the original patch state.

[1] https://lkml.kernel.org/r/20141107140458.GA21774@suse.cz

Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Acked-by: Ingo Molnar <mingo@kernel.org>        # for the scheduler changes
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2017-03-08 09:36:21 +01:00
Jessica Yu
425595a7fc livepatch: reuse module loader code to write relocations
Reuse module loader code to write relocations, thereby eliminating the need
for architecture specific relocation code in livepatch. Specifically, reuse
the apply_relocate_add() function in the module loader to write relocations
instead of duplicating functionality in livepatch's arch-dependent
klp_write_module_reloc() function.

In order to accomplish this, livepatch modules manage their own relocation
sections (marked with the SHF_RELA_LIVEPATCH section flag) and
livepatch-specific symbols (marked with SHN_LIVEPATCH symbol section
index). To apply livepatch relocation sections, livepatch symbols
referenced by relocs are resolved and then apply_relocate_add() is called
to apply those relocations.

In addition, remove x86 livepatch relocation code and the s390
klp_write_module_reloc() function stub. They are no longer needed since
relocation work has been offloaded to module loader.

Lastly, mark the module as a livepatch module so that the module loader
canappropriately identify and initialize it.

Signed-off-by: Jessica Yu <jeyu@redhat.com>
Reviewed-by: Miroslav Benes <mbenes@suse.cz>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com>   # for s390 changes
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2016-04-01 15:00:11 +02:00
Josh Poimboeuf
12cf89b550 livepatch: rename config to CONFIG_LIVEPATCH
Rename CONFIG_LIVE_PATCHING to CONFIG_LIVEPATCH to make the naming of
the config and the code more consistent.

Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Reviewed-by: Jingoo Han <jg1.han@samsung.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2015-02-04 11:25:51 +01:00
Josh Poimboeuf
700a3048aa livepatch: samples: fix usage example comments
Fix a few typos in the livepatch-sample.c usage example comments and add
some whitespace to make the comments a little more legible.

Reported-by: Udo Seidel <udoseidel@gmx.de>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2014-12-24 00:10:00 +01:00
Seth Jennings
13d1cf7e70 livepatch: samples: add sample live patching module
Add a sample live patching module.

Signed-off-by: Seth Jennings <sjenning@redhat.com>
Reviewed-by: Miroslav Benes <mbenes@suse.cz>
Reviewed-by: Petr Mladek <pmladek@suse.cz>
Reviewed-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2014-12-22 15:40:49 +01:00