* 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc: (99 commits)
drivers/virt: add missing linux/interrupt.h to fsl_hypervisor.c
powerpc/85xx: fix mpic configuration in CAMP mode
powerpc: Copy back TIF flags on return from softirq stack
powerpc/64: Make server perfmon only built on ppc64 server devices
powerpc/pseries: Fix hvc_vio.c build due to recent changes
powerpc: Exporting boot_cpuid_phys
powerpc: Add CFAR to oops output
hvc_console: Add kdb support
powerpc/pseries: Fix hvterm_raw_get_chars to accept < 16 chars, fixing xmon
powerpc/irq: Quieten irq mapping printks
powerpc: Enable lockup and hung task detectors in pseries and ppc64 defeconfigs
powerpc: Add mpt2sas driver to pseries and ppc64 defconfig
powerpc: Disable IRQs off tracer in ppc64 defconfig
powerpc: Sync pseries and ppc64 defconfigs
powerpc/pseries/hvconsole: Fix dropped console output
hvc_console: Improve tty/console put_chars handling
powerpc/kdump: Fix timeout in crash_kexec_wait_realmode
powerpc/mm: Fix output of total_ram.
powerpc/cpufreq: Add cpufreq driver for Momentum Maple boards
powerpc: Correct annotations of pmu registration functions
...
Fix up trivial Kconfig/Makefile conflicts in arch/powerpc, drivers, and
drivers/cpufreq
This replaces the single CPU_FTR_HVMODE_206 bit with two bits, one to
indicate that we have a usable hypervisor mode, and another to indicate
that the processor conforms to PowerISA version 2.06. We also add
another bit to indicate that the processor conforms to ISA version 2.01
and set that for PPC970 and derivatives.
Some PPC970 chips (specifically those in Apple machines) have a
hypervisor mode in that MSR[HV] is always 1, but the hypervisor mode
is not useful in the sense that there is no way to run any code in
supervisor mode (HV=0 PR=0). On these processors, the LPES0 and LPES1
bits in HID4 are always 0, and we use that as a way of detecting that
hypervisor mode is not useful.
Where we have a feature section in assembly code around code that
only applies on POWER7 in hypervisor mode, we use a construct like
END_FTR_SECTION_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206)
The definition of END_FTR_SECTION_IFSET is such that the code will
be enabled (not overwritten with nops) only if all bits in the
provided mask are set.
Note that the CPU feature check in __tlbie() only needs to check the
ARCH_206 bit, not the HVMODE bit, because __tlbie() can only get called
if we are running bare-metal, i.e. in hypervisor mode.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
This adds infrastructure which will be needed to allow book3s_hv KVM to
run on older POWER processors, including PPC970, which don't support
the Virtual Real Mode Area (VRMA) facility, but only the Real Mode
Offset (RMO) facility. These processors require a physically
contiguous, aligned area of memory for each guest. When the guest does
an access in real mode (MMU off), the address is compared against a
limit value, and if it is lower, the address is ORed with an offset
value (from the Real Mode Offset Register (RMOR)) and the result becomes
the real address for the access. The size of the RMA has to be one of
a set of supported values, which usually includes 64MB, 128MB, 256MB
and some larger powers of 2.
Since we are unlikely to be able to allocate 64MB or more of physically
contiguous memory after the kernel has been running for a while, we
allocate a pool of RMAs at boot time using the bootmem allocator. The
size and number of the RMAs can be set using the kvm_rma_size=xx and
kvm_rma_count=xx kernel command line options.
KVM exports a new capability, KVM_CAP_PPC_RMA, to signal the availability
of the pool of preallocated RMAs. The capability value is 1 if the
processor can use an RMA but doesn't require one (because it supports
the VRMA facility), or 2 if the processor requires an RMA for each guest.
This adds a new ioctl, KVM_ALLOCATE_RMA, which allocates an RMA from the
pool and returns a file descriptor which can be used to map the RMA. It
also returns the size of the RMA in the argument structure.
Having an RMA means we will get multiple KMV_SET_USER_MEMORY_REGION
ioctl calls from userspace. To cope with this, we now preallocate the
kvm->arch.ram_pginfo array when the VM is created with a size sufficient
for up to 64GB of guest memory. Subsequently we will get rid of this
array and use memory associated with each memslot instead.
This moves most of the code that translates the user addresses into
host pfns (page frame numbers) out of kvmppc_prepare_vrma up one level
to kvmppc_core_prepare_memory_region. Also, instead of having to look
up the VMA for each page in order to check the page size, we now check
that the pages we get are compound pages of 16MB. However, if we are
adding memory that is mapped to an RMA, we don't bother with calling
get_user_pages_fast and instead just offset from the base pfn for the
RMA.
Typically the RMA gets added after vcpus are created, which makes it
inconvenient to have the LPCR (logical partition control register) value
in the vcpu->arch struct, since the LPCR controls whether the processor
uses RMA or VRMA for the guest. This moves the LPCR value into the
kvm->arch struct and arranges for the MER (mediated external request)
bit, which is the only bit that varies between vcpus, to be set in
assembly code when going into the guest if there is a pending external
interrupt request.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
This adds support for KVM running on 64-bit Book 3S processors,
specifically POWER7, in hypervisor mode. Using hypervisor mode means
that the guest can use the processor's supervisor mode. That means
that the guest can execute privileged instructions and access privileged
registers itself without trapping to the host. This gives excellent
performance, but does mean that KVM cannot emulate a processor
architecture other than the one that the hardware implements.
This code assumes that the guest is running paravirtualized using the
PAPR (Power Architecture Platform Requirements) interface, which is the
interface that IBM's PowerVM hypervisor uses. That means that existing
Linux distributions that run on IBM pSeries machines will also run
under KVM without modification. In order to communicate the PAPR
hypercalls to qemu, this adds a new KVM_EXIT_PAPR_HCALL exit code
to include/linux/kvm.h.
Currently the choice between book3s_hv support and book3s_pr support
(i.e. the existing code, which runs the guest in user mode) has to be
made at kernel configuration time, so a given kernel binary can only
do one or the other.
This new book3s_hv code doesn't support MMIO emulation at present.
Since we are running paravirtualized guests, this isn't a serious
restriction.
With the guest running in supervisor mode, most exceptions go straight
to the guest. We will never get data or instruction storage or segment
interrupts, alignment interrupts, decrementer interrupts, program
interrupts, single-step interrupts, etc., coming to the hypervisor from
the guest. Therefore this introduces a new KVMTEST_NONHV macro for the
exception entry path so that we don't have to do the KVM test on entry
to those exception handlers.
We do however get hypervisor decrementer, hypervisor data storage,
hypervisor instruction storage, and hypervisor emulation assist
interrupts, so we have to handle those.
In hypervisor mode, real-mode accesses can access all of RAM, not just
a limited amount. Therefore we put all the guest state in the vcpu.arch
and use the shadow_vcpu in the PACA only for temporary scratch space.
We allocate the vcpu with kzalloc rather than vzalloc, and we don't use
anything in the kvmppc_vcpu_book3s struct, so we don't allocate it.
We don't have a shared page with the guest, but we still need a
kvm_vcpu_arch_shared struct to store the values of various registers,
so we include one in the vcpu_arch struct.
The POWER7 processor has a restriction that all threads in a core have
to be in the same partition. MMU-on kernel code counts as a partition
(partition 0), so we have to do a partition switch on every entry to and
exit from the guest. At present we require the host and guest to run
in single-thread mode because of this hardware restriction.
This code allocates a hashed page table for the guest and initializes
it with HPTEs for the guest's Virtual Real Memory Area (VRMA). We
require that the guest memory is allocated using 16MB huge pages, in
order to simplify the low-level memory management. This also means that
we can get away without tracking paging activity in the host for now,
since huge pages can't be paged or swapped.
This also adds a few new exports needed by the book3s_hv code.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
In hypervisor mode, the LPCR controls several aspects of guest
partitions, including virtual partition memory mode, and also controls
whether the hypervisor decrementer interrupts are enabled. This sets
up LPCR at boot time so that guest partitions will use a virtual real
memory area (VRMA) composed of 16MB large pages, and hypervisor
decrementer interrupts are disabled.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
We expect this is actually faster, and we end up needing more space than we
can get from the SPRGs in some instances. This is also useful when running
as a guest OS - SPRGs4-7 do not have guest versions.
8 slots are allocated in thread_info for this even though we only actually
use 4 of them - this allows space for future code to have more scratch
space (and we know we'll need it for things like hugetlb).
Signed-off-by: Ashish Kalra <Ashish.Kalra@freescale.com>
Signed-off-by: Becky Bruce <beckyb@kernel.crashing.org>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Commits a5d4f3ad3a ("powerpc: Base support for exceptions using
HSRR0/1") and 673b189a2e ("powerpc: Always use SPRN_SPRG_HSCRATCH0
when running in HV mode") cause compile and link errors for 32-bit
classic Book 3S processors when KVM is enabled. This fixes these
errors.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Recent 64-bit server processors (POWER6 and POWER7) have a "Come-From
Address Register" (CFAR), that records the address of the most recent
branch or rfid (return from interrupt) instruction for debugging purposes.
This saves the value of the CFAR in the exception entry code and stores
it in the exception frame. We also make xmon print the CFAR value in
its register dump code.
Rather than extend the pt_regs struct at this time, we steal the orig_gpr3
field, which is only used for system calls, and use it for the CFAR value
for all exceptions/interrupts other than system calls. This means we
don't save the CFAR on system calls, which is not a great problem since
system calls tend not to happen unexpectedly, and also avoids adding the
overhead of reading the CFAR to the system call entry path.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Icswx is a PowerPC instruction to send data to a co-processor. On Book-S
processors the LPAR_ID and process ID (PID) of the owning process are
registered in the window context of the co-processor at initialization
time. When the icswx instruction is executed the L2 generates a cop-reg
transaction on PowerBus. The transaction has no address and the
processor does not perform an MMU access to authenticate the transaction.
The co-processor compares the LPAR_ID and the PID included in the
transaction and the LPAR_ID and PID held in the window context to
determine if the process is authorized to generate the transaction.
The OS needs to assign a 16-bit PID for the process. This cop-PID needs
to be updated during context switch. The cop-PID needs to be destroyed
when the context is destroyed.
Signed-off-by: Sonny Rao <sonnyrao@linux.vnet.ibm.com>
Signed-off-by: Tseng-Hui (Frank) Lin <thlin@linux.vnet.ibm.com>
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The MSR bit which indicates 64-bit-ness is different between server and
booke, so add a #define which gives you the right mask regardless.
Signed-off-by: Michael Ellerman <michael@ellerman.id.au>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This uses feature sections to arrange that we always use HSPRG1
as the scratch register in the interrupt entry code rather than
SPRG2 when we're running in hypervisor mode on POWER7. This will
ensure that we don't trash the guest's SPRG2 when we are running
KVM guests. To simplify the code, we define GET_SCRATCH0() and
SET_SCRATCH0() macros like the GET_PACA/SET_PACA macros.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
When running in Hypervisor mode (arch 2.06 or later), we store the PACA
in HSPRG0 instead of SPRG1. The architecture specifies that SPRGs may be
lost during a "nap" power management operation (though they aren't
currently on POWER7) and this enables use of SPRG1 by KVM guests.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This adds more SPR definitions used on newer processors when running
in hypervisor mode. Along with some other P7 specific bits and pieces
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
* 'perf-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (30 commits)
trace, filters: Initialize the match variable in process_ops() properly
trace, documentation: Fix branch profiling location in debugfs
oprofile, s390: Cleanups
oprofile, s390: Remove hwsampler_files.c and merge it into init.c
perf: Fix tear-down of inherited group events
perf: Reorder & optimize perf_event_context to remove alignment padding on 64 bit builds
perf: Handle stopped state with tracepoints
perf: Fix the software events state check
perf, powerpc: Handle events that raise an exception without overflowing
perf, x86: Use INTEL_*_CONSTRAINT() for all PEBS event constraints
perf, x86: Clean up SandyBridge PEBS events
perf lock: Fix sorting by wait_min
perf tools: Version incorrect with some versions of grep
perf evlist: New command to list the names of events present in a perf.data file
perf script: Add support for H/W and S/W events
perf script: Add support for dumping symbols
perf script: Support custom field selection for output
perf script: Move printing of 'common' data from print_event and rename
perf tracing: Remove print_graph_cpu and print_graph_proc from trace-event-parse
perf script: Change process_event prototype
...
Events on POWER7 can roll back if a speculative event doesn't
eventually complete. Unfortunately in some rare cases they will
raise a performance monitor exception. We need to catch this to
ensure we reset the PMC. In all cases the PMC will be 256 or less
cycles from overflow.
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: <stable@kernel.org> # as far back as it applies cleanly
LKML-Reference: <20110309143842.6c22845e@kryten>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This erratum can occur if a single-precision floating-point,
double-precision floating-point or vector floating-point instruction on a
mispredicted branch path signals one of the floating-point data interrupts
which are enabled by the SPEFSCR (FINVE, FDBZE, FUNFE or FOVFE bits). This
interrupt must be recorded in a one-cycle window when the misprediction is
resolved. If this extremely rare event should occur, the result could be:
The SPE Data Exception from the mispredicted path may be reported
erroneously if a single-precision floating-point, double-precision
floating-point or vector floating-point instruction is the second
instruction on the correct branch path.
According to errata description, some efp instructions which are not
supposed to trigger SPE exceptions can trigger the exceptions in this case.
However, as we haven't emulated these instructions here, a signal will
send to userspace, and userspace application would exit.
This patch re-issue the efp instruction that we haven't emulated,
so that hardware can properly execute it again if this case happen.
Signed-off-by: Liu Yu <yu.liu@freescale.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Move SPRN_PID declearations in various locations into one place.
Signed-off-by: Tseng-Hui (Frank) Lin <thlin@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Also make 74xx HID1 definition conditional.
Signed-off-by: Li Yang <leoli@freescale.com>
Signed-off-by: Shaohui Xie <b21989@freescale.com>
Cc: Roy Zang <tie-fei.zang@freescale.com>
Cc: Alexandre Bounine <alexandre.bounine@idt.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
I'm sick of seeing ppc64_runlatch_off in our profiles, so inline it
into the callers. To avoid a mess of circular includes I didn't add
it as an inline function.
Signed-off-by: Anton Blanchard <anton@samba.org>
Acked-by: Olof Johansson <olof@lixom.net>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
* 'kvm-updates/2.6.35' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (269 commits)
KVM: x86: Add missing locking to arch specific vcpu ioctls
KVM: PPC: Add missing vcpu_load()/vcpu_put() in vcpu ioctls
KVM: MMU: Segregate shadow pages with different cr0.wp
KVM: x86: Check LMA bit before set_efer
KVM: Don't allow lmsw to clear cr0.pe
KVM: Add cpuid.txt file
KVM: x86: Tell the guest we'll warn it about tsc stability
x86, paravirt: don't compute pvclock adjustments if we trust the tsc
x86: KVM guest: Try using new kvm clock msrs
KVM: x86: export paravirtual cpuid flags in KVM_GET_SUPPORTED_CPUID
KVM: x86: add new KVMCLOCK cpuid feature
KVM: x86: change msr numbers for kvmclock
x86, paravirt: Add a global synchronization point for pvclock
x86, paravirt: Enable pvclock flags in vcpu_time_info structure
KVM: x86: Inject #GP with the right rip on efer writes
KVM: SVM: Don't allow nested guest to VMMCALL into host
KVM: x86: Fix exception reinjection forced to true
KVM: Fix wallclock version writing race
KVM: MMU: Don't read pdptrs with mmu spinlock held in mmu_alloc_roots
KVM: VMX: enable VMXON check with SMX enabled (Intel TXT)
...
This is a trivial 4xx plaform that uses the new simple bsp from
Josh and is handy to use in simulators such as ISS or even Mambo
who don't properly implement most of the actual devices in the
SoC but really only the core.
Signed-off-by: Torez Smith <lnxtorez@linux.vnet.ibm.com>
Signed-off-by: Dave Kleikamp <shaggy@linux.vnet.ibm.com>
Signed-off-by: Josh Boyer <jwboyer@linux.vnet.ibm.com>
This patch adds the base support for the 476 processor. The code was
primarily written by Ben Herrenschmidt and Torez Smith, but I've been
maintaining it for a while.
The goal is to have a single binary that will run on 44x and 47x, but
we still have some details to work out. The biggest is that the L1 cache
line size differs on the two platforms, but it's currently a compile-time
option.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Torez Smith <lnxtorez@linux.vnet.ibm.com>
Signed-off-by: Dave Kleikamp <shaggy@linux.vnet.ibm.com>
Signed-off-by: Josh Boyer <jwboyer@linux.vnet.ibm.com>
The Gekko has some SPR values that differ from other PPC core values and
also some additional ones.
Let's add support for them in our mfspr/mtspr emulator.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
Book3S needs some flags in SRR1 to get to know details about an interrupt.
One such example is the trap instruction. It tells the guest kernel that
a program interrupt is due to a trap using a bit in SRR1.
This patch implements above behavior, making WARN_ON behave like WARN_ON.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
In continuous sampling mode we want the SDAR to update. While we can
select between dcache misses and ERAT (L1-TLB) misses, a decent default
is to enable both.
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
This adds various definitions and macros used by the exception and TLB
miss handling on 64-bit BookE
It also adds the definitions of the SPRGs used for various exception types
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This adds various SPRs defined on 64-bit BookE, along with changes
to the definition of the base MSR values to add the values needed
for 64-bit Book3E.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This change the SPRG used to store the PACA on ppc64 from
SPRG3 to SPRG1. SPRG3 is user readable on most processors
and we want to use it for other things. We change the scratch
SPRG used by exception vectors from SRPG1 to SPRG2.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The STAB code used on Power3 and RS/64 uses a second scratch SPRG to
save a GPR in order to decide whether to go to do_stab_bolted_* or
to handle a normal data access exception.
This prevents our scheme of freeing SPRG3 which is user visible for
user uses since we cannot use SPRG0 which, on RS/64, seems to be
read-only for supervisor mode (like POWER4).
This reworks the STAB exception entry to use the PACA as temporary
storage instead.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The kernel uses SPRG registers for various purposes, typically in
low level assembly code as scratch registers or to hold per-cpu
global infos such as the PACA or the current thread_info pointer.
We want to be able to easily shuffle the usage of those registers
as some implementations have specific constraints realted to some
of them, for example, some have userspace readable aliases, etc..
and the current choice isn't always the best.
This patch should not change any code generation, and replaces the
usage of SPRN_SPRGn everywhere in the kernel with a named replacement
and adds documentation next to the definition of the names as to
what those are used for on each processor family.
The only parts that still use the original numbers are bits of KVM
or suspend/resume code that just blindly needs to save/restore all
the SPRGs.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Without this clobber, mtspr can be re-ordered by gcc vs. surrounding
memory accesses. While this might be ok for some cases, it's not in
others and I'm not confident that all callers get it right (In fact
I'm sure some of them don't).
So for now, let's make mtspr() itself contain a memory clobber until
we can audit and fix everything, at which point we can remove it
if we think it's worth doing so.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
On 32-bit non-Book E, local_irq_restore() turns into just mtmsr(),
which doesn't currently have a compiler memory barrier. This means
that accesses to memory inside a local_irq_save/restore section,
or a spin_lock_irqsave/spin_unlock_irqrestore section on UP, can
be reordered by the compiler to occur outside that section.
To fix this, this adds a compiler memory barrier to mtmsr for both
32-bit and 64-bit. Having a compiler memory barrier in mtmsr makes
sense because it will almost always be changing something about the
context in which memory accesses are done, so in general we don't want
memory accesses getting moved from one side of an mtmsr to the other.
With the barrier in mtmsr(), some of the explicit barriers in
hw_irq.h are now redundant, so this removes them.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This uses values from the MMCRA, SIAR and SDAR registers on
powerpc to supply more precise information for overflow events,
including a data address when PERF_RECORD_ADDR is specified.
Since POWER6 uses different bit positions in MMCRA from earlier
processors, this converts the struct power_pmu limited_pmc5_6
field, which only had 0/1 values, into a flags field and
defines bit values for its previous use (PPMU_LIMITED_PMC5_6)
and a new flag (PPMU_ALT_SIPR) to indicate that the processor
uses the POWER6 bit positions rather than the earlier
positions. It also adds definitions in reg.h for the new and
old positions of the bit that indicates that the SIAR and SDAR
values come from the same instruction.
For the data address, the SDAR value is supplied if we are not
doing instruction sampling. In that case there is no guarantee
that the address given in the PERF_RECORD_ADDR subrecord will
correspond to the instruction whose address is given in the
PERF_RECORD_IP subrecord.
If instruction sampling is enabled (e.g. because this counter
is counting a marked instruction event), then we only supply
the SDAR value for the PERF_RECORD_ADDR subrecord if it
corresponds to the instruction whose address is in the
PERF_RECORD_IP subrecord. Otherwise we supply 0.
[ Impact: support more PMU hardware features on PowerPC ]
Signed-off-by: Paul Mackerras <paulus@samba.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
LKML-Reference: <18955.37028.48861.555309@drongo.ozlabs.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
SPEFSCR is a user space register and doesn't conflict with anything.
Moving the defines of the various bit fields makes some emulation
code have fewer ifdefs
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
The powerpc 64 bit architecture defines three flags for the
DABR (Data Address Breakpoint Register). Add definitions
for the currently missing DABR_DATA_WRITE and DABR_DATA_READ
flags to the powerpc reg.h file.
Signed-off-by: Geoff Levand <geoffrey.levand@am.sony.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Today the arch/powerpc/xmon/setjmp.S file contains only the
xmon_save_regs function. We want to use it for kdump purposes, so
let's move the file into arch/powerpc/kernel/ and give the function a
more generic name (ppc_save_regs).
Signed-off-by: Anton Vorontsov <avorontsov@ru.mvista.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
from include/asm-powerpc. This is the result of a
mkdir arch/powerpc/include/asm
git mv include/asm-powerpc/* arch/powerpc/include/asm
Followed by a few documentation/comment fixups and a couple of places
where <asm-powepc/...> was being used explicitly. Of the latter only
one was outside the arch code and it is a driver only built for powerpc.
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Paul Mackerras <paulus@samba.org>