2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-04 11:43:54 +08:00
Commit Graph

4 Commits

Author SHA1 Message Date
Kees Cook
99a5e178bd ATM: use designated initializers
Prepare to mark sensitive kernel structures for randomization by making
sure they're using designated initializers. These were identified during
allyesconfig builds of x86, arm, and arm64, with most initializer fixes
extracted from grsecurity.

Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-12-17 11:56:57 -05:00
Julia Lawall
3b22dae38d VSOCK: constify vmci_transport_notify_ops structures
The vmci_transport_notify_ops structures are never modified, so declare
them as const.

Done with the help of Coccinelle.

Signed-off-by: Julia Lawall <Julia.Lawall@lip6.fr>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-11-23 15:49:29 -05:00
David S. Miller
676d23690f net: Fix use after free by removing length arg from sk_data_ready callbacks.
Several spots in the kernel perform a sequence like:

	skb_queue_tail(&sk->s_receive_queue, skb);
	sk->sk_data_ready(sk, skb->len);

But at the moment we place the SKB onto the socket receive queue it
can be consumed and freed up.  So this skb->len access is potentially
to freed up memory.

Furthermore, the skb->len can be modified by the consumer so it is
possible that the value isn't accurate.

And finally, no actual implementation of this callback actually uses
the length argument.  And since nobody actually cared about it's
value, lots of call sites pass arbitrary values in such as '0' and
even '1'.

So just remove the length argument from the callback, that way there
is no confusion whatsoever and all of these use-after-free cases get
fixed as a side effect.

Based upon a patch by Eric Dumazet and his suggestion to audit this
issue tree-wide.

Signed-off-by: David S. Miller <davem@davemloft.net>
2014-04-11 16:15:36 -04:00
Andy King
d021c34405 VSOCK: Introduce VM Sockets
VM Sockets allows communication between virtual machines and the hypervisor.
User level applications both in a virtual machine and on the host can use the
VM Sockets API, which facilitates fast and efficient communication between
guest virtual machines and their host.  A socket address family, designed to be
compatible with UDP and TCP at the interface level, is provided.

Today, VM Sockets is used by various VMware Tools components inside the guest
for zero-config, network-less access to VMware host services.  In addition to
this, VMware's users are using VM Sockets for various applications, where
network access of the virtual machine is restricted or non-existent.  Examples
of this are VMs communicating with device proxies for proprietary hardware
running as host applications and automated testing of applications running
within virtual machines.

The VMware VM Sockets are similar to other socket types, like Berkeley UNIX
socket interface.  The VM Sockets module supports both connection-oriented
stream sockets like TCP, and connectionless datagram sockets like UDP. The VM
Sockets protocol family is defined as "AF_VSOCK" and the socket operations
split for SOCK_DGRAM and SOCK_STREAM.

For additional information about the use of VM Sockets, please refer to the
VM Sockets Programming Guide available at:

https://www.vmware.com/support/developer/vmci-sdk/

Signed-off-by: George Zhang <georgezhang@vmware.com>
Signed-off-by: Dmitry Torokhov <dtor@vmware.com>
Signed-off-by: Andy king <acking@vmware.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-02-10 19:41:08 -05:00