Make smp_spin_table_cpu_postboot() static, because this function
is used only in this file.
Signed-off-by: Jingoo Han <jg1.han@samsung.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Make local symbols static, because these are used only in this
file.
Signed-off-by: Jingoo Han <jg1.han@samsung.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
When profiling a 32-bit application, user space callchain unwinding
using the frame pointer is performed in compat mode. The code is taken
over from the AARCH32 code and adapted to work on AARCH64.
Signed-off-by: Jean Pihet <jean.pihet@linaro.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This patch implements the functions required for the perf registers API,
allowing the perf tool to interface kernel register dumps with libunwind
in order to provide userspace backtracing.
Compat mode is also supported.
Only the general purpose user space registers are exported, i.e.:
PERF_REG_ARM_X0,
...
PERF_REG_ARM_X28,
PERF_REG_ARM_FP,
PERF_REG_ARM_LR,
PERF_REG_ARM_SP,
PERF_REG_ARM_PC
and not the PERF_REG_ARM_V* registers.
Signed-off-by: Jean Pihet <jean.pihet@linaro.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Add basic CPU topology support to arm64, based on the existing pre-v8
code and some work done by Mark Hambleton. This patch does not
implement any topology discovery support since that should be based on
information from firmware, it merely implements the scaffolding for
integration of topology support in the architecture.
No locking of the topology data is done since it is only modified during
CPU bringup with external serialisation from the SMP code.
The goal is to separate the architecture hookup for providing topology
information from the DT parsing in order to ease review and avoid
blocking the architecture code (which will be built on by other work)
with the DT code review by providing something simple and basic.
Following patches will implement support for interpreting topology
information from MPIDR and for parsing the DT topology bindings for ARM,
similar patches will be needed for ACPI.
Signed-off-by: Mark Brown <broonie@linaro.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
[catalin.marinas@arm.com: removed CONFIG_CPU_TOPOLOGY, always on if SMP]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This adds support for advertising the presence of ARMv8 Crypto
Extensions in the Aarch32 execution state to 32-bit ELF binaries
running in 32-bit compat mode under the arm64 kernel.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Add support for the ELF auxv entry AT_HWCAP2 when running 32-bit
ELF binaries in compat mode.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
psci_init() is written to return err code if something goes wrong. However,
the single user, setup_arch(), doesn't care about it. Moreover, every error
path is supplied with a clear message which is enough for pleasant debugging.
Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Since 652af89979 "arm64: factor out spin-table
boot method" psci prefix's been introduced. We have a common pr_fmt, so clean
them up.
Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Remove some unnecessary bits that were apparently carried over from
another architecture's implementation:
- No need to get_page() the vdso text/data - these are part of the
kernel image.
- No need for ClearPageReserved on the vdso text.
- No need to vmap the first text page to check the ELF header - this
can be done through &vdso_start.
Also some minor cleanup:
- Use kcalloc for vdso_pagelist array allocation.
- Don't print on allocation failure, slab/slub will do that for us.
Signed-off-by: Nathan Lynch <nathan_lynch@mentor.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Change the soft_restart() routine to call cpu_reset() at its identity mapped
physical address.
The cpu_reset() routine must be called at its identity mapped physical address
so that when the MMU is turned off the instruction pointer will be at the correct
location in physical memory.
Signed-off-by: Geoff Levand <geoff@infradead.org> for Huawei, Linaro
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This patch changes the idmap page table creation during boot to cover
the whole kernel image, allowing functions like cpu_reset() to be safely
called with the physical address.
This patch also simplifies the create_block_map asm macro to no longer
take an idmap argument and always use the phys/virt/end parameters. For
the idmap case, phys == virt.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
processor debug state PSTATE.D is unmasked in smp call
clear_os_lock for secondary cpus. So debug state is still
masked in normal kernel context. With this patch, unmask
debug state on secondary boot for the cpus in normal kernel
context. Now kgdb tests passed with multicore.
Signed-off-by: Vijaya Kumar K <Vijaya.Kumar@caviumnetworks.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Add KGDB software step debugging support for EL1 debug
in AArch64 mode.
KGDB registers step debug handler with debug monitor.
On receiving 'step' command from GDB tool, target enables
software step debugging and step address is updated in ELR.
Software Step debugging is disabled when 'continue' command
is received
Signed-off-by: Vijaya Kumar K <Vijaya.Kumar@caviumnetworks.com>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Add KGDB debug support for kernel debugging.
With this patch, basic KGDB debugging is possible.GDB register
layout is updated and GDB tool can establish connection with
target and can set/clear breakpoints.
Signed-off-by: Vijaya Kumar K <Vijaya.Kumar@caviumnetworks.com>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Add macros to enable and disable to manage PSTATE.D
for debugging. The macros local_dbg_save and local_dbg_restore
are moved to irqflags.h file
KGDB boot tests fail because of PSTATE.D is masked.
unmask it for debugging support
Signed-off-by: Vijaya Kumar K <Vijaya.Kumar@caviumnetworks.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Linux requires a number of atomic operations to provide full barrier
semantics, that is no memory accesses after the operation can be
observed before any accesses up to and including the operation in
program order.
On arm64, these operations have been incorrectly implemented as follows:
// A, B, C are independent memory locations
<Access [A]>
// atomic_op (B)
1: ldaxr x0, [B] // Exclusive load with acquire
<op(B)>
stlxr w1, x0, [B] // Exclusive store with release
cbnz w1, 1b
<Access [C]>
The assumption here being that two half barriers are equivalent to a
full barrier, so the only permitted ordering would be A -> B -> C
(where B is the atomic operation involving both a load and a store).
Unfortunately, this is not the case by the letter of the architecture
and, in fact, the accesses to A and C are permitted to pass their
nearest half barrier resulting in orderings such as Bl -> A -> C -> Bs
or Bl -> C -> A -> Bs (where Bl is the load-acquire on B and Bs is the
store-release on B). This is a clear violation of the full barrier
requirement.
The simple way to fix this is to implement the same algorithm as ARMv7
using explicit barriers:
<Access [A]>
// atomic_op (B)
dmb ish // Full barrier
1: ldxr x0, [B] // Exclusive load
<op(B)>
stxr w1, x0, [B] // Exclusive store
cbnz w1, 1b
dmb ish // Full barrier
<Access [C]>
but this has the undesirable effect of introducing *two* full barrier
instructions. A better approach is actually the following, non-intuitive
sequence:
<Access [A]>
// atomic_op (B)
1: ldxr x0, [B] // Exclusive load
<op(B)>
stlxr w1, x0, [B] // Exclusive store with release
cbnz w1, 1b
dmb ish // Full barrier
<Access [C]>
The simple observations here are:
- The dmb ensures that no subsequent accesses (e.g. the access to C)
can enter or pass the atomic sequence.
- The dmb also ensures that no prior accesses (e.g. the access to A)
can pass the atomic sequence.
- Therefore, no prior access can pass a subsequent access, or
vice-versa (i.e. A is strictly ordered before C).
- The stlxr ensures that no prior access can pass the store component
of the atomic operation.
The only tricky part remaining is the ordering between the ldxr and the
access to A, since the absence of the first dmb means that we're now
permitting re-ordering between the ldxr and any prior accesses.
From an (arbitrary) observer's point of view, there are two scenarios:
1. We have observed the ldxr. This means that if we perform a store to
[B], the ldxr will still return older data. If we can observe the
ldxr, then we can potentially observe the permitted re-ordering
with the access to A, which is clearly an issue when compared to
the dmb variant of the code. Thankfully, the exclusive monitor will
save us here since it will be cleared as a result of the store and
the ldxr will retry. Notice that any use of a later memory
observation to imply observation of the ldxr will also imply
observation of the access to A, since the stlxr/dmb ensure strict
ordering.
2. We have not observed the ldxr. This means we can perform a store
and influence the later ldxr. However, that doesn't actually tell
us anything about the access to [A], so we've not lost anything
here either when compared to the dmb variant.
This patch implements this solution for our barriered atomic operations,
ensuring that we satisfy the full barrier requirements where they are
needed.
Cc: <stable@vger.kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Update wall-to-monotonic fields in the VDSO data page
unconditionally. These are used to service CLOCK_MONOTONIC_COARSE,
which is not guarded by use_syscall.
Signed-off-by: Nathan Lynch <nathan_lynch@mentor.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
When __kernel_clock_gettime is called with a CLOCK_MONOTONIC_COARSE or
CLOCK_REALTIME_COARSE clock id, it returns incorrectly to whatever the
caller has placed in x2 ("ret x2" to return from the fast path). Fix
this by saving x30/LR to x2 only in code that will call
__do_get_tspec, restoring x30 afterward, and using a plain "ret" to
return from the routine.
Also: while the resulting tv_nsec value for CLOCK_REALTIME and
CLOCK_MONOTONIC must be computed using intermediate values that are
left-shifted by cs_shift (x12, set by __do_get_tspec), the results for
coarse clocks should be calculated using unshifted values
(xtime_coarse_nsec is in units of actual nanoseconds). The current
code shifts intermediate values by x12 unconditionally, but x12 is
uninitialized when servicing a coarse clock. Fix this by setting x12
to 0 once we know we are dealing with a coarse clock id.
Signed-off-by: Nathan Lynch <nathan_lynch@mentor.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Whilst the text segment for our VDSO is marked as PT_LOAD in the ELF
headers, it is mapped by the kernel and not actually subject to
demand-paging. ld doesn't realise this, and emits a p_align field of 64k
(the maximum supported page size), which conflicts with the load address
picked by the kernel on 4k systems, which will be 4k aligned. This
causes GDB to fail with "Failed to read a valid object file image from
memory" when attempting to load the VDSO.
This patch passes the -n option to ld, which prevents it from aligning
PT_LOAD segments to the maximum page size.
Cc: <stable@vger.kernel.org>
Reported-by: Kyle McMartin <kyle@redhat.com>
Acked-by: Kyle McMartin <kyle@redhat.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
- Introduction of PTE_WRITE to distinguish between writable but clean
and truly read-only pages
- FIQs enabling/disabling clean-up (they aren't used on arm64)
- CPU resume fix for the per-cpu offset restoring
- Code comment typos
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.9 (GNU/Linux)
iQIcBAABAgAGBQJS6+SLAAoJEGvWsS0AyF7xk60P/RBEAXqBdlNkTPQ9eIBs8P9b
txv7T6k6MnQt6vK+3Kepgnoadeaw4WRCqKPduA90v7tnrw8fVLmuAM29o0uITkDH
4Cz69/8A9B2Y+ouiODS6MrEvlz99BfbSZdUZd89eNSO7tTzv1YckpepNQCL3Wf+S
1nXa4dZrciCR2vMmkF01jvc3yTjCJ0W7IduUhFQevpMfEzq2bLhvS5eGQd618pBc
Ih44IYO6RfBeYB3CxWiSJeHgSXzlSijUeoPQbiDEhFsKXO7SaZN5oQ5Ra8v+YAMr
fhcblX9rxH2Z1AfYizPssQ0VEnm3cN4nKurr7CA5R+LeHuR38lD9WWABhkYgQMRB
V43/3wvozRyWhLBkS9V0NjObfpPhDuLR6pdbWRQnCO97mH/0HVd2ql49gvsOcdgb
qa2XTF+iOJOQ3325SGdruTkbzkccFoKniiiOsndhx48VGLhHD9U0sCYLfb5X6NJC
ZFI3qQx+3+q32jkDoShqQZ/4fnb8TqzH/KqNtZdZPJ7dlkw/2B8wcnAIoF+BfgbH
2TRfbndSrNGLJSc4bgFQ3e7SCHSdm/PUR/l4c+xN9Ia4tF9614ndfPAaSKaMaKca
O6IwX8+IBo94JDhtPsypplYllBlBeXzMjZFO6b60sBF9UaxgdS1ZQ3NP9pumGN80
2czoY2kwV68DScgxBFLx
=tWas
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pyll ARM64 patches from Catalin Marinas:
- Build fix with DMA_CMA enabled
- Introduction of PTE_WRITE to distinguish between writable but clean
and truly read-only pages
- FIQs enabling/disabling clean-up (they aren't used on arm64)
- CPU resume fix for the per-cpu offset restoring
- Code comment typos
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux:
arm64: mm: Introduce PTE_WRITE
arm64: mm: Remove PTE_BIT_FUNC macro
arm64: FIQs are unused
arm64: mm: fix the function name in comment of cpu_do_switch_mm
arm64: fix build error if DMA_CMA is enabled
arm64: kernel: fix per-cpu offset restore on resume
arm64: mm: fix the function name in comment of __flush_dcache_area
arm64: mm: use ubfm for dcache_line_size
So any FIQ handling is superfluous at the moment. The functions to
disable/enable FIQs is kept around if ever someone needs them in the
future, but existing calling sites including arch_cpu_idle_prepare()
may go for now.
Signed-off-by: Nicolas Pitre <nico@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The introduction of percpu offset optimisation through tpidr_el1 in:
Commit id :7158627686f02319c50c8d9d78f75d4c8
"arm64: percpu: implement optimised pcpu access using tpidr_el1"
requires cpu_{suspend/resume} to restore the tpidr_el1 register upon resume
so that percpu variables can be addressed correctly when a CPU comes out
of reset from warm-boot.
This patch fixes cpu_{suspend}/{resume} tpidr_el1 restoration on resume, by
calling the set_my_cpu_offset C API, as it is done on primary and secondary
CPUs on cold boot, so that, even if the register used to store the percpu
offset is changed, the save and restore of general purpose registers does not
have to be updated.
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Interface)
- Jump label support
- CMA can now be enabled on arm64
- HWCAP bits for crypto and CRC32 extensions
- Optimised percpu using tpidr_el1 register
- Code cleanup
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.9 (GNU/Linux)
iQIcBAABAgAGBQJS3WLBAAoJEGvWsS0AyF7xxx8P+wUYzu04rKtz4BOj5IHl8TxB
xsRw8ce9MdxIVgdtCjDzmdpkd0s8ZPTEweJnVGYYlB9O9Pmz0VSX4Z1y6W6k0P1f
GCKDMa+hn2uQYnw3bS022Zji6OjUfad9XUfe3f61YdA7GrSdjTVMapXuloASRcfl
0XkfpXwbfLPGpuNp4q/QaA9K/y93T/gc6O/ctJh3OUJDOWJXZGsUTRIKXTF9GrWn
/gPEK9MiatAPpcS7iO283a3vllDalNoEGpt+a4cYCc8il2kCWUpX6W2c9m3Ua26k
mAvkoUErfb3cW/PzqDZzr8M3XbnXb8Je99HBbcjQluL6zyw+0hdUHJpCFOamsz5m
pEpT1e0Hvxb6yNbjqyituiYFPwOUZHP/HeZpH4l1njhN7sIyZP5cUEV4f53VN4lB
KL3HSGzUTaNzT5UpD35CA4vXRwRKrV8YsAVhB0p53KgkUreKA6wbJHSXHorjBZaE
uuP7kqOMGQ494+f6h+yvZqwIcObQGaHYNQJLY3Yhzg3WAs59s/bX/s4yWhgkte0U
yfxKpxTSiLjv5LmZrVQer04DIf9duNkEpI/DAKUbXagHJ7RCHjOneg9F5ZvJ598o
umCo+ok9hV+vLUhagh4t5guSk2ehW7qoZOG44XkYcCLXTIlMV1AQA6oJr804DUm2
71UbGFi01OY0Jtp8prO3
=TPaC
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull ARM64 updates from Catalin Marinas:
- CPU suspend support on top of PSCI (firmware Power State Coordination
Interface)
- jump label support
- CMA can now be enabled on arm64
- HWCAP bits for crypto and CRC32 extensions
- optimised percpu using tpidr_el1 register
- code cleanup
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (42 commits)
arm64: fix typo in entry.S
arm64: kernel: restore HW breakpoint registers in cpu_suspend
jump_label: use defined macros instead of hard-coding for better readability
arm64, jump label: optimize jump label implementation
arm64, jump label: detect %c support for ARM64
arm64: introduce aarch64_insn_gen_{nop|branch_imm}() helper functions
arm64: move encode_insn_immediate() from module.c to insn.c
arm64: introduce interfaces to hotpatch kernel and module code
arm64: introduce basic aarch64 instruction decoding helpers
arm64: dts: Reduce size of virtio block device for foundation model
arm64: Remove unused __data_loc variable
arm64: Enable CMA
arm64: Warn on NULL device structure for dma APIs
arm64: Add hwcaps for crypto and CRC32 extensions.
arm64: drop redundant macros from read_cpuid()
arm64: Remove outdated comment
arm64: cmpxchg: update macros to prevent warnings
arm64: support single-step and breakpoint handler hooks
ARM64: fix framepointer check in unwind_frame
ARM64: check stack pointer in get_wchan
...
Commit 64681787 (arm64: let the core code deal with preempt_count)
changed the code, but left the comments unchanged, fix it.
Signed-off-by: Neil Zhang <zhangwm@marvell.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
When a CPU resumes from low-power, it restores HW breakpoint and
watchpoint slots through a CPU PM notifier. Since we want to enable
debugging as early as possible in the resume path, the mdscr content
is restored along the general purpose registers in the cpu_suspend API
and debug exceptions are reenabled when cpu_suspend returns. Since the
CPU PM notifier is run after a CPU has been resumed, we cannot expect
HW breakpoint registers to contain sane values till the notifier is run,
since the HW breakpoints registers content is unknown at reset; this means
that the CPU might run with debug exceptions enabled, mdscr restored but HW
breakpoint registers containing junk values that can trigger spurious
debug exceptions.
This patch fixes current HW breakpoints restore by moving the HW breakpoints
registers restoration to the cpu_suspend API, before the debug exceptions are
enabled. This way, as soon as the cpu_suspend function returns the
kernel can resume debugging with sane values in HW breakpoint registers.
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Introduce aarch64_insn_gen_{nop|branch_imm}() helper functions, which
will be used to implement jump label on ARM64.
Reviewed-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Jiang Liu <liuj97@gmail.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Function encode_insn_immediate() will be used by other instruction
manipulate related functions, so move it into insn.c and rename it
as aarch64_insn_encode_immediate().
Reviewed-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Jiang Liu <liuj97@gmail.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Introduce three interfaces to patch kernel and module code:
aarch64_insn_patch_text_nosync():
patch code without synchronization, it's caller's responsibility
to synchronize all CPUs if needed.
aarch64_insn_patch_text_sync():
patch code and always synchronize with stop_machine()
aarch64_insn_patch_text():
patch code and synchronize with stop_machine() if needed
Reviewed-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Jiang Liu <liuj97@gmail.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The __data_loc variable is an unused left over from the 32 bit arm implementation.
Remove that variable and adjust the __mmap_switched startup routine accordingly.
Signed-off-by: Geoff Levand <geoff@infradead.org> for Huawei, Linaro
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Advertise the optional cryptographic and CRC32 instructions to
user space where present. Several hwcap bits [3-7] are allocated.
Signed-off-by: Steve Capper <steve.capper@linaro.org>
[bit 2 is taken now so use bits 3-7 instead]
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Code referenced in the comment has moved to arch/arm64/kernel/cputable.c
Signed-off-by: Liviu Dudau <Liviu.Dudau@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
AArch64 Single Steping and Breakpoint debug exceptions will be
used by multiple debug framworks like kprobes & kgdb.
This patch implements the hooks for those frameworks to register
their own handlers for handling breakpoint and single step events.
Reworked the debug exception handler in entry.S: do_dbg to route
software breakpoint (BRK64) exception to do_debug_exception()
Signed-off-by: Sandeepa Prabhu <sandeepa.prabhu@linaro.org>
Signed-off-by: Deepak Saxena <dsaxena@linaro.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
We need at least 24 bytes above frame pointer.
Signed-off-by: Konstantin Khlebnikov <k.khlebnikov@samsung.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
get_wchan() is lockless. Task may wakeup at any time and change its own stack,
thus each next stack frame may be overwritten and filled with random stuff.
Signed-off-by: Konstantin Khlebnikov <k.khlebnikov@samsung.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This patch implements the word-at-a-time interface for arm64 using the
same algorithm as ARM. We use the fls64 macro, which expands to a clz
instruction via a compiler builtin. Big-endian configurations make use
of the implementation from asm-generic.
With this implemented, we can replace our byte-at-a-time strnlen_user
and strncpy_from_user functions with the optimised generic versions.
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This patch implements optimised percpu variable accesses using the
el1 r/w thread register (tpidr_el1) along the same lines as arch/arm/.
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Add support for irq registration when pmu interrupt is percpu.
Signed-off-by: Vinayak Kale <vkale@apm.com>
Signed-off-by: Tuan Phan <tphan@apm.com>
[will: tidied up cross-calling to pass &irq]
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
We currently try to emit .comment twice, once in STABS_DEBUG, and once
in the line immediately following it. As the two section definitions are
identical, the latter is redundant and can be dropped.
This patch drops the redundant .comment section definition.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Commit 8f34a1da35 ("arm64: ptrace: use HW_BREAKPOINT_EMPTY type for
disabled breakpoints") fixed an issue with GDB trying to zero breakpoint
control registers. The problem there is that the arch hw_breakpoint code
will attempt to create a (disabled), execute breakpoint of length 0.
This will fail validation and report unexpected failure to GDB. To avoid
this, we treated disabled breakpoints as HW_BREAKPOINT_EMPTY, but that
seems to have broken with recent kernels, causing watchpoints to be
treated as TYPE_INST in the core code and returning ENOSPC for any
further breakpoints.
This patch fixes the problem by prioritising the `enable' field of the
breakpoint: if it is cleared, we simply update the perf_event_attr to
indicate that the thing is disabled and don't bother changing either the
type or the length. This reinforces the behaviour that the breakpoint
control register is essentially read-only apart from the enable bit
when disabling a breakpoint.
Cc: <stable@vger.kernel.org>
Reported-by: Aaron Liu <liucy214@gmail.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This patch adds the required makefile and kconfig entries to enable PM
for arm64 systems.
The kernel relies on the cpu_{suspend}/{resume} infrastructure to
properly save the context for a CPU and put it to sleep, hence this
patch adds the config option required to enable cpu_{suspend}/{resume}
API.
In order to rely on the CPU PM implementation for saving and restoring
of CPU subsystems like GIC and PMU, the arch Kconfig must be also
augmented to select the CONFIG_CPU_PM option when SUSPEND or CPU_IDLE
kernel implementations are selected.
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
When CPU idle is enabled, the architectural idle call should go through
the idle subsystem to allow CPUs to enter idle states defined
by the platform CPU idle back-end operations.
This patch, mirroring other archs behaviour, adds the CPU idle call to the
architectural arch_cpu_idle implementation for arm64.
Acked-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
On platforms with power management capabilities, timers that are shut
down when a CPU enters deep C-states must be emulated using an always-on
timer and a timer IPI to relay the timer IRQ to target CPUs on an SMP
system.
This patch enables the generic clockevents broadcast infrastructure for
arm64, by providing the required Kconfig entries and adding the timer
IPI infrastructure.
Acked-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
When a CPU is shutdown either through CPU idle or suspend to RAM, the
content of HW breakpoint registers must be reset or restored to proper
values when CPU resume from low power states. This patch adds debug register
restore operations to the HW breakpoint control function and implements a
CPU PM notifier that allows to restore the content of HW breakpoint registers
to allow proper suspend/resume operations.
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Most of the code executed to install and uninstall breakpoints is
common and can be factored out in a function that through a runtime
operations type provides the requested implementation.
This patch creates a common function that can be used to install/uninstall
breakpoints and defines the set of operations that can be carried out
through it.
Reviewed-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
When a CPU enters a low power state, its FP register content is lost.
This patch adds a notifier to save the FP context on CPU shutdown
and restore it on CPU resume. The context is saved and restored only
if the suspending thread is not a kernel thread, mirroring the current
context switch behaviour.
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Kernel subsystems like CPU idle and suspend to RAM require a generic
mechanism to suspend a processor, save its context and put it into
a quiescent state. The cpu_{suspend}/{resume} implementation provides
such a framework through a kernel interface allowing to save/restore
registers, flush the context to DRAM and suspend/resume to/from
low-power states where processor context may be lost.
The CPU suspend implementation relies on the suspend protocol registered
in CPU operations to carry out a suspend request after context is
saved and flushed to DRAM. The cpu_suspend interface:
int cpu_suspend(unsigned long arg);
allows to pass an opaque parameter that is handed over to the suspend CPU
operations back-end so that it can take action according to the
semantics attached to it. The arg parameter allows suspend to RAM and CPU
idle drivers to communicate to suspend protocol back-ends; it requires
standardization so that the interface can be reused seamlessly across
systems, paving the way for generic drivers.
Context memory is allocated on the stack, whose address is stashed in a
per-cpu variable to keep track of it and passed to core functions that
save/restore the registers required by the architecture.
Even though, upon successful execution, the cpu_suspend function shuts
down the suspending processor, the warm boot resume mechanism, based
on the cpu_resume function, makes the resume path operate as a
cpu_suspend function return, so that cpu_suspend can be treated as a C
function by the caller, which simplifies coding the PM drivers that rely
on the cpu_suspend API.
Upon context save, the minimal amount of memory is flushed to DRAM so
that it can be retrieved when the MMU is off and caches are not searched.
The suspend CPU operation, depending on the required operations (eg CPU vs
Cluster shutdown) is in charge of flushing the cache hierarchy either
implicitly (by calling firmware implementations like PSCI) or explicitly
by executing the required cache maintainance functions.
Debug exceptions are disabled during cpu_{suspend}/{resume} operations
so that debug registers can be saved and restored properly preventing
preemption from debug agents enabled in the kernel.
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>