Winbond W25Q20BW devices are used in 4/5th generation Kindle ebook readers.
Add this spi-nor device and the similar W25Q20 devices to the list of known
devices.
Signed-off-by: Alexander Kurz <akurz@blala.de>
Signed-off-by: Cyrille Pitchen <cyrille.pitchen@atmel.com>
Micron n25q00 are stacked chips, thus do not support chip erase.
>From now spi-nor framework will not send chip erase command,
instead will use sector at time erase procedure.
Signed-off-by: Marcin Krzeminski <mar.krzeminski@gmail.com>
Signed-off-by: Cyrille Pitchen <cyrille.pitchen@atmel.com>
Currently it is possible to disable chip erase for spi-nor driver.
Some modern stacked (multi die) flash chips do not support chip
erase opcode at all but spi-nor framework needs to cope with them too.
This commit extends existing functionality to allow disable
chip erase for a single flash chip.
Signed-off-by: Marcin Krzeminski <mar.krzeminski@gmail.com>
Signed-off-by: Cyrille Pitchen <cyrille.pitchen@atmel.com>
Add support for the ESMT F25L32QA and F25L64QA.
These are 4MB and 8MB SPI-NOR Chips from Elite Semiconductor Memory
Technology.
Signed-off-by: L. D. Pinney <ldpinney@gmail.com>
Signed-off-by: Cyrille Pitchen <cyrille.pitchen@atmel.com>
- add support to the 4-byte address instruction set.
- add support to new memory parts.
- add support to S3AN memories.
- add support to the Intel SPI controller.
- add support to the Aspeed AST2400 and AST2550 controllers.
- fix max SPI transfer and message sizes in m25p80_read().
- fix the Candence QSPI driver.
- fix the Freescale QSPI driver.
-----BEGIN PGP SIGNATURE-----
iQI4BAABCAAiBQJYncJ7GxxjeXJpbGxlLnBpdGNoZW5Ad2VkZXY0dS5mcgAKCRDn
4OgLHRpJcswfD/0dvIvhI9R9ne/kHUsXbW2tIAIc2vrl/jiEA0O90rinRRjxLyIi
3EacSYpL8PXAh5diNannIw/DrjK0FiHB34jJ1NwMP7CQbYMbfb1SGwp5nmIP676W
4iEaSOJDQu76Vbe5L2O4xHUIJoO1l9cr/bZDPXRachBD8H48ZRZUTx0ujff4LbiG
lEwv1Bk35doTRHgmPErPIB/WOlYdvLaoiCUVe9ME0mEEzCmEjoZorTDwaSBpBAMB
4Z04Lz06iP1aPFUm2VYvK5xMvkFN4tS+6xzWpUOUYj8Tty1YptYI7mQINa69J2NA
O8A/elH39Yv1FYvWgrC2SIS/kbHTR/Bxz6napJ0hK3HasLFCwt7Eq2w/XBxr/Wn9
+02buij0PWKywJfuj7tOiAId5IJW0hhEit2BcBFihwsiDDxix679beQoCZ/WRuW/
kJmR+NLRNByVyKCOP239VobiYWjy8DhDTpH5XGwI7bPTiJuS6G6MCVH3f0tYnFTo
8J3gXp4SH2mw6YzWrL8YtKzFKcLEfXTOGc/GFGQX2URV5Es1/Lw4Nh5lrkbEbVoy
dc/S57Ftdde/56L4lDDbydn7pAU8FbuX2gSewvJRuFyhCBKSyw2JEoy27T7t50pd
hN1JvuNYGQ5HP0Vqa/oe1g1GHnBfxiIOm5THX+Iv+3Y0jM1iUDeVeO4DTQ==
=/fPM
-----END PGP SIGNATURE-----
Merge tag 'spi-nor/for-4.11-v2' of git://github.com/spi-nor/linux
From Cyrille:
"""
This pull request contains the following notable changes:
- add support to the 4-byte address instruction set.
- add support to new memory parts.
- add support to S3AN memories.
- add support to the Intel SPI controller.
- add support to the Aspeed AST2400 and AST2550 controllers.
- fix max SPI transfer and message sizes in m25p80_read().
- fix the Candence QSPI driver.
- fix the Freescale QSPI driver.
"""
The page calculation under spi_nor_s3an_addr_convert() was wrong. On
Default Address Mode we need to perform a divide by page_size.
Signed-off-by: Ricardo Ribalda Delgado <ricardo.ribalda@gmail.com>
Acked-by: Marek Vasut <marek.vasut@gmail.com>
Signed-off-by: Cyrille Pitchen <cyrille.pitchen@atmel.com>
This chip has write protection enabled on power-up,
so this flag is necessary to support write operations.
Signed-off-by: Victor Shyba <victor1984@riseup.net>
Acked-by: Marek Vasut <marek.vasut@gmail.com>
Signed-off-by: Cyrille Pitchen <cyrille.pitchen@atmel.com>
This patch provides an alternative mean to support memory above 16MiB
(128Mib) by replacing 3byte address op codes by their associated 4byte
address versions.
Using the dedicated 4byte address op codes doesn't change the internal
state of the SPI NOR memory as opposed to using other means such as
updating a Base Address Register (BAR) and sending command to enter/leave
the 4byte mode.
Hence when a CPU reset occurs, early bootloaders don't need to be aware
of BAR value or 4byte mode being enabled: they can still access the first
16MiB of the SPI NOR memory using the regular 3byte address op codes.
Signed-off-by: Cyrille Pitchen <cyrille.pitchen@atmel.com>
Tested-by: Vignesh R <vigneshr@ti.com>
Acked-by: Marek Vasut <marek.vasut@gmail.com>
This patch renames the SPINOR_OP_* macros of the 4-byte address
instruction set so the new names all share a common pattern: the 4-byte
address name is built from the 3-byte address name appending the "_4B"
suffix.
The patch also introduces new op codes to support other SPI protocols such
as SPI 1-4-4 and SPI 1-2-2.
This is a transitional patch and will help a later patch of spi-nor.c
to automate the translation from the 3-byte address op codes into their
4-byte address version.
Signed-off-by: Cyrille Pitchen <cyrille.pitchen@atmel.com>
Acked-by: Mark Brown <broonie@kernel.org>
Acked-by: Marek Vasut <marek.vasut@gmail.com>
This patch removes the WARN_ONCE() test in spi_nor_write().
This macro triggers the display of a warning message almost every time we
use a UBI file-system because a write operation is performed at offset 64,
which is in the middle of the SPI NOR memory page. This is a valid
operation for ubifs.
Hence this warning is pretty annoying and useless so we just remove it.
Signed-off-by: Cyrille Pitchen <cyrille.pitchen@atmel.com>
Suggested-by: Richard Weinberger <richard@nod.at>
Suggested-by: Andras Szemzo <szemzo.andras@gmail.com>
Acked-by: Boris Brezillon <boris.brezillon@free-electrons.com>
The patch checks whether the Quad Enable bit is already set in the Status
Register. If so, the function exits immediately with a successful return
code.
Signed-off-by: Cyrille Pitchen <cyrille.pitchen@atmel.com>
Reviewed-by: Jagan Teki <jagan@openedev.com>
Acked-by: Marek Vasut <marek.vasut@gmail.com>
Xilinx Spartan-3AN FPGAs contain an In-System Flash where they keep
their configuration data and (optionally) some user data.
The protocol of this flash follows most of the spi-nor standard. With
the following differences:
- Page size might not be a power of two.
- The address calculation (default addressing mode).
- The spi nor commands used.
Protocol is described on Xilinx User Guide UG333
Signed-off-by: Ricardo Ribalda Delgado <ricardo.ribalda@gmail.com>
Cc: Boris Brezillon <boris.brezillon@free-electrons.com>
Cc: Brian Norris <computersforpeace@gmail.com>
Cc: Marek Vasut <marek.vasut@gmail.com>
Reviewed-by: Marek Vasut <marek.vasut@gmail.com>
Signed-off-by: Cyrille Pitchen <cyrille.pitchen@atmel.com>
Add Everspin mr25h40 512KB MRAM to the list of supported chips.
Signed-off-by: Masahiko Iwamoto <iwamoto@allied-telesis.co.jp>
Reviewed-by: Jagan Teki <jagan@openedev.com>
Acked-by: Marek Vasut <marex@denx.de>
Signed-off-by: Cyrille Pitchen <cyrille.pitchen@atmel.com>
This commit adds support in the spi-nor driver for the
N25Q016A, a 16Mbit SPI NOR flash from Micron.
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Brian Norris <computersforpeace@gmail.com>
Cc: Jagan Teki <jteki@openedev.com>
Signed-off-by: Moritz Fischer <moritz.fischer@ettus.com>
Reviewed-by: Jagan Teki <jteki@openedev.com>
Signed-off-by: Cyrille Pitchen <cyrille.pitchen@atmel.com>
Add Atmel at25df321 spi-nor flash to the list of spi_nor_ids.
Cc: Brian Norris <computersforpeace@gmail.com>
Cc: Wenyou Yang <wenyou.yang@atmel.com>
Signed-off-by: Jagan Teki <jteki@openedev.com>
Acked-by: Wenyou Yang <wenyou.yang@atmel.com>
Signed-off-by: Cyrille Pitchen <cyrille.pitchen@atmel.com>
The Spansion S25FL128S also supports dual read mode.
In addition remove flag SECT_4K. 4K erases are supported,
but not uniformly.
Signed-off-by: Heiner Kallweit <hkallweit1@gmail.com>
Reviewed-by: Jagan Teki <jteki@openedev.com>
Acked-by: Marek Vasut <marek.vasut@gmail.com>
Signed-off-by: Cyrille Pitchen <cyrille.pitchen@atmel.com>
With the S25FL127S nor flash part, each writing to the configuration
register takes hundreds of ms. During that time, no more accesses to
the flash should be done (even reads).
This commit adds a wait loop after the register writing until the flash
finishes its work.
This issue could make rootfs mounting fail when the latter was done too
much closely to this quad enable bit setting step. And in this case, a
driver as UBIFS may try to recover the filesystem and may broke it
completely.
Signed-off-by: Joël Esponde <joel.esponde@honeywell.com>
Signed-off-by: Cyrille Pitchen <cyrille.pitchen@atmel.com>
Gigadevice flash support BP{0,1,2,3,4} bits, where BP3 means the same as
the existing supported TB (Top/Bottom), and BP4 means the same as the
not-yet-supported 4K bit used on other flash (e.g., Winbond). Let's
support lock/unlock with the same feature flags as w25q32dw/w25q64dw.
Tested on gd25lq64c, but I checked datasheets for the other 3, to make
sure.
While I was at it, I noticed that these all support dual and quad as
well. I noted them, but can't test them at the moment, since my test
system only supports standard 1x SPI.
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Add Micron (n25q00a) 1Gbit NOR Flash in the list of supported
devices.
This part is different from n25q00 in Memory Type.
Memory Type for n25q00 - BAh
Memory Type for n25q00a - BBh
Signed-off-by: P L Sai Krishna <lakshmis@xilinx.com>
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
In stm_unlock(), the test to determine whether we've fully unlocked the
flash checks for the lock length to be equal to the flash size. That is
a typo/think-o -- the condition actually means the flash is completely
*locked.* We should be using the inverse condition -- that the lock
length is 0 (i.e., no protection).
The result of this bug is that we never actually turn off the Status
Register Write Disable bit, even if the flash is completely unlocked.
Now we can.
Fixes: 47b8edbf0d ("mtd: spi-nor: disallow further writes to SR if WP# is low")
Reported-by: Giorgio <giorgio.nicole@arcor.de>
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Cc: Ezequiel Garcia <ezequiel@vanguardiasur.com.ar>
mtdblock and ubi do not handle the situation when read returns less data
than requested. Loop in spi-nor until buffer is filled or an error is
returned.
Signed-off-by: Michal Suchanek <hramrach@gmail.com>
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Tested-by Cyrille Pitchen <cyrille.pitchen@atmel.com>
Acked-by: Michal Suchanek <hramrach@gmail.com>
Tested-by: Michal Suchanek <hramrach@gmail.com>
The spi-nor write loop assumes that what is passed to the hardware
driver write() is what gets written.
When write() writes less than page size at once data is dropped on the
floor. Check the amount of data writen and exit if it does not match
requested amount.
Signed-off-by: Michal Suchanek <hramrach@gmail.com>
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Tested-by Cyrille Pitchen <cyrille.pitchen@atmel.com>
Acked-by: Michal Suchanek <hramrach@gmail.com>
Tested-by: Michal Suchanek <hramrach@gmail.com>
Do not pass retlen to hardware driver read/write functions. Update it in
spi-nor generic driver instead.
Signed-off-by: Michal Suchanek <hramrach@gmail.com>
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Tested-by Cyrille Pitchen <cyrille.pitchen@atmel.com>
Acked-by: Michal Suchanek <hramrach@gmail.com>
Tested-by: Michal Suchanek <hramrach@gmail.com>
SPI NOR hardware drivers now return useful value from their write
functions so check them.
Signed-off-by: Michal Suchanek <hramrach@gmail.com>
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Tested-by Cyrille Pitchen <cyrille.pitchen@atmel.com>
Acked-by: Michal Suchanek <hramrach@gmail.com>
Tested-by: Michal Suchanek <hramrach@gmail.com>
Change the return value of spi-nor device read and write methods to
allow returning amount of data transferred and errors as
read(2)/write(2) does.
Also, start handling positive returns in spi_nor_read(), since we want
to convert drivers to start returning the read-length both via *retlen
and the return code. (We don't need to do the same transition process
for spi_nor_write(), since ->write() didn't used to have a return code
at all.)
Signed-off-by: Michal Suchanek <hramrach@gmail.com>
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Tested-by Cyrille Pitchen <cyrille.pitchen@atmel.com>
Acked-by: Michal Suchanek <hramrach@gmail.com>
Tested-by: Michal Suchanek <hramrach@gmail.com>
Also note the GigaDevice JEDEC ID.
No write-protect support yet, since this flash uses a different status
register layout.
Cc: Ezequiel Garcia <ezequiel@vanguardiasur.com.ar>
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Acked-by: Marek Vasut <marex@denx.de>
These are recent Winbond models that are known to have lock/unlock
support via writing the Status Register, and that also support the TB
(Top/Bottom) protection bit.
Tested on w25q32dw.
[Note on style: these entries are getting pretty long lines, so I picked
a style that seems reasonable for splitting up the flags separate from
the other mostly-similar fields.]
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Reviewed-by: Ezequiel Garcia <ezequiel@vanguardiasur.com.ar>
Tested-by: Ezequiel Garcia <ezequiel@vanguardiasur.com.ar>
Some flash support a bit in the status register that inverts protection
so that it applies to the bottom of the flash, not the top. This yields
additions to the protection range table, as noted in the comments.
Because this feature is not universal to all flash that support
lock/unlock, control it via a new flag.
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Tested-by: Ezequiel Garcia <ezequiel@vanguardiasur.com.ar>
We can't determine this purely by manufacturer type (see commit
67b9bcd369 ("mtd: spi-nor: fix Spansion regressions (aliased with
Winbond)")), and it's not autodetectable by anything like SFDP. So make
a new flag for it.
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Reviewed-by: Ezequiel Garcia <ezequiel@vanguardiasur.com.ar>
Tested-by: Ezequiel Garcia <ezequiel@vanguardiasur.com.ar>
It's a little easier to read and make sure there are no collisions
(IMO).
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Reviewed-by: Ezequiel Garcia <ezequiel@vanguardiasur.com.ar>
Tested-by: Ezequiel Garcia <ezequiel@vanguardiasur.com.ar>
Locking the flash is most useful if it provides real hardware security.
Otherwise, it's little more than a software permission bit.
A reasonable use case that provides real HW security might be like
follows:
(1) hardware WP# is deasserted
(2) program flash
(3) flash range is protected via status register
(4) hardware WP# is asserted
(5) flash protection range can no longer be changed, until WP# is
deasserted
In this way, flash protection is co-owned by hardware and software.
Now, one would expect to be able to perform step (3) with
ioctl(MEMLOCK), except that the spi-nor driver does not set the Status
Register Protect bit (a.k.a. Status Register Write Disable (SRWD)), so
even though the range is now locked, it does not satisfy step (5) -- it
can still be changed by a call to ioctl(MEMUNLOCK).
So, let's enable status register protection after the first lock
command, and disable protection only when the flash is fully unlocked.
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Tested-by: Ezequiel Garcia <ezequiel@vanguardiasur.com.ar>
There are a few different corner cases to the current logic that seem
undesirable:
* mtd_lock() with offs==0 trips a bounds issue on
ofs - mtd->erasesize < 0
* mtd_unlock() on the middle of a flash that is already unlocked will
return -EINVAL
* probably other corner cases
So, let's stop doing "smart" checks like "check the block below us",
let's just do the following:
(a) pass only non-negative offsets/lengths to stm_is_locked_sr()
(b) add a similar stm_is_unlocked_sr() function, so we can check if the
*entire* range is unlocked (and not just whether some part of it is
unlocked)
Then armed with (b), we can make lock() and unlock() much more
symmetric:
(c) short-circuit the procedure if there is no work to be done, and
(d) check the entire range above/below
This also aligns well with the structure needed for proper TB
(Top/Bottom) support.
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Tested-by: Ezequiel Garcia <ezequiel@vanguardiasur.com.ar>
If, for instance, the entire flash is already unlocked and I try to
mtd_unlock() the entire device, I don't expect to see an EINVAL error.
It should just silently succeed. Ditto for mtd_lock().
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Reviewed-by: Ezequiel Garcia <ezequiel@vanguardiasur.com.ar>
Tested-by: Ezequiel Garcia <ezequiel@vanguardiasur.com.ar>
Fixup a piece leftover by commit 32321e950d ("mtd: spi-nor: wait until
lock/unlock operations are ready"). That commit made us wait for the WIP
bit to settle after lock/unlock operations, but it missed the open-coded
"unlock" that happens at probe() time.
We should probably have this code utilize the unlock() routines in the
future, to avoid duplication, but unfortunately, flash which need to be
unlocked don't all have a proper ->flash_unlock() callback.
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Cc: Stas Sergeev <stsp@users.sourceforge.net>
Reviewed-by: Ezequiel Garcia <ezequiel@vanguardiasur.com.ar>
Tested-by: Ezequiel Garcia <ezequiel@vanguardiasur.com.ar>
Micron n25q128axx support subsector (4K) erase so let's update the flags.
Tested on n25q128a13.
Signed-off-by: Ezequiel Garcia <ezequiel@vanguardiasur.com.ar>
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
This patch remove the micron_quad_enable() function which force the Quad
SPI mode. However, once this mode is enabled, the Micron memory expect ALL
commands to use the SPI 4-4-4 protocol. Hence a failure does occur when
calling spi_nor_wait_till_ready() right after the update of the Enhanced
Volatile Configuration Register (EVCR) in the micron_quad_enable() as
the SPI controller driver is not aware about the protocol change.
Since there is almost no performance increase using Fast Read 4-4-4
commands instead of Fast Read 1-1-4 commands, we rather keep on using the
Extended SPI mode than enabling the Quad SPI mode.
Let's take the example of the pretty standard use of 8 dummy cycles during
Fast Read operations on 64KB erase sectors:
Fast Read 1-1-4 requires 8 cycles for the command, then 24 cycles for the
3byte address followed by 8 dummy clock cycles and finally 65536*2 cycles
for the read data; so 131112 clock cycles.
On the other hand the Fast Read 4-4-4 would require 2 cycles for the
command, then 6 cycles for the 3byte address followed by 8 dummy clock
cycles and finally 65536*2 cycles for the read data. So 131088 clock
cycles. The theorical bandwidth increase is 0.0%.
Now using Fast Read operations on 512byte pages:
Fast Read 1-1-4 needs 8+24+8+(512*2) = 1064 clock cycles whereas Fast
Read 4-4-4 would requires 2+6+8+(512*2) = 1040 clock cycles. Hence the
theorical bandwidth increase is 2.3%.
Consecutive reads for non sequential pages is not a relevant use case so
The Quad SPI mode is not worth it.
mtd_speedtest seems to confirm these figures.
Signed-off-by: Cyrille Pitchen <cyrille.pitchen@atmel.com>
Fixes: 548cd3ab54 ("mtd: spi-nor: Add quad I/O support for Micron SPI NOR")
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
The Spansion s25fl116k is a 16MBit NOR Flash supporting dual and
quad read operations.
Signed-off-by: Sascha Hauer <s.hauer@pengutronix.de>
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
On Micron and Numonyx devices, the status register write command
(WRSR), raises a work-in-progress bit (WIP) on the status register.
The datasheets for these devices specify that while the status
register write is in progress, the status register WIP bit can still
be read to check the end of the operation.
This commit adds a wait_till_ready call on lock/unlock operations,
which is required for Micron and Numonyx but should be harmless for
others. This is needed to prevent applications from issuing erase or
program operations before the unlock operation is completed.
Reported-by: Stas Sergeev <stsp@list.ru>
Signed-off-by: Ezequiel Garcia <ezequiel@vanguardiasur.com.ar>
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
stm_is_locked_sr() takes the status register (SR) value as the last
parameter, not the second.
Reported-by: Bayi Cheng <bayi.cheng@mediatek.com>
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Cc: Bayi Cheng <bayi.cheng@mediatek.com>
Spansion and Winbond have occasionally used the same manufacturer ID,
and they don't support the same features. Particularly, writing SR=0
seems to break read access for Spansion's s25fl064k. Unfortunately, we
don't currently have a way to differentiate these Spansion and Winbond
parts, so rather than regressing support for these Spansion flash, let's
drop the new Winbond lock/unlock support for now. We can try to address
Winbond support during the next release cycle.
Original discussion:
http://patchwork.ozlabs.org/patch/549173/http://patchwork.ozlabs.org/patch/553683/
Fixes: 357ca38d47 ("mtd: spi-nor: support lock/unlock/is_locked for Winbond")
Fixes: c6fc2171b2 ("mtd: spi-nor: disable protection for Winbond flash at startup")
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Reported-by: Felix Fietkau <nbd@openwrt.org>
Cc: Felix Fietkau <nbd@openwrt.org>
We should better check the return value from read_sr() and
propagate it in the case of error.
Signed-off-by: Fabio Estevam <fabio.estevam@freescale.com>
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
The documenting comment of mtd_erase in mtdcore.c states:
Device drivers are supposed to call instr->callback() whenever
the operation completes, even if it completes with a failure.
Currently the callback isn't called in case of failure. Fix this.
Signed-off-by: Heiner Kallweit <hkallweit1@gmail.com>
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
according datasheet both chips can erase 4kByte sectors individually
Signed-off-by: Andreas Fenkart <andreas.fenkart@dev.digitalstrom.org>
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Some spi-nor drivers perform sector erase by duplicating their
write_reg() command. Let's not require that the driver fill this out,
and provide a default instead.
Tested on m25p80.c and Medatek's MT8173 SPI NOR flash driver.
Signed-off-by: Brian Norris <computersforpeace@gmail.com>