2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-22 20:23:57 +08:00
Commit Graph

12 Commits

Author SHA1 Message Date
Serge E. Hallyn
08ce5f16ee cgroups: implement device whitelist
Implement a cgroup to track and enforce open and mknod restrictions on device
files.  A device cgroup associates a device access whitelist with each cgroup.
 A whitelist entry has 4 fields.  'type' is a (all), c (char), or b (block).
'all' means it applies to all types and all major and minor numbers.  Major
and minor are either an integer or * for all.  Access is a composition of r
(read), w (write), and m (mknod).

The root device cgroup starts with rwm to 'all'.  A child devcg gets a copy of
the parent.  Admins can then remove devices from the whitelist or add new
entries.  A child cgroup can never receive a device access which is denied its
parent.  However when a device access is removed from a parent it will not
also be removed from the child(ren).

An entry is added using devices.allow, and removed using
devices.deny.  For instance

	echo 'c 1:3 mr' > /cgroups/1/devices.allow

allows cgroup 1 to read and mknod the device usually known as
/dev/null.  Doing

	echo a > /cgroups/1/devices.deny

will remove the default 'a *:* mrw' entry.

CAP_SYS_ADMIN is needed to change permissions or move another task to a new
cgroup.  A cgroup may not be granted more permissions than the cgroup's parent
has.  Any task can move itself between cgroups.  This won't be sufficient, but
we can decide the best way to adequately restrict movement later.

[akpm@linux-foundation.org: coding-style fixes]
[akpm@linux-foundation.org: fix may-be-used-uninitialized warning]
Signed-off-by: Serge E. Hallyn <serue@us.ibm.com>
Acked-by: James Morris <jmorris@namei.org>
Looks-good-to: Pavel Emelyanov <xemul@openvz.org>
Cc: Daniel Hokka Zakrisson <daniel@hozac.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Paul Menage <menage@google.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-29 08:06:09 -07:00
Balbir Singh
00f0b8259e Memory controller: rename to Memory Resource Controller
Rename Memory Controller to Memory Resource Controller.  Reflect the same
changes in the CONFIG definition for the Memory Resource Controller.  Group
together the config options for Resource Counters and Memory Resource
Controller.

Signed-off-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Paul Menage <menage@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-03-04 16:35:12 -08:00
Peter Zijlstra
052f1dc7eb sched: rt-group: make rt groups scheduling configurable
Make the rt group scheduler compile time configurable.
Keep it experimental for now.

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-02-13 15:45:40 +01:00
Balbir Singh
8cdea7c054 Memory controller: cgroups setup
Setup the memory cgroup and add basic hooks and controls to integrate
and work with the cgroup.

Signed-off-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Pavel Emelianov <xemul@openvz.org>
Cc: Paul Menage <menage@google.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Kirill Korotaev <dev@sw.ru>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: David Rientjes <rientjes@google.com>
Cc: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-07 08:42:18 -08:00
Srivatsa Vaddagiri
d842de871c sched: cpu accounting controller (V2)
Commit cfb5285660 removed a useful feature for
us, which provided a cpu accounting resource controller.  This feature would be
useful if someone wants to group tasks only for accounting purpose and doesnt
really want to exercise any control over their cpu consumption.

The patch below reintroduces the feature. It is based on Paul Menage's
original patch (Commit 62d0df6406), with
these differences:

        - Removed load average information. I felt it needs more thought (esp
	  to deal with SMP and virtualized platforms) and can be added for
	  2.6.25 after more discussions.
        - Convert group cpu usage to be nanosecond accurate (as rest of the cfs
	  stats are) and invoke cpuacct_charge() from the respective scheduler
	  classes
	- Make accounting scalable on SMP systems by splitting the usage
	  counter to be per-cpu
	- Move the code from kernel/cpu_acct.c to kernel/sched.c (since the
	  code is not big enough to warrant a new file and also this rightly
	  needs to live inside the scheduler. Also things like accessing
	  rq->lock while reading cpu usage becomes easier if the code lived in
	  kernel/sched.c)

The patch also modifies the cpu controller not to provide the same accounting
information.

Tested-by: Balbir Singh <balbir@linux.vnet.ibm.com>

 Tested the patches on top of 2.6.24-rc3. The patches work fine. Ran
 some simple tests like cpuspin (spin on the cpu), ran several tasks in
 the same group and timed them. Compared their time stamps with
 cpuacct.usage.

Signed-off-by: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Signed-off-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-12-02 20:04:49 +01:00
Andrew Morton
cfb5285660 revert "Task Control Groups: example CPU accounting subsystem"
Revert 62d0df6406.

This was originally intended as a simple initial example of how to create a
control groups subsystem; it wasn't intended for mainline, but I didn't make
this clear enough to Andrew.

The CFS cgroup subsystem now has better functionality for the per-cgroup usage
accounting (based directly on CFS stats) than the "usage" status file in this
patch, and the "load" status file is rather simplistic - although having a
per-cgroup load average report would be a useful feature, I don't believe this
patch actually provides it.  If it gets into the final 2.6.24 we'd probably
have to support this interface for ever.

Cc: Paul Menage <menage@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-11-14 18:45:40 -08:00
Srivatsa Vaddagiri
68318b8e0b Hook up group scheduler with control groups
Enable "cgroup" (formerly containers) based fair group scheduling.  This
will let administrator create arbitrary groups of tasks (using "cgroup"
pseudo filesystem) and control their cpu bandwidth usage.

[akpm@linux-foundation.org: fix cpp condition]
Signed-off-by: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Signed-off-by: Dhaval Giani <dhaval@linux.vnet.ibm.com>
Cc: Randy Dunlap <randy.dunlap@oracle.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Paul Menage <menage@google.com>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19 11:53:51 -07:00
Serge E. Hallyn
858d72ead4 cgroups: implement namespace tracking subsystem
When a task enters a new namespace via a clone() or unshare(), a new cgroup
is created and the task moves into it.

This version names cgroups which are automatically created using
cgroup_clone() as "node_<pid>" where pid is the pid of the unsharing or
cloned process.  (Thanks Pavel for the idea) This is safe because if the
process unshares again, it will create

	/cgroups/(...)/node_<pid>/node_<pid>

The only possibilities (AFAICT) for a -EEXIST on unshare are

	1. pid wraparound
	2. a process fails an unshare, then tries again.

Case 1 is unlikely enough that I ignore it (at least for now).  In case 2, the
node_<pid> will be empty and can be rmdir'ed to make the subsequent unshare()
succeed.

Changelog:
	Name cloned cgroups as "node_<pid>".

[clg@fr.ibm.com: fix order of cgroup subsystems in init/Kconfig]
Signed-off-by: Serge E. Hallyn <serue@us.ibm.com>
Cc: Paul Menage <menage@google.com>
Signed-off-by: Cedric Le Goater <clg@fr.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19 11:53:37 -07:00
Paul Menage
006cb99200 Task Control Groups: simple task cgroup debug info subsystem
This example subsystem exports debugging information as an aid to diagnosing
refcount leaks, etc, in the cgroup framework.

Signed-off-by: Paul Menage <menage@google.com>
Cc: Serge E. Hallyn <serue@us.ibm.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Paul Jackson <pj@sgi.com>
Cc: Kirill Korotaev <dev@openvz.org>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: Srivatsa Vaddagiri <vatsa@in.ibm.com>
Cc: Cedric Le Goater <clg@fr.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19 11:53:36 -07:00
Paul Menage
62d0df6406 Task Control Groups: example CPU accounting subsystem
This example demonstrates how to use the generic cgroup subsystem for a
simple resource tracker that counts, for the processes in a cgroup, the
total CPU time used and the %CPU used in the last complete 10 second interval.

Portions contributed by Balbir Singh <balbir@in.ibm.com>

Signed-off-by: Paul Menage <menage@google.com>
Cc: Serge E. Hallyn <serue@us.ibm.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Paul Jackson <pj@sgi.com>
Cc: Kirill Korotaev <dev@openvz.org>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: Srivatsa Vaddagiri <vatsa@in.ibm.com>
Cc: Cedric Le Goater <clg@fr.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19 11:53:36 -07:00
Paul Menage
8793d854ed Task Control Groups: make cpusets a client of cgroups
Remove the filesystem support logic from the cpusets system and makes cpusets
a cgroup subsystem

The "cpuset" filesystem becomes a dummy filesystem; attempts to mount it get
passed through to the cgroup filesystem with the appropriate options to
emulate the old cpuset filesystem behaviour.

Signed-off-by: Paul Menage <menage@google.com>
Cc: Serge E. Hallyn <serue@us.ibm.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Paul Jackson <pj@sgi.com>
Cc: Kirill Korotaev <dev@openvz.org>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: Srivatsa Vaddagiri <vatsa@in.ibm.com>
Cc: Cedric Le Goater <clg@fr.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19 11:53:36 -07:00
Paul Menage
ddbcc7e8e5 Task Control Groups: basic task cgroup framework
Generic Process Control Groups
--------------------------

There have recently been various proposals floating around for
resource management/accounting and other task grouping subsystems in
the kernel, including ResGroups, User BeanCounters, NSProxy
cgroups, and others.  These all need the basic abstraction of being
able to group together multiple processes in an aggregate, in order to
track/limit the resources permitted to those processes, or control
other behaviour of the processes, and all implement this grouping in
different ways.

This patchset provides a framework for tracking and grouping processes
into arbitrary "cgroups" and assigning arbitrary state to those
groupings, in order to control the behaviour of the cgroup as an
aggregate.

The intention is that the various resource management and
virtualization/cgroup efforts can also become task cgroup
clients, with the result that:

- the userspace APIs are (somewhat) normalised

- it's easier to test e.g. the ResGroups CPU controller in
 conjunction with the BeanCounters memory controller, or use either of
them as the resource-control portion of a virtual server system.

- the additional kernel footprint of any of the competing resource
 management systems is substantially reduced, since it doesn't need
 to provide process grouping/containment, hence improving their
 chances of getting into the kernel

This patch:

Add the main task cgroups framework - the cgroup filesystem, and the
basic structures for tracking membership and associating subsystem state
objects to tasks.

Signed-off-by: Paul Menage <menage@google.com>
Cc: Serge E. Hallyn <serue@us.ibm.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Paul Jackson <pj@sgi.com>
Cc: Kirill Korotaev <dev@openvz.org>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: Srivatsa Vaddagiri <vatsa@in.ibm.com>
Cc: Cedric Le Goater <clg@fr.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19 11:53:36 -07:00