2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-18 18:43:59 +08:00
Commit Graph

35 Commits

Author SHA1 Message Date
Paul E. McKenney
bb4e2c08bb rcu: Eliminate unused expedited_normal counter
Expedited grace periods no longer fall back to normal grace periods
in response to lock contention, given that expedited grace periods
now use the rcu_node tree so as to avoid contention.  This commit
therfore removes the expedited_normal counter.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2017-01-23 11:37:14 -08:00
Paul E. McKenney
e2fd9d3584 rcu: Remove expedited GP funnel-lock bypass
Commit #cdacbe1f91264 ("rcu: Add fastpath bypassing funnel locking")
turns out to be a pessimization at high load because it forces a tree
full of tasks to wait for an expedited grace period that they probably
do not need.  This commit therefore removes this optimization.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2016-03-31 13:34:07 -07:00
Paul E. McKenney
0d43eb34f9 rcu: Invert passed_quiesce and rename to cpu_no_qs
This commit inverts the sense of the rcu_data structure's ->passed_quiesce
field and renames it to ->cpu_no_qs.  This will allow a later commit to
use an "aggregate OR" operation to test expedited as well as normal grace
periods without added overhead.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2015-09-20 21:16:21 -07:00
Paul E. McKenney
cdacbe1f91 rcu: Add fastpath bypassing funnel locking
In the common case, there will be only one expedited grace period in
the system at a given time, in which case it is not helpful to use
funnel locking.  This commit therefore adds a fastpath that bypasses
funnel locking when the root ->exp_funnel_mutex is not held.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2015-07-17 14:59:06 -07:00
Paul E. McKenney
5cd37193ce rcu: Make cond_resched_rcu_qs() apply to normal RCU flavors
Although cond_resched_rcu_qs() only applies to TASKS_RCU, it is used
in places where it would be useful for it to apply to the normal RCU
flavors, rcu_preempt, rcu_sched, and rcu_bh.  This is especially the
case for workloads that aggressively overload the system, particularly
those that generate large numbers of RCU updates on systems running
NO_HZ_FULL CPUs.  This commit therefore communicates quiescent states
from cond_resched_rcu_qs() to the normal RCU flavors.

Note that it is unfortunately necessary to leave the old ->passed_quiesce
mechanism in place to allow quiescent states that apply to only one
flavor to be recorded.  (Yes, we could decrement ->rcu_qs_ctr_snap in
that case, but that is not so good for debugging of RCU internals.)
In addition, if one of the RCU flavor's grace period has stalled, this
will invoke rcu_momentary_dyntick_idle(), resulting in a heavy-weight
quiescent state visible from other CPUs.

Reported-by: Sasha Levin <sasha.levin@oracle.com>
Reported-by: Dave Jones <davej@redhat.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
[ paulmck: Merge commit from Sasha Levin fixing a bug where __this_cpu()
  was used in preemptible code. ]
2015-01-15 23:33:14 -08:00
Pranith Kumar
28f6569ab7 rcu: Remove redundant TREE_PREEMPT_RCU config option
PREEMPT_RCU and TREE_PREEMPT_RCU serve the same function after
TINY_PREEMPT_RCU has been removed. This patch removes TREE_PREEMPT_RCU
and uses PREEMPT_RCU config option in its place.

Signed-off-by: Pranith Kumar <bobby.prani@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2014-10-29 10:20:05 -07:00
Paul E. McKenney
0d3c55bc9f Merge branches 'doc.2013.12.03a', 'fixes.2013.12.12a', 'rcutorture.2013.12.03a' and 'sparse.2013.12.12a' into HEAD
doc.2013.12.03a: Topic branch for documentation changes.
fixes.2013.12.12a: Topic branch for miscellaneous fixes.
rcutorture.2013.12.03a: Topic branch for new rcutorture/KVM scripting.
sparse.2013.12.12a: Topic branch for sparse-RCU changes.
2013-12-12 12:35:38 -08:00
Paul E. McKenney
96d3fd0d31 rcu: Break call_rcu() deadlock involving scheduler and perf
Dave Jones got the following lockdep splat:

>  ======================================================
>  [ INFO: possible circular locking dependency detected ]
>  3.12.0-rc3+ #92 Not tainted
>  -------------------------------------------------------
>  trinity-child2/15191 is trying to acquire lock:
>   (&rdp->nocb_wq){......}, at: [<ffffffff8108ff43>] __wake_up+0x23/0x50
>
> but task is already holding lock:
>   (&ctx->lock){-.-...}, at: [<ffffffff81154c19>] perf_event_exit_task+0x109/0x230
>
> which lock already depends on the new lock.
>
>
> the existing dependency chain (in reverse order) is:
>
> -> #3 (&ctx->lock){-.-...}:
>         [<ffffffff810cc243>] lock_acquire+0x93/0x200
>         [<ffffffff81733f90>] _raw_spin_lock+0x40/0x80
>         [<ffffffff811500ff>] __perf_event_task_sched_out+0x2df/0x5e0
>         [<ffffffff81091b83>] perf_event_task_sched_out+0x93/0xa0
>         [<ffffffff81732052>] __schedule+0x1d2/0xa20
>         [<ffffffff81732f30>] preempt_schedule_irq+0x50/0xb0
>         [<ffffffff817352b6>] retint_kernel+0x26/0x30
>         [<ffffffff813eed04>] tty_flip_buffer_push+0x34/0x50
>         [<ffffffff813f0504>] pty_write+0x54/0x60
>         [<ffffffff813e900d>] n_tty_write+0x32d/0x4e0
>         [<ffffffff813e5838>] tty_write+0x158/0x2d0
>         [<ffffffff811c4850>] vfs_write+0xc0/0x1f0
>         [<ffffffff811c52cc>] SyS_write+0x4c/0xa0
>         [<ffffffff8173d4e4>] tracesys+0xdd/0xe2
>
> -> #2 (&rq->lock){-.-.-.}:
>         [<ffffffff810cc243>] lock_acquire+0x93/0x200
>         [<ffffffff81733f90>] _raw_spin_lock+0x40/0x80
>         [<ffffffff810980b2>] wake_up_new_task+0xc2/0x2e0
>         [<ffffffff81054336>] do_fork+0x126/0x460
>         [<ffffffff81054696>] kernel_thread+0x26/0x30
>         [<ffffffff8171ff93>] rest_init+0x23/0x140
>         [<ffffffff81ee1e4b>] start_kernel+0x3f6/0x403
>         [<ffffffff81ee1571>] x86_64_start_reservations+0x2a/0x2c
>         [<ffffffff81ee1664>] x86_64_start_kernel+0xf1/0xf4
>
> -> #1 (&p->pi_lock){-.-.-.}:
>         [<ffffffff810cc243>] lock_acquire+0x93/0x200
>         [<ffffffff8173419b>] _raw_spin_lock_irqsave+0x4b/0x90
>         [<ffffffff810979d1>] try_to_wake_up+0x31/0x350
>         [<ffffffff81097d62>] default_wake_function+0x12/0x20
>         [<ffffffff81084af8>] autoremove_wake_function+0x18/0x40
>         [<ffffffff8108ea38>] __wake_up_common+0x58/0x90
>         [<ffffffff8108ff59>] __wake_up+0x39/0x50
>         [<ffffffff8110d4f8>] __call_rcu_nocb_enqueue+0xa8/0xc0
>         [<ffffffff81111450>] __call_rcu+0x140/0x820
>         [<ffffffff81111b8d>] call_rcu+0x1d/0x20
>         [<ffffffff81093697>] cpu_attach_domain+0x287/0x360
>         [<ffffffff81099d7e>] build_sched_domains+0xe5e/0x10a0
>         [<ffffffff81efa7fc>] sched_init_smp+0x3b7/0x47a
>         [<ffffffff81ee1f4e>] kernel_init_freeable+0xf6/0x202
>         [<ffffffff817200be>] kernel_init+0xe/0x190
>         [<ffffffff8173d22c>] ret_from_fork+0x7c/0xb0
>
> -> #0 (&rdp->nocb_wq){......}:
>         [<ffffffff810cb7ca>] __lock_acquire+0x191a/0x1be0
>         [<ffffffff810cc243>] lock_acquire+0x93/0x200
>         [<ffffffff8173419b>] _raw_spin_lock_irqsave+0x4b/0x90
>         [<ffffffff8108ff43>] __wake_up+0x23/0x50
>         [<ffffffff8110d4f8>] __call_rcu_nocb_enqueue+0xa8/0xc0
>         [<ffffffff81111450>] __call_rcu+0x140/0x820
>         [<ffffffff81111bb0>] kfree_call_rcu+0x20/0x30
>         [<ffffffff81149abf>] put_ctx+0x4f/0x70
>         [<ffffffff81154c3e>] perf_event_exit_task+0x12e/0x230
>         [<ffffffff81056b8d>] do_exit+0x30d/0xcc0
>         [<ffffffff8105893c>] do_group_exit+0x4c/0xc0
>         [<ffffffff810589c4>] SyS_exit_group+0x14/0x20
>         [<ffffffff8173d4e4>] tracesys+0xdd/0xe2
>
> other info that might help us debug this:
>
> Chain exists of:
>   &rdp->nocb_wq --> &rq->lock --> &ctx->lock
>
>   Possible unsafe locking scenario:
>
>         CPU0                    CPU1
>         ----                    ----
>    lock(&ctx->lock);
>                                 lock(&rq->lock);
>                                 lock(&ctx->lock);
>    lock(&rdp->nocb_wq);
>
>  *** DEADLOCK ***
>
> 1 lock held by trinity-child2/15191:
>  #0:  (&ctx->lock){-.-...}, at: [<ffffffff81154c19>] perf_event_exit_task+0x109/0x230
>
> stack backtrace:
> CPU: 2 PID: 15191 Comm: trinity-child2 Not tainted 3.12.0-rc3+ #92
>  ffffffff82565b70 ffff880070c2dbf8 ffffffff8172a363 ffffffff824edf40
>  ffff880070c2dc38 ffffffff81726741 ffff880070c2dc90 ffff88022383b1c0
>  ffff88022383aac0 0000000000000000 ffff88022383b188 ffff88022383b1c0
> Call Trace:
>  [<ffffffff8172a363>] dump_stack+0x4e/0x82
>  [<ffffffff81726741>] print_circular_bug+0x200/0x20f
>  [<ffffffff810cb7ca>] __lock_acquire+0x191a/0x1be0
>  [<ffffffff810c6439>] ? get_lock_stats+0x19/0x60
>  [<ffffffff8100b2f4>] ? native_sched_clock+0x24/0x80
>  [<ffffffff810cc243>] lock_acquire+0x93/0x200
>  [<ffffffff8108ff43>] ? __wake_up+0x23/0x50
>  [<ffffffff8173419b>] _raw_spin_lock_irqsave+0x4b/0x90
>  [<ffffffff8108ff43>] ? __wake_up+0x23/0x50
>  [<ffffffff8108ff43>] __wake_up+0x23/0x50
>  [<ffffffff8110d4f8>] __call_rcu_nocb_enqueue+0xa8/0xc0
>  [<ffffffff81111450>] __call_rcu+0x140/0x820
>  [<ffffffff8109bc8f>] ? local_clock+0x3f/0x50
>  [<ffffffff81111bb0>] kfree_call_rcu+0x20/0x30
>  [<ffffffff81149abf>] put_ctx+0x4f/0x70
>  [<ffffffff81154c3e>] perf_event_exit_task+0x12e/0x230
>  [<ffffffff81056b8d>] do_exit+0x30d/0xcc0
>  [<ffffffff810c9af5>] ? trace_hardirqs_on_caller+0x115/0x1e0
>  [<ffffffff810c9bcd>] ? trace_hardirqs_on+0xd/0x10
>  [<ffffffff8105893c>] do_group_exit+0x4c/0xc0
>  [<ffffffff810589c4>] SyS_exit_group+0x14/0x20
>  [<ffffffff8173d4e4>] tracesys+0xdd/0xe2

The underlying problem is that perf is invoking call_rcu() with the
scheduler locks held, but in NOCB mode, call_rcu() will with high
probability invoke the scheduler -- which just might want to use its
locks.  The reason that call_rcu() needs to invoke the scheduler is
to wake up the corresponding rcuo callback-offload kthread, which
does the job of starting up a grace period and invoking the callbacks
afterwards.

One solution (championed on a related problem by Lai Jiangshan) is to
simply defer the wakeup to some point where scheduler locks are no longer
held.  Since we don't want to unnecessarily incur the cost of such
deferral, the task before us is threefold:

1.	Determine when it is likely that a relevant scheduler lock is held.

2.	Defer the wakeup in such cases.

3.	Ensure that all deferred wakeups eventually happen, preferably
	sooner rather than later.

We use irqs_disabled_flags() as a proxy for relevant scheduler locks
being held.  This works because the relevant locks are always acquired
with interrupts disabled.  We may defer more often than needed, but that
is at least safe.

The wakeup deferral is tracked via a new field in the per-CPU and
per-RCU-flavor rcu_data structure, namely ->nocb_defer_wakeup.

This flag is checked by the RCU core processing.  The __rcu_pending()
function now checks this flag, which causes rcu_check_callbacks()
to initiate RCU core processing at each scheduling-clock interrupt
where this flag is set.  Of course this is not sufficient because
scheduling-clock interrupts are often turned off (the things we used to
be able to count on!).  So the flags are also checked on entry to any
state that RCU considers to be idle, which includes both NO_HZ_IDLE idle
state and NO_HZ_FULL user-mode-execution state.

This approach should allow call_rcu() to be invoked regardless of what
locks you might be holding, the key word being "should".

Reported-by: Dave Jones <davej@redhat.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
2013-12-03 10:10:18 -08:00
Paul E. McKenney
c9592ecb98 rcu: Fix typo in Documentation/RCU/trace.txt
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2013-12-03 10:08:56 -08:00
Paul E. McKenney
7807acdb6b rcu: Remove TINY_PREEMPT_RCU tracing documentation
Because TINY_PREEMPT_RCU is no more, this commit removes its tracing
formats from the documentation.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2013-06-10 13:45:52 -07:00
Paul E. McKenney
d484a21513 rcu: Add documentation for the new rcuexp debugfs trace file
This commit adds the documentation of the rcuexp debugfs trace file
that records statistics for expedited grace periods.

Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2012-11-16 09:55:31 -08:00
Paul E. McKenney
40e80c469f rcu: Update documentation for TREE_RCU debugfs tracing
This commit updates the tracing documentation to reflect the new
format that has per-RCU-flavor directories.

Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2012-11-16 09:54:02 -08:00
Paul E. McKenney
4605c0143c rcu: Adjust debugfs tracing for kthread-based quiescent-state forcing
Moving quiescent-state forcing into a kthread dispenses with the need
for the ->n_rp_need_fqs field, so this commit removes it.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2012-09-23 07:41:54 -07:00
Paul E. McKenney
2036d94a7b rcu: Rework detection of use of RCU by offline CPUs
Because newly offlined CPUs continue executing after completing the
CPU_DYING notifiers, they legitimately enter the scheduler and use
RCU while appearing to be offline.  This calls for a more sophisticated
approach as follows:

1.	RCU marks the CPU online during the CPU_UP_PREPARE phase.

2.	RCU marks the CPU offline during the CPU_DEAD phase.

3.	Diagnostics regarding use of read-side RCU by offline CPUs use
	RCU's accounting rather than the cpu_online_map.  (Note that
	__call_rcu() still uses cpu_online_map to detect illegal
	invocations within CPU_DYING notifiers.)

4.	Offline CPUs are prevented from hanging the system by
	force_quiescent_state(), which pays attention to cpu_online_map.
	Some additional work (in a later commit) will be needed to
	guarantee that force_quiescent_state() waits a full jiffy before
	assuming that a CPU is offline, for example, when called from
	idle entry.  (This commit also makes the one-jiffy wait
	explicit, since the old-style implicit wait can now be defeated
	by RCU_FAST_NO_HZ and by rcutorture.)

This approach avoids the false positives encountered when attempting to
use more exact classification of CPU online/offline state.

Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2012-02-21 09:06:07 -08:00
Paul E. McKenney
9b2e4f1880 rcu: Track idleness independent of idle tasks
Earlier versions of RCU used the scheduling-clock tick to detect idleness
by checking for the idle task, but handled idleness differently for
CONFIG_NO_HZ=y.  But there are now a number of uses of RCU read-side
critical sections in the idle task, for example, for tracing.  A more
fine-grained detection of idleness is therefore required.

This commit presses the old dyntick-idle code into full-time service,
so that rcu_idle_enter(), previously known as rcu_enter_nohz(), is
always invoked at the beginning of an idle loop iteration.  Similarly,
rcu_idle_exit(), previously known as rcu_exit_nohz(), is always invoked
at the end of an idle-loop iteration.  This allows the idle task to
use RCU everywhere except between consecutive rcu_idle_enter() and
rcu_idle_exit() calls, in turn allowing architecture maintainers to
specify exactly where in the idle loop that RCU may be used.

Because some of the userspace upcall uses can result in what looks
to RCU like half of an interrupt, it is not possible to expect that
the irq_enter() and irq_exit() hooks will give exact counts.  This
patch therefore expands the ->dynticks_nesting counter to 64 bits
and uses two separate bitfields to count process/idle transitions
and interrupt entry/exit transitions.  It is presumed that userspace
upcalls do not happen in the idle loop or from usermode execution
(though usermode might do a system call that results in an upcall).
The counter is hard-reset on each process/idle transition, which
avoids the interrupt entry/exit error from accumulating.  Overflow
is avoided by the 64-bitness of the ->dyntick_nesting counter.

This commit also adds warnings if a non-idle task asks RCU to enter
idle state (and these checks will need some adjustment before applying
Frederic's OS-jitter patches (http://lkml.org/lkml/2011/10/7/246).
In addition, validation of ->dynticks and ->dynticks_nesting is added.

Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2011-12-11 10:31:24 -08:00
Paul E. McKenney
e4cc1f22b2 rcu: Simplify quiescent-state accounting
There is often a delay between the time that a CPU passes through a
quiescent state and the time that this quiescent state is reported to the
RCU core.  It is quite possible that the grace period ended before the
quiescent state could be reported, for example, some other CPU might have
deduced that this CPU passed through dyntick-idle mode.  It is critically
important that quiescent state be counted only against the grace period
that was in effect at the time that the quiescent state was detected.

Previously, this was handled by recording the number of the last grace
period to complete when passing through a quiescent state.  The RCU
core then checks this number against the current value, and rejects
the quiescent state if there is a mismatch.  However, one additional
possibility must be accounted for, namely that the quiescent state was
recorded after the prior grace period completed but before the current
grace period started.  In this case, the RCU core must reject the
quiescent state, but the recorded number will match.  This is handled
when the CPU becomes aware of a new grace period -- at that point,
it invalidates any prior quiescent state.

This works, but is a bit indirect.  The new approach records the current
grace period, and the RCU core checks to see (1) that this is still the
current grace period and (2) that this grace period has not yet ended.
This approach simplifies reasoning about correctness, and this commit
changes over to this new approach.

Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2011-09-28 21:38:22 -07:00
Paul E. McKenney
d5988af531 rcu: Update documentation to flag RCU_BOOST trace information
Call out the RCU_TRACE information that is provided only in kernels
built with RCU_BOOST.

Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2011-09-28 21:36:35 -07:00
Paul E. McKenney
23b5c8fa01 rcu: Decrease memory-barrier usage based on semi-formal proof
(Note: this was reverted, and is now being re-applied in pieces, with
this being the fifth and final piece.  See below for the reason that
it is now felt to be safe to re-apply this.)

Commit d09b62d fixed grace-period synchronization, but left some smp_mb()
invocations in rcu_process_callbacks() that are no longer needed, but
sheer paranoia prevented them from being removed.  This commit removes
them and provides a proof of correctness in their absence.  It also adds
a memory barrier to rcu_report_qs_rsp() immediately before the update to
rsp->completed in order to handle the theoretical possibility that the
compiler or CPU might move massive quantities of code into a lock-based
critical section.  This also proves that the sheer paranoia was not
entirely unjustified, at least from a theoretical point of view.

In addition, the old dyntick-idle synchronization depended on the fact
that grace periods were many milliseconds in duration, so that it could
be assumed that no dyntick-idle CPU could reorder a memory reference
across an entire grace period.  Unfortunately for this design, the
addition of expedited grace periods breaks this assumption, which has
the unfortunate side-effect of requiring atomic operations in the
functions that track dyntick-idle state for RCU.  (There is some hope
that the algorithms used in user-level RCU might be applied here, but
some work is required to handle the NMIs that user-space applications
can happily ignore.  For the short term, better safe than sorry.)

This proof assumes that neither compiler nor CPU will allow a lock
acquisition and release to be reordered, as doing so can result in
deadlock.  The proof is as follows:

1.	A given CPU declares a quiescent state under the protection of
	its leaf rcu_node's lock.

2.	If there is more than one level of rcu_node hierarchy, the
	last CPU to declare a quiescent state will also acquire the
	->lock of the next rcu_node up in the hierarchy,  but only
	after releasing the lower level's lock.  The acquisition of this
	lock clearly cannot occur prior to the acquisition of the leaf
	node's lock.

3.	Step 2 repeats until we reach the root rcu_node structure.
	Please note again that only one lock is held at a time through
	this process.  The acquisition of the root rcu_node's ->lock
	must occur after the release of that of the leaf rcu_node.

4.	At this point, we set the ->completed field in the rcu_state
	structure in rcu_report_qs_rsp().  However, if the rcu_node
	hierarchy contains only one rcu_node, then in theory the code
	preceding the quiescent state could leak into the critical
	section.  We therefore precede the update of ->completed with a
	memory barrier.  All CPUs will therefore agree that any updates
	preceding any report of a quiescent state will have happened
	before the update of ->completed.

5.	Regardless of whether a new grace period is needed, rcu_start_gp()
	will propagate the new value of ->completed to all of the leaf
	rcu_node structures, under the protection of each rcu_node's ->lock.
	If a new grace period is needed immediately, this propagation
	will occur in the same critical section that ->completed was
	set in, but courtesy of the memory barrier in #4 above, is still
	seen to follow any pre-quiescent-state activity.

6.	When a given CPU invokes __rcu_process_gp_end(), it becomes
	aware of the end of the old grace period and therefore makes
	any RCU callbacks that were waiting on that grace period eligible
	for invocation.

	If this CPU is the same one that detected the end of the grace
	period, and if there is but a single rcu_node in the hierarchy,
	we will still be in the single critical section.  In this case,
	the memory barrier in step #4 guarantees that all callbacks will
	be seen to execute after each CPU's quiescent state.

	On the other hand, if this is a different CPU, it will acquire
	the leaf rcu_node's ->lock, and will again be serialized after
	each CPU's quiescent state for the old grace period.

On the strength of this proof, this commit therefore removes the memory
barriers from rcu_process_callbacks() and adds one to rcu_report_qs_rsp().
The effect is to reduce the number of memory barriers by one and to
reduce the frequency of execution from about once per scheduling tick
per CPU to once per grace period.

This was reverted do to hangs found during testing by Yinghai Lu and
Ingo Molnar.  Frederic Weisbecker supplied Yinghai with tracing that
located the underlying problem, and Frederic also provided the fix.

The underlying problem was that the HARDIRQ_ENTER() macro from
lib/locking-selftest.c invoked irq_enter(), which in turn invokes
rcu_irq_enter(), but HARDIRQ_EXIT() invoked __irq_exit(), which
does not invoke rcu_irq_exit().  This situation resulted in calls
to rcu_irq_enter() that were not balanced by the required calls to
rcu_irq_exit().  Therefore, after these locking selftests completed,
RCU's dyntick-idle nesting count was a large number (for example,
72), which caused RCU to to conclude that the affected CPU was not in
dyntick-idle mode when in fact it was.

RCU would therefore incorrectly wait for this dyntick-idle CPU, resulting
in hangs.

In contrast, with Frederic's patch, which replaces the irq_enter()
in HARDIRQ_ENTER() with an __irq_enter(), these tests don't ever call
either rcu_irq_enter() or rcu_irq_exit(), which works because the CPU
running the test is already marked as not being in dyntick-idle mode.
This means that the rcu_irq_enter() and rcu_irq_exit() calls and RCU
then has no problem working out which CPUs are in dyntick-idle mode and
which are not.

The reason that the imbalance was not noticed before the barrier patch
was applied is that the old implementation of rcu_enter_nohz() ignored
the nesting depth.  This could still result in delays, but much shorter
ones.  Whenever there was a delay, RCU would IPI the CPU with the
unbalanced nesting level, which would eventually result in rcu_enter_nohz()
being called, which in turn would force RCU to see that the CPU was in
dyntick-idle mode.

The reason that very few people noticed the problem is that the mismatched
irq_enter() vs. __irq_exit() occured only when the kernel was built with
CONFIG_DEBUG_LOCKING_API_SELFTESTS.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2011-05-26 09:42:23 -07:00
Paul E. McKenney
80d02085d9 Revert "rcu: Decrease memory-barrier usage based on semi-formal proof"
This reverts commit e59fb3120b.

This reversion was due to (extreme) boot-time slowdowns on SPARC seen by
Yinghai Lu and on x86 by Ingo
.
This is a non-trivial reversion due to intervening commits.

Conflicts:

	Documentation/RCU/trace.txt
	kernel/rcutree.c

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-05-19 23:25:29 +02:00
Paul E. McKenney
5ece5bab3e rcu: Add forward-progress diagnostic for per-CPU kthreads
Increment a per-CPU counter on each pass through rcu_cpu_kthread()'s
service loop, and add it to the rcudata trace output.

Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2011-05-05 23:16:57 -07:00
Paul E. McKenney
15ba0ba860 rcu: add grace-period age and more kthread state to tracing
This commit adds the age in jiffies of the current grace period along
with the duration in jiffies of the longest grace period since boot
to the rcu/rcugp debugfs file.  It also adds an additional "O" state
to kthread tracing to differentiate between the kthread waiting due to
having nothing to do on the one hand and waiting due to being on the
wrong CPU on the other hand.

Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2011-05-05 23:16:56 -07:00
Paul E. McKenney
90e6ac3657 rcu: update tracing documentation for new rcutorture and rcuboost
This commit documents the new debugfs rcu/rcutorture and rcu/rcuboost
trace files.  The description has been updated as suggested by Josh
Triplett.

Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2011-05-05 23:16:56 -07:00
Paul E. McKenney
0ac3d136b2 rcu: add callback-queue information to rcudata output
This commit adds an indication of the state of the callback queue using
a string of four characters following the "ql=" integer queue length.
The first character is "N" if there are callbacks that have been
queued that are not yet ready to be handled by the next grace period, or
"." otherwise.  The second character is "R" if there are callbacks queued
that are ready to be handled by the next grace period, or "." otherwise.
The third character is "W" if there are callbacks waiting for the current
grace period, or "." otherwise.  Finally, the fourth character is "D"
if there are callbacks that have been handled by a prior grace period
and are waiting to be invoked, or ".".

Note that callbacks that are in the process of being invoked are
not shown.  These callbacks would have been removed from the rcu_data
structure's list by rcu_do_batch() prior to being executed.  (These
callbacks are also not reflected in the "ql=" total, FWIW.)

Also, document the new callback-queue trace information.

Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2011-05-05 23:16:56 -07:00
Paul E. McKenney
2fa218d8bb rcu: Update RCU's trace.txt documentation for new format
The trace.txt file had obsolete output for the debugfs rcu/rcudata
file, so update it.

Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2011-05-05 23:16:56 -07:00
Paul E. McKenney
12f5f524ca rcu: merge TREE_PREEPT_RCU blocked_tasks[] lists
Combine the current TREE_PREEMPT_RCU ->blocked_tasks[] lists in the
rcu_node structure into a single ->blkd_tasks list with ->gp_tasks
and ->exp_tasks tail pointers.  This is in preparation for RCU priority
boosting, which will add a third dimension to the combinatorial explosion
in the ->blocked_tasks[] case, but simply a third pointer in the new
->blkd_tasks case.

Also update documentation to reflect blocked_tasks[] merge

Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2011-05-05 23:16:54 -07:00
Paul E. McKenney
e59fb3120b rcu: Decrease memory-barrier usage based on semi-formal proof
Commit d09b62d fixed grace-period synchronization, but left some smp_mb()
invocations in rcu_process_callbacks() that are no longer needed, but
sheer paranoia prevented them from being removed.  This commit removes
them and provides a proof of correctness in their absence.  It also adds
a memory barrier to rcu_report_qs_rsp() immediately before the update to
rsp->completed in order to handle the theoretical possibility that the
compiler or CPU might move massive quantities of code into a lock-based
critical section.  This also proves that the sheer paranoia was not
entirely unjustified, at least from a theoretical point of view.

In addition, the old dyntick-idle synchronization depended on the fact
that grace periods were many milliseconds in duration, so that it could
be assumed that no dyntick-idle CPU could reorder a memory reference
across an entire grace period.  Unfortunately for this design, the
addition of expedited grace periods breaks this assumption, which has
the unfortunate side-effect of requiring atomic operations in the
functions that track dyntick-idle state for RCU.  (There is some hope
that the algorithms used in user-level RCU might be applied here, but
some work is required to handle the NMIs that user-space applications
can happily ignore.  For the short term, better safe than sorry.)

This proof assumes that neither compiler nor CPU will allow a lock
acquisition and release to be reordered, as doing so can result in
deadlock.  The proof is as follows:

1.	A given CPU declares a quiescent state under the protection of
	its leaf rcu_node's lock.

2.	If there is more than one level of rcu_node hierarchy, the
	last CPU to declare a quiescent state will also acquire the
	->lock of the next rcu_node up in the hierarchy,  but only
	after releasing the lower level's lock.  The acquisition of this
	lock clearly cannot occur prior to the acquisition of the leaf
	node's lock.

3.	Step 2 repeats until we reach the root rcu_node structure.
	Please note again that only one lock is held at a time through
	this process.  The acquisition of the root rcu_node's ->lock
	must occur after the release of that of the leaf rcu_node.

4.	At this point, we set the ->completed field in the rcu_state
	structure in rcu_report_qs_rsp().  However, if the rcu_node
	hierarchy contains only one rcu_node, then in theory the code
	preceding the quiescent state could leak into the critical
	section.  We therefore precede the update of ->completed with a
	memory barrier.  All CPUs will therefore agree that any updates
	preceding any report of a quiescent state will have happened
	before the update of ->completed.

5.	Regardless of whether a new grace period is needed, rcu_start_gp()
	will propagate the new value of ->completed to all of the leaf
	rcu_node structures, under the protection of each rcu_node's ->lock.
	If a new grace period is needed immediately, this propagation
	will occur in the same critical section that ->completed was
	set in, but courtesy of the memory barrier in #4 above, is still
	seen to follow any pre-quiescent-state activity.

6.	When a given CPU invokes __rcu_process_gp_end(), it becomes
	aware of the end of the old grace period and therefore makes
	any RCU callbacks that were waiting on that grace period eligible
	for invocation.

	If this CPU is the same one that detected the end of the grace
	period, and if there is but a single rcu_node in the hierarchy,
	we will still be in the single critical section.  In this case,
	the memory barrier in step #4 guarantees that all callbacks will
	be seen to execute after each CPU's quiescent state.

	On the other hand, if this is a different CPU, it will acquire
	the leaf rcu_node's ->lock, and will again be serialized after
	each CPU's quiescent state for the old grace period.

On the strength of this proof, this commit therefore removes the memory
barriers from rcu_process_callbacks() and adds one to rcu_report_qs_rsp().
The effect is to reduce the number of memory barriers by one and to
reduce the frequency of execution from about once per scheduling tick
per CPU to once per grace period.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2011-05-05 23:16:54 -07:00
Paul E. McKenney
2d999e03b7 rcu: update documentation/comments for Lai's adoption patch
Lai's RCU-callback immediate-adoption patch changes the RCU tracing
output, so update tracing.txt.  Also update a few comments to clarify
the synchronization design.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2010-11-29 22:01:59 -08:00
Paul E. McKenney
8e79e1f961 rcu: document TINY_RCU and TINY_PREEMPT_RCU tracing.
Add the required verbiage to Documentation/RCU/trace.txt.

Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2010-11-29 22:01:56 -08:00
Paul E. McKenney
269dcc1c2e rcu: Add tracing data to support queueing models
The current tracing data is not sufficient to deduce the average time
that a callback spends waiting for a grace period to end.  Add three
per-CPU counters recording the number of callbacks invoked (ci), the
number of callbacks orphaned (co), and the number of callbacks adopted
(ca).  Given the existing callback queue length (ql), the average wait
time in absence of CPU hotplug operations is ql/ci.  The units of wait
time will be in terms of the duration over which ci was measured.

In the presence of CPU hotplug operations, there is room for argument,
but ql/(ci-co+ca) won't steer you too far wrong.

Also fixes a typo called out by Lucas De Marchi <lucas.de.marchi@gmail.com>.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2010-09-23 09:16:53 -07:00
Paul E. McKenney
d21670acab rcu: reduce the number of spurious RCU_SOFTIRQ invocations
Lai Jiangshan noted that up to 10% of the RCU_SOFTIRQ are spurious, and
traced this down to the fact that the current grace-period machinery
will uselessly raise RCU_SOFTIRQ when a given CPU needs to go through
a quiescent state, but has not yet done so.  In this situation, there
might well be nothing that RCU_SOFTIRQ can do, and the overhead can be
worth worrying about in the ksoftirqd case.  This patch therefore avoids
raising RCU_SOFTIRQ in this situation.

Changes since v1 (http://lkml.org/lkml/2010/3/30/122 from Lai Jiangshan):

o	Omit the rcu_qs_pending() prechecks, as they aren't that
	much less expensive than the quiescent-state checks.

o	Merge with the set_need_resched() patch that reduces IPIs.

o	Add the new n_rp_report_qs field to the rcu_pending tracing output.

o	Update the tracing documentation accordingly.

Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2010-05-10 11:08:35 -07:00
Paul E. McKenney
0edf1a683e rcu: Update trace.txt documentation for blocked-tasks lists
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: mathieu.desnoyers@polymtl.ca
Cc: josh@joshtriplett.org
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
Cc: Valdis.Kletnieks@vt.edu
Cc: dhowells@redhat.com
Cc: npiggin@suse.de
Cc: jens.axboe@oracle.com
LKML-Reference: <12555405592804-git-send-email->
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-10-15 11:20:23 +02:00
Paul E. McKenney
bd58b43003 rcu: Update trace.txt documentation to reflect recent changes
o	Remove the CONFIG_PREEMPT_RCU documentation since this
	config option has now been removed.

o	Change the now-incorrect references to "rcu" labels to
	instead be "rcu_sched".

o	Add notes stating that CONFIG_TREE_PREEMPT_RCU kernels will
	have additional "rcu_preempt" output.

o	Note the new "oqlen" field in the rcuhier output (for
	RCU callbacks orphaned by an offlined CPU).

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: mathieu.desnoyers@polymtl.ca
Cc: josh@joshtriplett.org
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
Cc: Valdis.Kletnieks@vt.edu
Cc: dhowells@redhat.com
Cc: npiggin@suse.de
Cc: jens.axboe@oracle.com
LKML-Reference: <1255540559799-git-send-email->
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-10-15 11:20:23 +02:00
Paul E. McKenney
d6714c22b4 rcu: Renamings to increase RCU clarity
Make RCU-sched, RCU-bh, and RCU-preempt be underlying
implementations, with "RCU" defined in terms of one of the
three.  Update the outdated rcu_qsctr_inc() names, as these
functions no longer increment anything.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: akpm@linux-foundation.org
Cc: mathieu.desnoyers@polymtl.ca
Cc: josht@linux.vnet.ibm.com
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
LKML-Reference: <12509746132696-git-send-email->
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-23 10:32:37 +02:00
Paul E. McKenney
6fd9b3a40b rcu: Update RCU tracing documentation for __rcu_pending
This patch updates the RCU documentation to reflect the changes in
tracing made in the previous patch in the set.

Located-by: Anton Blanchard <anton@au1.ibm.com>
Tested-by: Anton Blanchard <anton@au1.ibm.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: anton@samba.org
Cc: akpm@linux-foundation.org
Cc: dipankar@in.ibm.com
Cc: manfred@colorfullife.com
Cc: cl@linux-foundation.org
Cc: josht@linux.vnet.ibm.com
Cc: schamp@sgi.com
Cc: niv@us.ibm.com
Cc: dvhltc@us.ibm.com
Cc: ego@in.ibm.com
Cc: laijs@cn.fujitsu.com
Cc: rostedt@goodmis.org
Cc: peterz@infradead.org
Cc: penberg@cs.helsinki.fi
Cc: andi@firstfloor.org
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
LKML-Reference: <12396834792865-git-send-email->
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-04-14 11:33:43 +02:00
Paul E. McKenney
64db4cfff9 "Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs.  Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.

This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion.  This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.

Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.

Updates from v9 (http://lkml.org/lkml/2008/12/2/334):

o	Fixes from remainder of line-by-line code walkthrough,
	including comment spelling, initialization, undesirable
	narrowing due to type conversion, removing redundant memory
	barriers, removing redundant local-variable initialization,
	and removing redundant local variables.

	I do not believe that any of these fixes address the CPU-hotplug
	issues that Andi Kleen was seeing, but please do give it a whirl
	in case the machine is smarter than I am.

	A writeup from the walkthrough may be found at the following
	URL, in case you are suffering from terminal insomnia or
	masochism:

	http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf

o	Made rcutree tracing use seq_file, as suggested some time
	ago by Lai Jiangshan.

o	Added a .csv variant of the rcudata debugfs trace file, to allow
	people having thousands of CPUs to drop the data into
	a spreadsheet.	Tested with oocalc and gnumeric.  Updated
	documentation to suit.

Updates from v8 (http://lkml.org/lkml/2008/11/15/139):

o	Fix a theoretical race between grace-period initialization and
	force_quiescent_state() that could occur if more than three
	jiffies were required to carry out the grace-period
	initialization.  Which it might, if you had enough CPUs.

o	Apply Ingo's printk-standardization patch.

o	Substitute local variables for repeated accesses to global
	variables.

o	Fix comment misspellings and redundant (but harmless) increments
	of ->n_rcu_pending (this latter after having explicitly added it).

o	Apply checkpatch fixes.

Updates from v7 (http://lkml.org/lkml/2008/10/10/291):

o	Fixed a number of problems noted by Gautham Shenoy, including
	the cpu-stall-detection bug that he was having difficulty
	convincing me was real.  ;-)

o	Changed cpu-stall detection to wait for ten seconds rather than
	three in order to reduce false positive, as suggested by Ingo
	Molnar.

o	Produced a design document (http://lwn.net/Articles/305782/).
	The act of writing this document uncovered a number of both
	theoretical and "here and now" bugs as noted below.

o	Fix dynticks_nesting accounting confusion, simplify WARN_ON()
	condition, fix kerneldoc comments, and add memory barriers
	in dynticks interface functions.

o	Add more data to tracing.

o	Remove unused "rcu_barrier" field from rcu_data structure.

o	Count calls to rcu_pending() from scheduling-clock interrupt
	to use as a surrogate timebase should jiffies stop counting.

o	Fix a theoretical race between force_quiescent_state() and
	grace-period initialization.  Yes, initialization does have to
	go on for some jiffies for this race to occur, but given enough
	CPUs...

Updates from v6 (http://lkml.org/lkml/2008/9/23/448):

o	Fix a number of checkpatch.pl complaints.

o	Apply review comments from Ingo Molnar and Lai Jiangshan
	on the stall-detection code.

o	Fix several bugs in !CONFIG_SMP builds.

o	Fix a misspelled config-parameter name so that RCU now announces
	at boot time if stall detection is configured.

o	Run tests on numerous combinations of configurations parameters,
	which after the fixes above, now build and run correctly.

Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):

o	Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
	changeset some time ago, and finally got around to retesting
	this option).

o	Fix some tracing bugs in rcupreempt that caused incorrect
	totals to be printed.

o	I now test with a more brutal random-selection online/offline
	script (attached).  Probably more brutal than it needs to be
	on the people reading it as well, but so it goes.

o	A number of optimizations and usability improvements:

	o	Make rcu_pending() ignore the grace-period timeout when
		there is no grace period in progress.

	o	Make force_quiescent_state() avoid going for a global
		lock in the case where there is no grace period in
		progress.

	o	Rearrange struct fields to improve struct layout.

	o	Make call_rcu() initiate a grace period if RCU was
		idle, rather than waiting for the next scheduling
		clock interrupt.

	o	Invoke rcu_irq_enter() and rcu_irq_exit() only when
		idle, as suggested by Andi Kleen.  I still don't
		completely trust this change, and might back it out.

	o	Make CONFIG_RCU_TRACE be the single config variable
		manipulated for all forms of RCU, instead of the prior
		confusion.

	o	Document tracing files and formats for both rcupreempt
		and rcutree.

Updates from v4 for those missing v5 given its bad subject line:

o	Separated dynticks interface so that NMIs and irqs call separate
	functions, greatly simplifying it.  In particular, this code
	no longer requires a proof of correctness.  ;-)

o	Separated dynticks state out into its own per-CPU structure,
	avoiding the duplicated accounting.

o	The case where a dynticks-idle CPU runs an irq handler that
	invokes call_rcu() is now correctly handled, forcing that CPU
	out of dynticks-idle mode.

o	Review comments have been applied (thank you all!!!).
	For but one example, fixed the dynticks-ordering issue that
	Manfred pointed out, saving me much debugging.  ;-)

o	Adjusted rcuclassic and rcupreempt to handle dynticks changes.

Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel.  It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space.  That said,
I have already gratefully stolen quite a few of Manfred's ideas.

This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy.  Defaults to 32 on 32-bit machines and 64 on
64-bit machines.  If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy.  By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware.  Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems.  I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future.  (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)

In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors.  This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.

Some shortcomings:

o	More bugs will probably surface as a result of an ongoing
	line-by-line code inspection.

	Patches will be provided as required.

o	There are probably hangs, rcutorture failures, &c.  Seems
	quite stable on a 128-CPU machine, but that is kind of small
	compared to 4096 CPUs.  However, seems to do better than
	mainline.

	Patches will be provided as required.

o	The memory footprint of this version is several KB larger
	than rcuclassic.

	A separate UP-only rcutiny patch will be provided, which will
	reduce the memory footprint significantly, even compared
	to the old rcuclassic.  One such patch passes light testing,
	and has a memory footprint smaller even than rcuclassic.
	Initial reaction from various embedded guys was "it is not
	worth it", so am putting it aside.

Credits:

o	Manfred Spraul for ideas, review comments, and bugs spotted,
	as well as some good friendly competition.  ;-)

o	Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
	Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
	for reviews and comments.

o	Thomas Gleixner for much-needed help with some timer issues
	(see patches below).

o	Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
	Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
	Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
	alive despite my heavy abuse^Wtesting.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-18 21:56:04 +01:00