2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-25 21:54:06 +08:00
Commit Graph

6 Commits

Author SHA1 Message Date
Paul Gortmaker
ce7599567e arc: delete __cpuinit usage from all arc files
The __cpuinit type of throwaway sections might have made sense
some time ago when RAM was more constrained, but now the savings
do not offset the cost and complications.  For example, the fix in
commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time")
is a good example of the nasty type of bugs that can be created
with improper use of the various __init prefixes.

After a discussion on LKML[1] it was decided that cpuinit should go
the way of devinit and be phased out.  Once all the users are gone,
we can then finally remove the macros themselves from linux/init.h.

Note that some harmless section mismatch warnings may result, since
notify_cpu_starting() and cpu_up() are arch independent (kernel/cpu.c)
are flagged as __cpuinit  -- so if we remove the __cpuinit from
arch specific callers, we will also get section mismatch warnings.
As an intermediate step, we intend to turn the linux/init.h cpuinit
content into no-ops as early as possible, since that will get rid
of these warnings.  In any case, they are temporary and harmless.

This removes all the arch/arc uses of the __cpuinit macros from
all C files.  Currently arc does not have any __CPUINIT used in
assembly files.

[1] https://lkml.org/lkml/2013/5/20/589

Cc: Vineet Gupta <vgupta@synopsys.com>
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
2013-06-27 14:37:58 +05:30
Vineet Gupta
da1677b02d ARC: Disintegrate arcregs.h
* Move the various sub-system defines/types into relevant files/functions
  (reduces compilation time)

* move CPU specific stuff out of asm/tlb.h into asm/mmu.h

Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
2013-06-22 13:46:42 +05:30
Sachin Kamat
e420c82d09 ARC: Remove duplicate inclusion of header files
Some header files were included twice in the same file.

Signed-off-by: Sachin Kamat <sachin.kamat@linaro.org>
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
2013-04-09 12:21:15 +05:30
Vineet Gupta
1e26662993 ARC: 64bit RTSC timestamp hardware issue
The 64bit RTSC is not reliable, causing spurious "jumps" in higher word,
making Linux timekeeping go bonkers. So as of now just use the lower
32bit timestamp.

A cleaner approach would have been removing RTSC support altogether as the
32bit RTSC is equivalent to old TIMER1 based solution, but some customers
can use the 32bit RTSC in SMP syn fashion (vs. TIMER1 which being incore
can't be done easily).

A fallout of this is sched_clock()'s hardware assisted version needs to
go away since it can't use 32bit wrapping counter - instead we use the
generic "weak" jiffies based version.

Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
2013-02-15 23:16:20 +05:30
Vineet Gupta
03a6d28cdd ARC: [Review] Multi-platform image #2: Board callback Infrastructure
The orig platform code orgnaization was singleton design pattern - only
one platform (and board thereof) would build at a time.

Thus any platform/board specific code (e.g. irq init, early init ...)
expected by ARC common code was exported as well defined set of APIs,
with only ONE instance building ever.

Now with multiple-platform build requirement, that design of code no
longer holds - multiple board specific calls need to build at the same
time - so ARC common code can't use the API approach, it needs a
callback based design where each board registers it's specific set of
functions, and at runtime, depending on board detection, the callbacks
are used from the registry.

This commit adds all the infrastructure, where board specific callbacks
are specified as a "maThine description".

All the hooks are placed in right spots, no board callbacks registered
yet (with MACHINE_STARt/END constructs) so the hooks will not run.

Next commit will actually convert the platform to this infrastructure.

Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Acked-by: Arnd Bergmann <arnd@arndb.de>
2013-02-15 23:16:13 +05:30
Vineet Gupta
d8005e6b95 ARC: Timers/counters/delay management
ARC700 includes 2 in-core 32bit timers TIMER0 and TIMER1.
Both have exactly same capabilies.

* programmable to count from TIMER<n>_CNT to TIMER<n>_LIMIT
* for count 0 and LIMIT ~1, provides a free-running counter by
    auto-wrapping when limit is reached.
* optionally interrupt when LIMIT is reached (oneshot event semantics)
* rearming the interrupt provides periodic semantics
* run at CPU clk

ARC Linux uses TIMER0 for clockevent (periodic/oneshot) and TIMER1 for
clocksource (free-running clock).

Newer cores provide RTSC insn which gives a 64bit cpu clk snapshot hence
is more apt for clocksource when available.

SMP poses a bit of challenge for global timekeeping clocksource /
sched_clock() backend:
 -TIMER1 based local clocks are out-of-sync hence can't be used
  (thus we default to jiffies based cs as well as sched_clock() one/both
  of which platform can override with it's specific hardware assist)
 -RTSC is only allowed in SMP if it's cross-core-sync (Kconfig glue
  ensures that) and thus usable for both requirements.

Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
2013-02-11 20:00:39 +05:30