2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-08 05:34:29 +08:00
Commit Graph

837270 Commits

Author SHA1 Message Date
Jérôme Glisse
4a83bfe916 mm/mmu_notifier: helper to test if a range invalidation is blockable
Patch series "mmu notifier provide context informations", v6.

Here I am not posting users of this, they already have been posted to
appropriate mailing list [6] and will be merge through the appropriate
tree once this patchset is upstream.

Note that this serie does not change any behavior for any existing code.
It just pass down more information to mmu notifier listener.

The rationale for this patchset:

CPU page table update can happens for many reasons, not only as a result
of a syscall (munmap(), mprotect(), mremap(), madvise(), ...) but also as
a result of kernel activities (memory compression, reclaim, migration,
...).

This patchset introduce a set of enums that can be associated with each of
the events triggering a mmu notifier:

    - UNMAP: munmap() or mremap()
    - CLEAR: page table is cleared (migration, compaction, reclaim, ...)
    - PROTECTION_VMA: change in access protections for the range
    - PROTECTION_PAGE: change in access protections for page in the range
    - SOFT_DIRTY: soft dirtyness tracking

Being able to identify munmap() and mremap() from other reasons why the
page table is cleared is important to allow user of mmu notifier to update
their own internal tracking structure accordingly (on munmap or mremap it
is not longer needed to track range of virtual address as it becomes
invalid).  Without this serie, driver are force to assume that every
notification is an munmap which triggers useless trashing within drivers
that associate structure with range of virtual address.  Each driver is
force to free up its tracking structure and then restore it on next device
page fault.  With this series we can also optimize device page table update.  Patches to use this are at

https://lkml.org/lkml/2019/1/23/833
https://lkml.org/lkml/2019/1/23/834
https://lkml.org/lkml/2019/1/23/832
https://lkml.org/lkml/2019/1/23/831

Moreover this can also be used to optimize out some page table updates
such as for KVM where we can update the secondary MMU directly from the
callback instead of clearing it.

ACKS AMD/RADEON https://lkml.org/lkml/2019/2/1/395
ACKS RDMA https://lkml.org/lkml/2018/12/6/1473

This patch (of 8):

Simple helpers to test if range invalidation is blockable.  Latter patches
use cocinnelle to convert all direct dereference of range-> blockable to
use this function instead so that we can convert the blockable field to an
unsigned for more flags.

Link: http://lkml.kernel.org/r/20190326164747.24405-2-jglisse@redhat.com
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Reviewed-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Cc: Christian König <christian.koenig@amd.com>
Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Cc: Jani Nikula <jani.nikula@linux.intel.com>
Cc: Rodrigo Vivi <rodrigo.vivi@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Felix Kuehling <Felix.Kuehling@amd.com>
Cc: Jason Gunthorpe <jgg@mellanox.com>
Cc: Ross Zwisler <zwisler@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krcmar <rkrcmar@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Christian Koenig <christian.koenig@amd.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 09:47:49 -07:00
Jérôme Glisse
391aab11e9 mm/hmm: convert various hmm_pfn_* to device_entry which is a better name
Convert hmm_pfn_* to device_entry_* as here we are dealing with device
driver specific entry format and hmm provide helpers to allow differents
components (including HMM) to create/parse device entry.

We keep wrapper with the old name so that we can convert driver to use the
new API in stages in each device driver tree.  This will get remove once
all driver are converted.

Link: http://lkml.kernel.org/r/20190403193318.16478-13-jglisse@redhat.com
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Souptick Joarder <jrdr.linux@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 09:47:48 -07:00
Jérôme Glisse
55c0ece82a mm/hmm: add a helper function that fault pages and map them to a device
This is a all in one helper that fault pages in a range and map them to a
device so that every single device driver do not have to re-implement this
common pattern.

This is taken from ODP RDMA in preparation of ODP RDMA convertion.  It
will be use by nouveau and other drivers.

[jglisse@redhat.com: Was using wrong field and wrong enum]
  Link: http://lkml.kernel.org/r/20190409175340.26614-1-jglisse@redhat.com
Link: http://lkml.kernel.org/r/20190403193318.16478-12-jglisse@redhat.com
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Souptick Joarder <jrdr.linux@gmail.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 09:47:48 -07:00
Jérôme Glisse
202394178d mm/hmm: add helpers to test if mm is still alive or not
The device driver can have kernel thread or worker doing work against a
process mm and it is useful for those to test wether the mm is dead or
alive to avoid doing useless work.  Add an helper to test that so that
driver can bail out early if a process is dying.

Note that the helper does not perform any lock synchronization and thus is
just a hint ie a process might be dying but the helper might still return
the process as alive.  All HMM functions are safe to use in that case as
HMM internal properly protect itself with lock.  If driver use this helper
with non HMM functions it should ascertain that it is safe to do so.

Link: http://lkml.kernel.org/r/20190403193318.16478-11-jglisse@redhat.com
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Souptick Joarder <jrdr.linux@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 09:47:48 -07:00
Jérôme Glisse
992de9a8b7 mm/hmm: allow to mirror vma of a file on a DAX backed filesystem
HMM mirror is a device driver helpers to mirror range of virtual address.
It means that the process jobs running on the device can access the same
virtual address as the CPU threads of that process.  This patch adds
support for mirroring mapping of file that are on a DAX block device (ie
range of virtual address that is an mmap of a file in a filesystem on a
DAX block device).  There is no reason to not support such case when
mirroring virtual address on a device.

Note that unlike GUP code we do not take page reference hence when we
back-off we have nothing to undo.

[jglisse@redhat.com: move THP and hugetlbfs code path behind #if KCONFIG]
  Link: http://lkml.kernel.org/r/20190422163741.13029-1-jglisse@redhat.com
Link: http://lkml.kernel.org/r/20190403193318.16478-10-jglisse@redhat.com
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Reviewed-by: Ralph Campbell <rcampbell@nvidia.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Souptick Joarder <jrdr.linux@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 09:47:48 -07:00
Jérôme Glisse
63d5066f6e mm/hmm: mirror hugetlbfs (snapshoting, faulting and DMA mapping)
HMM mirror is a device driver helpers to mirror range of virtual address.
It means that the process jobs running on the device can access the same
virtual address as the CPU threads of that process.  This patch adds
support for hugetlbfs mapping (ie range of virtual address that are mmap
of a hugetlbfs).

[rcampbell@nvidia.com: fix initial PFN for hugetlbfs pages]
  Link: http://lkml.kernel.org/r/20190419233536.8080-1-rcampbell@nvidia.com
Link: http://lkml.kernel.org/r/20190403193318.16478-9-jglisse@redhat.com
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Signed-off-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Souptick Joarder <jrdr.linux@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 09:47:48 -07:00
Jérôme Glisse
023a019a9b mm/hmm: add default fault flags to avoid the need to pre-fill pfns arrays
The HMM mirror API can be use in two fashions.  The first one where the
HMM user coalesce multiple page faults into one request and set flags per
pfns for of those faults.  The second one where the HMM user want to
pre-fault a range with specific flags.  For the latter one it is a waste
to have the user pre-fill the pfn arrays with a default flags value.

This patch adds a default flags value allowing user to set them for a
range without having to pre-fill the pfn array.

Link: http://lkml.kernel.org/r/20190403193318.16478-8-jglisse@redhat.com
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Reviewed-by: Ralph Campbell <rcampbell@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Souptick Joarder <jrdr.linux@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 09:47:48 -07:00
Jérôme Glisse
a3e0d41c2b mm/hmm: improve driver API to work and wait over a range
A common use case for HMM mirror is user trying to mirror a range and
before they could program the hardware it get invalidated by some core mm
event.  Instead of having user re-try right away to mirror the range
provide a completion mechanism for them to wait for any active
invalidation affecting the range.

This also changes how hmm_range_snapshot() and hmm_range_fault() works by
not relying on vma so that we can drop the mmap_sem when waiting and
lookup the vma again on retry.

Link: http://lkml.kernel.org/r/20190403193318.16478-7-jglisse@redhat.com
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Reviewed-by: Ralph Campbell <rcampbell@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: Souptick Joarder <jrdr.linux@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 09:47:48 -07:00
Jérôme Glisse
73231612dc mm/hmm: improve and rename hmm_vma_fault() to hmm_range_fault()
Minor optimization around hmm_pte_need_fault().  Rename for consistency
between code, comments and documentation.  Also improves the comments on
all the possible returns values.  Improve the function by returning the
number of populated entries in pfns array.

Link: http://lkml.kernel.org/r/20190403193318.16478-6-jglisse@redhat.com
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Reviewed-by: Ralph Campbell <rcampbell@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Souptick Joarder <jrdr.linux@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 09:47:48 -07:00
Jérôme Glisse
25f23a0c71 mm/hmm: improve and rename hmm_vma_get_pfns() to hmm_range_snapshot()
Rename for consistency between code, comments and documentation.  Also
improves the comments on all the possible returns values.  Improve the
function by returning the number of populated entries in pfns array.

Link: http://lkml.kernel.org/r/20190403193318.16478-5-jglisse@redhat.com
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Reviewed-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Souptick Joarder <jrdr.linux@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 09:47:48 -07:00
Jérôme Glisse
9f454612f6 mm/hmm: do not erase snapshot when a range is invalidated
Users of HMM might be using the snapshot information to do preparatory
step like dma mapping pages to a device before checking for invalidation
through hmm_vma_range_done() so do not erase that information and assume
users will do the right thing.

Link: http://lkml.kernel.org/r/20190403193318.16478-4-jglisse@redhat.com
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Reviewed-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Souptick Joarder <jrdr.linux@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 09:47:48 -07:00
Jérôme Glisse
704f3f2cf6 mm/hmm: use reference counting for HMM struct
Every time I read the code to check that the HMM structure does not vanish
before it should thanks to the many lock protecting its removal i get a
headache.  Switch to reference counting instead it is much easier to
follow and harder to break.  This also remove some code that is no longer
needed with refcounting.

Link: http://lkml.kernel.org/r/20190403193318.16478-3-jglisse@redhat.com
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Reviewed-by: Ralph Campbell <rcampbell@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Souptick Joarder <jrdr.linux@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 09:47:48 -07:00
Jérôme Glisse
734fb89968 mm/hmm: select mmu notifier when selecting HMM
To avoid random config build issue, select mmu notifier when HMM is
selected.  In any cases when HMM get selected it will be by users that
will also wants the mmu notifier.

Link: http://lkml.kernel.org/r/20190403193318.16478-2-jglisse@redhat.com
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Acked-by: Balbir Singh <bsingharora@gmail.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Souptick Joarder <jrdr.linux@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 09:47:48 -07:00
Mike Kravetz
1b426bac66 hugetlb: use same fault hash key for shared and private mappings
hugetlb uses a fault mutex hash table to prevent page faults of the
same pages concurrently.  The key for shared and private mappings is
different.  Shared keys off address_space and file index.  Private keys
off mm and virtual address.  Consider a private mappings of a populated
hugetlbfs file.  A fault will map the page from the file and if needed
do a COW to map a writable page.

Hugetlbfs hole punch uses the fault mutex to prevent mappings of file
pages.  It uses the address_space file index key.  However, private
mappings will use a different key and could race with this code to map
the file page.  This causes problems (BUG) for the page cache remove
code as it expects the page to be unmapped.  A sample stack is:

page dumped because: VM_BUG_ON_PAGE(page_mapped(page))
kernel BUG at mm/filemap.c:169!
...
RIP: 0010:unaccount_page_cache_page+0x1b8/0x200
...
Call Trace:
__delete_from_page_cache+0x39/0x220
delete_from_page_cache+0x45/0x70
remove_inode_hugepages+0x13c/0x380
? __add_to_page_cache_locked+0x162/0x380
hugetlbfs_fallocate+0x403/0x540
? _cond_resched+0x15/0x30
? __inode_security_revalidate+0x5d/0x70
? selinux_file_permission+0x100/0x130
vfs_fallocate+0x13f/0x270
ksys_fallocate+0x3c/0x80
__x64_sys_fallocate+0x1a/0x20
do_syscall_64+0x5b/0x180
entry_SYSCALL_64_after_hwframe+0x44/0xa9

There seems to be another potential COW issue/race with this approach
of different private and shared keys as noted in commit 8382d914eb
("mm, hugetlb: improve page-fault scalability").

Since every hugetlb mapping (even anon and private) is actually a file
mapping, just use the address_space index key for all mappings.  This
results in potentially more hash collisions.  However, this should not
be the common case.

Link: http://lkml.kernel.org/r/20190328234704.27083-3-mike.kravetz@oracle.com
Link: http://lkml.kernel.org/r/20190412165235.t4sscoujczfhuiyt@linux-r8p5
Fixes: b5cec28d36 ("hugetlbfs: truncate_hugepages() takes a range of pages")
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Reviewed-by: Davidlohr Bueso <dbueso@suse.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 09:47:48 -07:00
Mike Kravetz
0919e1b69a hugetlbfs: on restore reserve error path retain subpool reservation
When a huge page is allocated, PagePrivate() is set if the allocation
consumed a reservation.  When freeing a huge page, PagePrivate is checked.
If set, it indicates the reservation should be restored.  PagePrivate
being set at free huge page time mostly happens on error paths.

When huge page reservations are created, a check is made to determine if
the mapping is associated with an explicitly mounted filesystem.  If so,
pages are also reserved within the filesystem.  The default action when
freeing a huge page is to decrement the usage count in any associated
explicitly mounted filesystem.  However, if the reservation is to be
restored the reservation/use count within the filesystem should not be
decrementd.  Otherwise, a subsequent page allocation and free for the same
mapping location will cause the file filesystem usage to go 'negative'.

Filesystem                         Size  Used Avail Use% Mounted on
nodev                              4.0G -4.0M  4.1G    - /opt/hugepool

To fix, when freeing a huge page do not adjust filesystem usage if
PagePrivate() is set to indicate the reservation should be restored.

I did not cc stable as the problem has been around since reserves were
added to hugetlbfs and nobody has noticed.

Link: http://lkml.kernel.org/r/20190328234704.27083-2-mike.kravetz@oracle.com
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 09:47:48 -07:00
Baoquan He
063b8a4cee drivers/base/memory.c: clean up relics in function parameters
The input parameter 'phys_index' of memory_block_action() is actually the
section number, but not the phys_index of memory_block.  This is a relic
from the past when one memory block could only contain one section.
Rename it to start_section_nr.

And also in remove_memory_section(), the 'node_id' and 'phys_device'
arguments are not used by anyone.  Remove them.

Link: http://lkml.kernel.org/r/20190329144250.14315-2-bhe@redhat.com
Signed-off-by: Baoquan He <bhe@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reviewed-by: Mukesh Ojha <mojha@codeaurora.org>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 09:47:48 -07:00
Baoquan He
7567cfc5da mm/sparse.c: clean up obsolete code comment
The code comment above sparse_add_one_section() is obsolete and incorrect.
Clean it up and write a new one.

Link: http://lkml.kernel.org/r/20190329144250.14315-1-bhe@redhat.com
Signed-off-by: Baoquan He <bhe@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Mukesh Ojha <mojha@codeaurora.org>
Reviewed-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 09:47:48 -07:00
David Hildenbrand
926e5d1cb5 include/linux/balloon_compaction.h: drop unused function stubs
These are leftovers from the pre-"general non-lru movable page" era.

Link: http://lkml.kernel.org/r/20190329122649.28404-1-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Mukesh Ojha <mojha@codeaurora.org>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Acked-by: Pankaj Gupta <pagupta@redhat.com>
Acked-by: Rafael Aquini <aquini@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 09:47:48 -07:00
Peng Fan
dae966dc8f mm/swap.c: __pagevec_lru_add_fn: typo fix
There is no function named munlock_vma_pages().  Correct it to
munlock_vma_page().

Link: http://lkml.kernel.org/r/20190402095609.27181-1-peng.fan@nxp.com
Signed-off-by: Peng Fan <peng.fan@nxp.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mukesh Ojha <mojha@codeaurora.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 09:47:48 -07:00
Oscar Salvador
2d0adf7e0d mm/hugetlb: get rid of NODEMASK_ALLOC
NODEMASK_ALLOC is used to allocate a nodemask bitmap, and it does it by
first determining whether it should be allocated on the stack or
dynamically, depending on NODES_SHIFT.  Right now, it goes the dynamic
path whenever the nodemask_t is above 32 bytes.

Although we could bump it to a reasonable value, the largest a nodemask_t
can get is 128 bytes, so since __nr_hugepages_store_common is called from
a rather short stack we can just get rid of the NODEMASK_ALLOC call here.

This reduces some code churn and complexity.

Link: http://lkml.kernel.org/r/20190402133415.21983-1-osalvador@suse.de
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Alex Ghiti <alex@ghiti.fr>
Cc: David Rientjes <rientjes@google.com>
Cc: Jing Xiangfeng <jingxiangfeng@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 09:47:48 -07:00
Mike Kravetz
fd875dca7c hugetlbfs: fix potential over/underflow setting node specific nr_hugepages
The number of node specific huge pages can be set via a file such as:
/sys/devices/system/node/node1/hugepages/hugepages-2048kB/nr_hugepages
When a node specific value is specified, the global number of huge pages
must also be adjusted.  This adjustment is calculated as the specified
node specific value + (global value - current node value).  If the node
specific value provided by the user is large enough, this calculation
could overflow an unsigned long leading to a smaller than expected number
of huge pages.

To fix, check the calculation for overflow.  If overflow is detected, use
ULONG_MAX as the requested value.  This is inline with the user request to
allocate as many huge pages as possible.

It was also noticed that the above calculation was done outside the
hugetlb_lock.  Therefore, the values could be inconsistent and result in
underflow.  To fix, the calculation is moved within the routine
set_max_huge_pages() where the lock is held.

In addition, the code in __nr_hugepages_store_common() which tries to
handle the case of not being able to allocate a node mask would likely
result in incorrect behavior.  Luckily, it is very unlikely we will ever
take this path.  If we do, simply return ENOMEM.

Link: http://lkml.kernel.org/r/20190328220533.19884-1-mike.kravetz@oracle.com
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reported-by: Jing Xiangfeng <jingxiangfeng@huawei.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Alex Ghiti <alex@ghiti.fr>
Cc: Jing Xiangfeng <jingxiangfeng@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 09:47:48 -07:00
Linxu Fang
299c83dce9 mem-hotplug: fix node spanned pages when we have a node with only ZONE_MOVABLE
342332e6a9 ("mm/page_alloc.c: introduce kernelcore=mirror option") and
later patches rewrote the calculation of node spanned pages.

e506b99696 ("mem-hotplug: fix node spanned pages when we have a movable
node"), but the current code still has problems,

When we have a node with only zone_movable and the node id is not zero,
the size of node spanned pages is double added.

That's because we have an empty normal zone, and zone_start_pfn or
zone_end_pfn is not between arch_zone_lowest_possible_pfn and
arch_zone_highest_possible_pfn, so we need to use clamp to constrain the
range just like the commit <96e907d13602> (bootmem: Reimplement
__absent_pages_in_range() using for_each_mem_pfn_range()).

e.g.
Zone ranges:
  DMA      [mem 0x0000000000001000-0x0000000000ffffff]
  DMA32    [mem 0x0000000001000000-0x00000000ffffffff]
  Normal   [mem 0x0000000100000000-0x000000023fffffff]
Movable zone start for each node
  Node 0: 0x0000000100000000
  Node 1: 0x0000000140000000
Early memory node ranges
  node   0: [mem 0x0000000000001000-0x000000000009efff]
  node   0: [mem 0x0000000000100000-0x00000000bffdffff]
  node   0: [mem 0x0000000100000000-0x000000013fffffff]
  node   1: [mem 0x0000000140000000-0x000000023fffffff]

node 0 DMA	spanned:0xfff   present:0xf9e   absent:0x61
node 0 DMA32	spanned:0xff000 present:0xbefe0	absent:0x40020
node 0 Normal	spanned:0	present:0	absent:0
node 0 Movable	spanned:0x40000 present:0x40000 absent:0
On node 0 totalpages(node_present_pages): 1048446
node_spanned_pages:1310719
node 1 DMA	spanned:0	    present:0		absent:0
node 1 DMA32	spanned:0	    present:0		absent:0
node 1 Normal	spanned:0x100000    present:0x100000	absent:0
node 1 Movable	spanned:0x100000    present:0x100000	absent:0
On node 1 totalpages(node_present_pages): 2097152
node_spanned_pages:2097152
Memory: 6967796K/12582392K available (16388K kernel code, 3686K rwdata,
4468K rodata, 2160K init, 10444K bss, 5614596K reserved, 0K
cma-reserved)

It shows that the current memory of node 1 is double added.
After this patch, the problem is fixed.

node 0 DMA	spanned:0xfff   present:0xf9e   absent:0x61
node 0 DMA32	spanned:0xff000 present:0xbefe0	absent:0x40020
node 0 Normal	spanned:0	present:0	absent:0
node 0 Movable	spanned:0x40000 present:0x40000 absent:0
On node 0 totalpages(node_present_pages): 1048446
node_spanned_pages:1310719
node 1 DMA	spanned:0	    present:0		absent:0
node 1 DMA32	spanned:0	    present:0		absent:0
node 1 Normal	spanned:0	    present:0		absent:0
node 1 Movable	spanned:0x100000    present:0x100000	absent:0
On node 1 totalpages(node_present_pages): 1048576
node_spanned_pages:1048576
memory: 6967796K/8388088K available (16388K kernel code, 3686K rwdata,
4468K rodata, 2160K init, 10444K bss, 1420292K reserved, 0K
cma-reserved)

Link: http://lkml.kernel.org/r/1554178276-10372-1-git-send-email-fanglinxu@huawei.com
Signed-off-by: Linxu Fang <fanglinxu@huawei.com>
Cc: Taku Izumi <izumi.taku@jp.fujitsu.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Pavel Tatashin <pavel.tatashin@microsoft.com>
Cc: Oscar Salvador <osalvador@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 09:47:48 -07:00
Yafang Shao
3481c37ffa mm/vmscan: drop may_writepage and classzone_idx from direct reclaim begin template
There are three tracepoints using this template, which are
mm_vmscan_direct_reclaim_begin,
mm_vmscan_memcg_reclaim_begin,
mm_vmscan_memcg_softlimit_reclaim_begin.

Regarding mm_vmscan_direct_reclaim_begin,
sc.may_writepage is !laptop_mode, that's a static setting, and
reclaim_idx is derived from gfp_mask which is already show in this
tracepoint.

Regarding mm_vmscan_memcg_reclaim_begin,
may_writepage is !laptop_mode too, and reclaim_idx is (MAX_NR_ZONES-1),
which are both static value.

mm_vmscan_memcg_softlimit_reclaim_begin is the same with
mm_vmscan_memcg_reclaim_begin.

So we can drop them all.

Link: http://lkml.kernel.org/r/1553736322-32235-1-git-send-email-laoar.shao@gmail.com
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 09:47:48 -07:00
Aneesh Kumar K.V
024eee0e83 mm: page_mkclean vs MADV_DONTNEED race
MADV_DONTNEED is handled with mmap_sem taken in read mode.  We call
page_mkclean without holding mmap_sem.

MADV_DONTNEED implies that pages in the region are unmapped and subsequent
access to the pages in that range is handled as a new page fault.  This
implies that if we don't have parallel access to the region when
MADV_DONTNEED is run we expect those range to be unallocated.

w.r.t page_mkclean() we need to make sure that we don't break the
MADV_DONTNEED semantics.  MADV_DONTNEED check for pmd_none without holding
pmd_lock.  This implies we skip the pmd if we temporarily mark pmd none.
Avoid doing that while marking the page clean.

Keep the sequence same for dax too even though we don't support
MADV_DONTNEED for dax mapping

The bug was noticed by code review and I didn't observe any failures w.r.t
test run.  This is similar to

commit 58ceeb6bec
Author: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Date:   Thu Apr 13 14:56:26 2017 -0700

    thp: fix MADV_DONTNEED vs. MADV_FREE race

commit ced108037c
Author: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Date:   Thu Apr 13 14:56:20 2017 -0700

    thp: fix MADV_DONTNEED vs. numa balancing race

Link: http://lkml.kernel.org/r/20190321040610.14226-1-aneesh.kumar@linux.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc:"Kirill A . Shutemov" <kirill@shutemov.name>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 09:47:48 -07:00
John Hubbard
fc1d8e7cca mm: introduce put_user_page*(), placeholder versions
A discussion of the overall problem is below.

As mentioned in patch 0001, the steps are to fix the problem are:

1) Provide put_user_page*() routines, intended to be used
   for releasing pages that were pinned via get_user_pages*().

2) Convert all of the call sites for get_user_pages*(), to
   invoke put_user_page*(), instead of put_page(). This involves dozens of
   call sites, and will take some time.

3) After (2) is complete, use get_user_pages*() and put_user_page*() to
   implement tracking of these pages. This tracking will be separate from
   the existing struct page refcounting.

4) Use the tracking and identification of these pages, to implement
   special handling (especially in writeback paths) when the pages are
   backed by a filesystem.

Overview
========

Some kernel components (file systems, device drivers) need to access
memory that is specified via process virtual address.  For a long time,
the API to achieve that was get_user_pages ("GUP") and its variations.
However, GUP has critical limitations that have been overlooked; in
particular, GUP does not interact correctly with filesystems in all
situations.  That means that file-backed memory + GUP is a recipe for
potential problems, some of which have already occurred in the field.

GUP was first introduced for Direct IO (O_DIRECT), allowing filesystem
code to get the struct page behind a virtual address and to let storage
hardware perform a direct copy to or from that page.  This is a
short-lived access pattern, and as such, the window for a concurrent
writeback of GUP'd page was small enough that there were not (we think)
any reported problems.  Also, userspace was expected to understand and
accept that Direct IO was not synchronized with memory-mapped access to
that data, nor with any process address space changes such as munmap(),
mremap(), etc.

Over the years, more GUP uses have appeared (virtualization, device
drivers, RDMA) that can keep the pages they get via GUP for a long period
of time (seconds, minutes, hours, days, ...).  This long-term pinning
makes an underlying design problem more obvious.

In fact, there are a number of key problems inherent to GUP:

Interactions with file systems
==============================

File systems expect to be able to write back data, both to reclaim pages,
and for data integrity.  Allowing other hardware (NICs, GPUs, etc) to gain
write access to the file memory pages means that such hardware can dirty
the pages, without the filesystem being aware.  This can, in some cases
(depending on filesystem, filesystem options, block device, block device
options, and other variables), lead to data corruption, and also to kernel
bugs of the form:

    kernel BUG at /build/linux-fQ94TU/linux-4.4.0/fs/ext4/inode.c:1899!
    backtrace:
        ext4_writepage
        __writepage
        write_cache_pages
        ext4_writepages
        do_writepages
        __writeback_single_inode
        writeback_sb_inodes
        __writeback_inodes_wb
        wb_writeback
        wb_workfn
        process_one_work
        worker_thread
        kthread
        ret_from_fork

...which is due to the file system asserting that there are still buffer
heads attached:

        ({                                                      \
                BUG_ON(!PagePrivate(page));                     \
                ((struct buffer_head *)page_private(page));     \
        })

Dave Chinner's description of this is very clear:

    "The fundamental issue is that ->page_mkwrite must be called on every
    write access to a clean file backed page, not just the first one.
    How long the GUP reference lasts is irrelevant, if the page is clean
    and you need to dirty it, you must call ->page_mkwrite before it is
    marked writeable and dirtied. Every. Time."

This is just one symptom of the larger design problem: real filesystems
that actually write to a backing device, do not actually support
get_user_pages() being called on their pages, and letting hardware write
directly to those pages--even though that pattern has been going on since
about 2005 or so.

Long term GUP
=============

Long term GUP is an issue when FOLL_WRITE is specified to GUP (so, a
writeable mapping is created), and the pages are file-backed.  That can
lead to filesystem corruption.  What happens is that when a file-backed
page is being written back, it is first mapped read-only in all of the CPU
page tables; the file system then assumes that nobody can write to the
page, and that the page content is therefore stable.  Unfortunately, the
GUP callers generally do not monitor changes to the CPU pages tables; they
instead assume that the following pattern is safe (it's not):

    get_user_pages()

    Hardware can keep a reference to those pages for a very long time,
    and write to it at any time.  Because "hardware" here means "devices
    that are not a CPU", this activity occurs without any interaction with
    the kernel's file system code.

    for each page
        set_page_dirty
        put_page()

In fact, the GUP documentation even recommends that pattern.

Anyway, the file system assumes that the page is stable (nothing is
writing to the page), and that is a problem: stable page content is
necessary for many filesystem actions during writeback, such as checksum,
encryption, RAID striping, etc.  Furthermore, filesystem features like COW
(copy on write) or snapshot also rely on being able to use a new page for
as memory for that memory range inside the file.

Corruption during write back is clearly possible here.  To solve that, one
idea is to identify pages that have active GUP, so that we can use a
bounce page to write stable data to the filesystem.  The filesystem would
work on the bounce page, while any of the active GUP might write to the
original page.  This would avoid the stable page violation problem, but
note that it is only part of the overall solution, because other problems
remain.

Other filesystem features that need to replace the page with a new one can
be inhibited for pages that are GUP-pinned.  This will, however, alter and
limit some of those filesystem features.  The only fix for that would be
to require GUP users to monitor and respond to CPU page table updates.
Subsystems such as ODP and HMM do this, for example.  This aspect of the
problem is still under discussion.

Direct IO
=========

Direct IO can cause corruption, if userspace does Direct-IO that writes to
a range of virtual addresses that are mmap'd to a file.  The pages written
to are file-backed pages that can be under write back, while the Direct IO
is taking place.  Here, Direct IO races with a write back: it calls GUP
before page_mkclean() has replaced the CPU pte with a read-only entry.
The race window is pretty small, which is probably why years have gone by
before we noticed this problem: Direct IO is generally very quick, and
tends to finish up before the filesystem gets around to do anything with
the page contents.  However, it's still a real problem.  The solution is
to never let GUP return pages that are under write back, but instead,
force GUP to take a write fault on those pages.  That way, GUP will
properly synchronize with the active write back.  This does not change the
required GUP behavior, it just avoids that race.

Details
=======

Introduces put_user_page(), which simply calls put_page().  This provides
a way to update all get_user_pages*() callers, so that they call
put_user_page(), instead of put_page().

Also introduces put_user_pages(), and a few dirty/locked variations, as a
replacement for release_pages(), and also as a replacement for open-coded
loops that release multiple pages.  These may be used for subsequent
performance improvements, via batching of pages to be released.

This is the first step of fixing a problem (also described in [1] and [2])
with interactions between get_user_pages ("gup") and filesystems.

Problem description: let's start with a bug report.  Below, is what
happens sometimes, under memory pressure, when a driver pins some pages
via gup, and then marks those pages dirty, and releases them.  Note that
the gup documentation actually recommends that pattern.  The problem is
that the filesystem may do a writeback while the pages were gup-pinned,
and then the filesystem believes that the pages are clean.  So, when the
driver later marks the pages as dirty, that conflicts with the
filesystem's page tracking and results in a BUG(), like this one that I
experienced:

    kernel BUG at /build/linux-fQ94TU/linux-4.4.0/fs/ext4/inode.c:1899!
    backtrace:
        ext4_writepage
        __writepage
        write_cache_pages
        ext4_writepages
        do_writepages
        __writeback_single_inode
        writeback_sb_inodes
        __writeback_inodes_wb
        wb_writeback
        wb_workfn
        process_one_work
        worker_thread
        kthread
        ret_from_fork

...which is due to the file system asserting that there are still buffer
heads attached:

        ({                                                      \
                BUG_ON(!PagePrivate(page));                     \
                ((struct buffer_head *)page_private(page));     \
        })

Dave Chinner's description of this is very clear:

    "The fundamental issue is that ->page_mkwrite must be called on
    every write access to a clean file backed page, not just the first
    one.  How long the GUP reference lasts is irrelevant, if the page is
    clean and you need to dirty it, you must call ->page_mkwrite before it
    is marked writeable and dirtied.  Every.  Time."

This is just one symptom of the larger design problem: real filesystems
that actually write to a backing device, do not actually support
get_user_pages() being called on their pages, and letting hardware write
directly to those pages--even though that pattern has been going on since
about 2005 or so.

The steps are to fix it are:

1) (This patch): provide put_user_page*() routines, intended to be used
   for releasing pages that were pinned via get_user_pages*().

2) Convert all of the call sites for get_user_pages*(), to
   invoke put_user_page*(), instead of put_page(). This involves dozens of
   call sites, and will take some time.

3) After (2) is complete, use get_user_pages*() and put_user_page*() to
   implement tracking of these pages. This tracking will be separate from
   the existing struct page refcounting.

4) Use the tracking and identification of these pages, to implement
   special handling (especially in writeback paths) when the pages are
   backed by a filesystem.

[1] https://lwn.net/Articles/774411/ : "DMA and get_user_pages()"
[2] https://lwn.net/Articles/753027/ : "The Trouble with get_user_pages()"

Link: http://lkml.kernel.org/r/20190327023632.13307-2-jhubbard@nvidia.com
Signed-off-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Mike Rapoport <rppt@linux.ibm.com>		[docs]
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: Jérôme Glisse <jglisse@redhat.com>
Reviewed-by: Christoph Lameter <cl@linux.com>
Tested-by: Ira Weiny <ira.weiny@intel.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 09:47:47 -07:00
Alexandre Ghiti
4eb0716e86 hugetlb: allow to free gigantic pages regardless of the configuration
On systems without CONTIG_ALLOC activated but that support gigantic pages,
boottime reserved gigantic pages can not be freed at all.  This patch
simply enables the possibility to hand back those pages to memory
allocator.

Link: http://lkml.kernel.org/r/20190327063626.18421-5-alex@ghiti.fr
Signed-off-by: Alexandre Ghiti <alex@ghiti.fr>
Acked-by: David S. Miller <davem@davemloft.net> [sparc]
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Andy Lutomirsky <luto@kernel.org>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: "H . Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rich Felker <dalias@libc.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 09:47:47 -07:00
Alexandre Ghiti
8df995f6bd mm: simplify MEMORY_ISOLATION && COMPACTION || CMA into CONTIG_ALLOC
This condition allows to define alloc_contig_range, so simplify it into a
more accurate naming.

Link: http://lkml.kernel.org/r/20190327063626.18421-4-alex@ghiti.fr
Signed-off-by: Alexandre Ghiti <alex@ghiti.fr>
Suggested-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andy Lutomirsky <luto@kernel.org>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: "H . Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rich Felker <dalias@libc.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 09:47:47 -07:00
Alexandre Ghiti
b53f456954 sparc: advertise gigantic page support
sparc actually supports gigantic pages and selecting
ARCH_HAS_GIGANTIC_PAGE allows it to allocate and free gigantic pages at
runtime.

sparc allows configuration such as huge pages of 16GB, pages of 8KB and
MAX_ORDER = 13 (default): HPAGE_SHIFT (34) - PAGE_SHIFT (13) = 21 >=
MAX_ORDER (13)

Link: http://lkml.kernel.org/r/20190327063626.18421-3-alex@ghiti.fr
Signed-off-by: Alexandre Ghiti <alex@ghiti.fr>
Acked-by: David S. Miller <davem@davemloft.net>
Cc: Andy Lutomirsky <luto@kernel.org>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: "H . Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rich Felker <dalias@libc.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 09:47:47 -07:00
Alexandre Ghiti
a861bbce27 sh: advertise gigantic page support
Patch series "Fix free/allocation of runtime gigantic pages", v8.

This series fixes sh and sparc that did not advertise their gigantic page
support and then were not able to allocate and free those pages at
runtime.  It renames MEMORY_ISOLATION && COMPACTION || CMA condition into
the more accurate CONTIG_ALLOC, since it allows the definition of
alloc_contig_range function.

Finally, it then fixes the wrong definition of ARCH_HAS_GIGANTIC_PAGE
config that, without MEMORY_ISOLATION && COMPACTION || CMA defined, did
not allow architectures to free boottime allocated gigantic pages although
unrelated.

This patch (of 4):

sh actually supports gigantic pages and selecting ARCH_HAS_GIGANTIC_PAGE
allows it to allocate and free gigantic pages at runtime.

At least sdk7786_defconfig exposes such a configuration with huge pages of
64MB, pages of 4KB and MAX_ORDER = 11: HPAGE_SHIFT (26) - PAGE_SHIFT (12)
= 14 >= MAX_ORDER (11)

Link: http://lkml.kernel.org/r/20190327063626.18421-2-alex@ghiti.fr
Signed-off-by: Alexandre Ghiti <alex@ghiti.fr>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Rich Felker <dalias@libc.org>
Cc: David S. Miller <davem@davemloft.net>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H . Peter Anvin" <hpa@zytor.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andy Lutomirsky <luto@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 09:47:47 -07:00
Mike Rapoport
0d7b4a607d riscv: switch over to generic free_initmem()
The riscv version of free_initmem() differs from the generic one only in
that it sets the freed memory to zero.

Make ricsv use the generic version and poison the freed memory.

Link: http://lkml.kernel.org/r/1550515285-17446-5-git-send-email-rppt@linux.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Reviewed-by: Palmer Dabbelt <palmer@sifive.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Richard Kuo <rkuo@codeaurora.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 09:47:47 -07:00
Mike Rapoport
f40399992a init: free_initmem: poison freed init memory
Various architectures including x86 poison the freed init memory.  Do the
same in the generic free_initmem implementation and switch sparc32
architecture that is identical to the generic code over to it now.

Link: http://lkml.kernel.org/r/1550515285-17446-4-git-send-email-rppt@linux.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Palmer Dabbelt <palmer@sifive.com>
Cc: Richard Kuo <rkuo@codeaurora.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 09:47:47 -07:00
Mike Rapoport
522c991945 hexagon: switch over to generic free_initmem()
hexagon implementation of free_initmem() is currently empty and marked
with comment

 * Todo:  free pages between __init_begin and __init_end; possibly
 * some devtree related stuff as well.

Switch it to the generic implementation.

Link: http://lkml.kernel.org/r/1550515285-17446-3-git-send-email-rppt@linux.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Palmer Dabbelt <palmer@sifive.com>
Cc: Richard Kuo <rkuo@codeaurora.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 09:47:47 -07:00
Mike Rapoport
997aef68af init: provide a generic free_initmem implementation
Patch series "provide a generic free_initmem implementation", v2.

Many architectures implement free_initmem() in exactly the same or very
similar way: they wrap the call to free_initmem_default() with sometimes
different 'poison' parameter.

These patches switch those architectures to use a generic implementation
that does free_initmem_default(POISON_FREE_INITMEM).

This was inspired by Christoph's patches for free_initrd_mem [1] and I
shamelessly copied changelog entries from his patches :)

[1] https://lore.kernel.org/lkml/20190213174621.29297-1-hch@lst.de/

This patch (of 2):

For most architectures free_initmem just a wrapper for the same
free_initmem_default(-1) call.  Provide that as a generic implementation
marked __weak.

Link: http://lkml.kernel.org/r/1550515285-17446-2-git-send-email-rppt@linux.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Palmer Dabbelt <palmer@sifive.com>
Cc: Richard Kuo <rkuo@codeaurora.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 09:47:47 -07:00
Christoph Hellwig
f94f7434cb initramfs: poison freed initrd memory
Various architectures including x86 poison the freed initrd memory.  Do
the same in the generic free_initrd_mem implementation and switch a few
more architectures that are identical to the generic code over to it now.

Link: http://lkml.kernel.org/r/20190213174621.29297-9-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Mike Rapoport <rppt@linux.ibm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>	[arm64]
Cc: Geert Uytterhoeven <geert@linux-m68k.org>	[m68k]
Cc: Steven Price <steven.price@arm.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 09:47:47 -07:00
Christoph Hellwig
4afd58e14d initramfs: provide a generic free_initrd_mem implementation
For most architectures free_initrd_mem just expands to the same
free_reserved_area call.  Provide that as a generic implementation marked
__weak.

Link: http://lkml.kernel.org/r/20190213174621.29297-8-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>	[m68k]
Acked-by: Mike Rapoport <rppt@linux.ibm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>	[arm64]
Cc: Steven Price <steven.price@arm.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 09:47:47 -07:00
Christoph Hellwig
d8ae8a3765 initramfs: move the legacy keepinitrd parameter to core code
No need to handle the freeing disable in arch code when we already have a
core hook (and a different name for the option) for it.

Link: http://lkml.kernel.org/r/20190213174621.29297-7-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>	[arm64]
Acked-by: Mike Rapoport <rppt@linux.ibm.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>	[m68k]
Cc: Steven Price <steven.price@arm.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 09:47:47 -07:00
Christoph Hellwig
afef7889c4 initramfs: cleanup populate_rootfs
The code for kernels that support ramdisks or not is mostly the same.
Unify it by using an IS_ENABLED for the info message, and moving the error
message into a stub for populate_initrd_image.

[cai@lca.pw: fix a compilation error]
  Link: http://lkml.kernel.org/r/20190328014806.36375-1-cai@lca.pw
Link: http://lkml.kernel.org/r/20190213174621.29297-6-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Qian Cai <cai@lca.pw>
Acked-by: Mike Rapoport <rppt@linux.ibm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>	[arm64]
Cc: Geert Uytterhoeven <geert@linux-m68k.org>	[m68k]
Cc: Steven Price <steven.price@arm.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 09:47:47 -07:00
Christoph Hellwig
7c184ecd26 initramfs: factor out a helper to populate the initrd image
This will allow for cleaner code sharing in the caller.

Link: http://lkml.kernel.org/r/20190213174621.29297-5-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Mike Rapoport <rppt@linux.ibm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>	[arm64]
Cc: Geert Uytterhoeven <geert@linux-m68k.org>	[m68k]
Cc: Steven Price <steven.price@arm.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 09:47:47 -07:00
Christoph Hellwig
23091e2873 initramfs: cleanup initrd freeing
Factor the kexec logic into a separate helper, and then inline the rest of
free_initrd into the only caller.

Link: http://lkml.kernel.org/r/20190213174621.29297-4-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Mike Rapoport <rppt@linux.ibm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>	[arm64]
Cc: Geert Uytterhoeven <geert@linux-m68k.org>	[m68k]
Cc: Steven Price <steven.price@arm.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 09:47:47 -07:00
Christoph Hellwig
54c7a8916a initramfs: free initrd memory if opening /initrd.image fails
Patch series "initramfs tidyups".

I've spent some time chasing down behavior in initramfs and found
plenty of opportunity to improve the code.  A first stab on that is
contained in this series.

This patch (of 7):

We free the initrd memory for all successful or error cases except for the
case where opening /initrd.image fails, which looks like an oversight.

Steven said:

: This also changes the behaviour when CONFIG_INITRAMFS_FORCE is enabled
: - specifically it means that the initrd is freed (previously it was
: ignored and never freed).  But that seems like reasonable behaviour and
: the previous behaviour looks like another oversight.

Link: http://lkml.kernel.org/r/20190213174621.29297-3-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Steven Price <steven.price@arm.com>
Acked-by: Mike Rapoport <rppt@linux.ibm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>	[arm64]
Cc: Geert Uytterhoeven <geert@linux-m68k.org>	[m68k]
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 09:47:47 -07:00
Yue Hu
1df3a33907 mm/cma.c: fix crash on CMA allocation if bitmap allocation fails
f022d8cb7e ("mm: cma: Don't crash on allocation if CMA area can't be
activated") fixes the crash issue when activation fails via setting
cma->count as 0, same logic exists if bitmap allocation fails.

Link: http://lkml.kernel.org/r/20190325081309.6004-1-zbestahu@gmail.com
Signed-off-by: Yue Hu <huyue2@yulong.com>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Laura Abbott <labbott@redhat.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 09:47:47 -07:00
Johannes Weiner
113b7dfd82 mm: memcontrol: quarantine the mem_cgroup_[node_]nr_lru_pages() API
Only memcg_numa_stat_show() uses those wrappers and the lru bitmasks,
group them together.

Link: http://lkml.kernel.org/r/20190228163020.24100-7-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 09:47:47 -07:00
Johannes Weiner
21d89d151b mm: memcontrol: push down mem_cgroup_nr_lru_pages()
mem_cgroup_nr_lru_pages() is just a convenience wrapper around
memcg_page_state() that takes bitmasks of lru indexes and aggregates the
counts for those.

Replace callsites where the bitmask is simple enough with direct
memcg_page_state() call(s).

Link: http://lkml.kernel.org/r/20190228163020.24100-6-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 09:47:47 -07:00
Johannes Weiner
2b487e59f0 mm: memcontrol: push down mem_cgroup_node_nr_lru_pages()
mem_cgroup_node_nr_lru_pages() is just a convenience wrapper around
lruvec_page_state() that takes bitmasks of lru indexes and aggregates the
counts for those.

Replace callsites where the bitmask is simple enough with direct
lruvec_page_state() calls.

This removes the last extern user of mem_cgroup_node_nr_lru_pages(), so
make that function private again, too.

Link: http://lkml.kernel.org/r/20190228163020.24100-5-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 09:47:46 -07:00
Johannes Weiner
22796c844f mm: memcontrol: replace node summing with memcg_page_state()
Instead of adding up the node counters, use memcg_page_state() to get the
memcg state directly.  This is a bit cheaper and more stream-lined.

Link: http://lkml.kernel.org/r/20190228163020.24100-4-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 09:47:46 -07:00
Johannes Weiner
1a61ab8038 mm: memcontrol: replace zone summing with lruvec_page_state()
Instead of adding up the zone counters, use lruvec_page_state() to get the
node state directly.  This is a bit cheaper and more stream-lined.

Link: http://lkml.kernel.org/r/20190228163020.24100-3-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 09:47:46 -07:00
Johannes Weiner
e0ee0e7107 mm: memcontrol: track LRU counts in the vmstats array
Patch series "mm: memcontrol: clean up the LRU counts tracking".

The memcg LRU stats usage is currently a bit messy.  Memcg has private
per-zone counters because reclaim needs zone granularity sometimes, but we
also have plenty of users that need to awkwardly sum them up to node or
memcg granularity.  Meanwhile the canonical per-memcg vmstats do not track
the LRU counts (NR_INACTIVE_ANON etc.) as you'd expect.

This series enables LRU count tracking in the per-memcg vmstats array such
that lruvec_page_state() and memcg_page_state() work on the enum
node_stat_item items for the LRU counters.  Then it converts all the
callers that don't specifically need per-zone numbers over to that.

This patch (of 6):

The memcg code currently maintains private per-zone breakdowns of the LRU
counters.  This is necessary for reclaim decisions which are still
zone-based, but there are a variety of users of these counters that only
want the aggregate per-lruvec or per-memcg LRU counts, and they need to
painfully sum up the zone counters on each request for that.

These would be better served using the memcg vmstats arrays, which track
VM statistics at the desired scope already.  They just don't have the LRU
counts right now.

So to kick off the conversion, begin tracking LRU counts in those.

Link: http://lkml.kernel.org/r/20190228163020.24100-2-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Roman Gushchin <guro@fb.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 09:47:46 -07:00
Yafang Shao
132bb8cfc9 mm/vmscan: add tracepoints for node reclaim
The page alloc fast path it may perform node reclaim, which may cause a
latency spike.  We should add tracepoint for this event, and also measure
the latency it causes.

So bellow two tracepoints are introduced,
	mm_vmscan_node_reclaim_begin
	mm_vmscan_node_reclaim_end

Link: http://lkml.kernel.org/r/1551421452-5385-1-git-send-email-laoar.shao@gmail.com
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Souptick Joarder <jrdr.linux@gmail.com>
Cc: <shaoyafang@didiglobal.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 09:47:46 -07:00
Anshuman Khandual
5e65af19e8 mm/page_isolation.c: remove redundant pfn_valid_within() in __first_valid_page()
pfn_valid_within() calls pfn_valid() when CONFIG_HOLES_IN_ZONE making it
redundant for both definitions (w/wo CONFIG_MEMORY_HOTPLUG) of the helper
pfn_to_online_page() which either calls pfn_valid() or pfn_valid_within().
pfn_valid_within() being 1 when !CONFIG_HOLES_IN_ZONE is irrelevant
either way.  This does not change functionality.

Link: http://lkml.kernel.org/r/1553141595-26907-1-git-send-email-anshuman.khandual@arm.com
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 09:47:46 -07:00
Yafang Shao
b6cfab7ad1 mm, compaction: some tracepoints should be defined only when CONFIG_COMPACTION is set
Only mm_compaction_isolate_{free, migrate}pages may be used when
CONFIG_COMPACTION is not set.  All others are used only when
CONFIG_COMPACTION is set.

After this change, if CONFIG_COMPACTION is not set, the tracepoints that
only work when CONFIG_COMPACTION is set will not be exposed to userspace.
Without this change, they will always be exposed in debugfs whether
CONFIG_COMPACTION is set or not.  This is an improvement.

Link: http://lkml.kernel.org/r/1552440403-11780-1-git-send-email-laoar.shao@gmail.com
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 09:47:46 -07:00