2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-23 20:53:53 +08:00
Commit Graph

23 Commits

Author SHA1 Message Date
Greg Kroah-Hartman
b24413180f License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.

By default all files without license information are under the default
license of the kernel, which is GPL version 2.

Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier.  The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.

This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.

How this work was done:

Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
 - file had no licensing information it it.
 - file was a */uapi/* one with no licensing information in it,
 - file was a */uapi/* one with existing licensing information,

Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.

The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne.  Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.

The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed.  Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.

Criteria used to select files for SPDX license identifier tagging was:
 - Files considered eligible had to be source code files.
 - Make and config files were included as candidates if they contained >5
   lines of source
 - File already had some variant of a license header in it (even if <5
   lines).

All documentation files were explicitly excluded.

The following heuristics were used to determine which SPDX license
identifiers to apply.

 - when both scanners couldn't find any license traces, file was
   considered to have no license information in it, and the top level
   COPYING file license applied.

   For non */uapi/* files that summary was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0                                              11139

   and resulted in the first patch in this series.

   If that file was a */uapi/* path one, it was "GPL-2.0 WITH
   Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0 WITH Linux-syscall-note                        930

   and resulted in the second patch in this series.

 - if a file had some form of licensing information in it, and was one
   of the */uapi/* ones, it was denoted with the Linux-syscall-note if
   any GPL family license was found in the file or had no licensing in
   it (per prior point).  Results summary:

   SPDX license identifier                            # files
   ---------------------------------------------------|------
   GPL-2.0 WITH Linux-syscall-note                       270
   GPL-2.0+ WITH Linux-syscall-note                      169
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
   LGPL-2.1+ WITH Linux-syscall-note                      15
   GPL-1.0+ WITH Linux-syscall-note                       14
   ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
   LGPL-2.0+ WITH Linux-syscall-note                       4
   LGPL-2.1 WITH Linux-syscall-note                        3
   ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
   ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1

   and that resulted in the third patch in this series.

 - when the two scanners agreed on the detected license(s), that became
   the concluded license(s).

 - when there was disagreement between the two scanners (one detected a
   license but the other didn't, or they both detected different
   licenses) a manual inspection of the file occurred.

 - In most cases a manual inspection of the information in the file
   resulted in a clear resolution of the license that should apply (and
   which scanner probably needed to revisit its heuristics).

 - When it was not immediately clear, the license identifier was
   confirmed with lawyers working with the Linux Foundation.

 - If there was any question as to the appropriate license identifier,
   the file was flagged for further research and to be revisited later
   in time.

In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.

Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights.  The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.

Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.

In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.

Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
 - a full scancode scan run, collecting the matched texts, detected
   license ids and scores
 - reviewing anything where there was a license detected (about 500+
   files) to ensure that the applied SPDX license was correct
 - reviewing anything where there was no detection but the patch license
   was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
   SPDX license was correct

This produced a worksheet with 20 files needing minor correction.  This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.

These .csv files were then reviewed by Greg.  Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected.  This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.)  Finally Greg ran the script using the .csv files to
generate the patches.

Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-02 11:10:55 +01:00
Peter De Schrijver
e6639117d6 kernel: add calibration_delay_done()
Add calibration_delay_done() call and dummy implementation. This allows
architectures to stop accepting registrations for new timer based delay
functions.

Signed-off-by: Peter De Schrijver <pdeschrijver@nvidia.com>
Acked-by: Russell King <rmk+kernel@arm.linux.org.uk>
Signed-off-by: Stephen Warren <swarren@nvidia.com>
2014-06-16 12:47:39 -06:00
Paul Gortmaker
0db0628d90 kernel: delete __cpuinit usage from all core kernel files
The __cpuinit type of throwaway sections might have made sense
some time ago when RAM was more constrained, but now the savings
do not offset the cost and complications.  For example, the fix in
commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time")
is a good example of the nasty type of bugs that can be created
with improper use of the various __init prefixes.

After a discussion on LKML[1] it was decided that cpuinit should go
the way of devinit and be phased out.  Once all the users are gone,
we can then finally remove the macros themselves from linux/init.h.

This removes all the uses of the __cpuinit macros from C files in
the core kernel directories (kernel, init, lib, mm, and include)
that don't really have a specific maintainer.

[1] https://lkml.org/lkml/2013/5/20/589

Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2013-07-14 19:36:59 -04:00
Diwakar Tundlam
8595c539f0 init: check printed flag to skip printing message
Otherwise the 'Calibration skipped' message gets printed everytime a CPU
is hotplugged in, cluttering console for systems that frequently hotplug
CPUs.

Signed-off-by: Diwakar Tundlam <dtundlam@nvidia.com>
Cc: Phil Carmody <ext-phil.2.carmody@nokia.com>
Cc: Russell King <rmk+kernel@arm.linux.org.uk>
Cc: Greg KH <greg@kroah.com>
Cc: Sameer Nanda <snanda@chromium.org>
Cc: Peter De Schrijver <pdeschrijver@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-23 16:58:38 -07:00
Jack Steiner
b565201cf7 x86: Reduce clock calibration time during slave cpu startup
Reduce the startup time for slave cpus.

Adds hooks for an arch-specific function for clock calibration.
These hooks are used on x86.  If a newly started cpu has the
same phys_proc_id as a core already active, uses the TSC for the
delay loop and has a CONSTANT_TSC, use the already-calculated
value of loops_per_jiffy.

This patch reduces the time required to start slave cpus on a
4096 cpu system from: 465 sec OLD 62 sec NEW

This reduces boot time on a 4096p system by almost 7 minutes.
Nice...

Signed-off-by: Jack Steiner <steiner@sgi.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: John Stultz <john.stultz@linaro.org>
[fix CONFIG_SMP=n build]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-12-05 17:12:43 +01:00
Sameer Nanda
7afe1845dd init: skip calibration delay if previously done
For each CPU, do the calibration delay only once.  For subsequent calls,
use the cached per-CPU value of loops_per_jiffy.

This saves about 200ms of resume time on dual core Intel Atom N5xx based
systems.  This helps bring down the kernel resume time on such systems
from about 500ms to about 300ms.

[akpm@linux-foundation.org: make cpu_loops_per_jiffy static]
[akpm@linux-foundation.org: clean up message text]
[akpm@linux-foundation.org: fix things up after upstream rmk changes]
Signed-off-by: Sameer Nanda <snanda@chromium.org>
Cc: Phil Carmody <ext-phil.2.carmody@nokia.com>
Cc: Andrew Worsley <amworsley@gmail.com>
Cc: David Daney <ddaney@caviumnetworks.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-07-25 20:57:17 -07:00
Russell King
1b19ca9f0b Fix CPU spinlock lockups on secondary CPU bringup
Secondary CPU bringup typically calls calibrate_delay() during its
initialization.  However, calibrate_delay() modifies a global variable
(loops_per_jiffy) used for udelay() and __delay().

A side effect of 71c696b1 ("calibrate: extract fall-back calculation
into own helper") introduced in the 2.6.39 merge window means that we
end up with a substantial period where loops_per_jiffy is zero.  This
causes the spinlock debugging code to malfunction:

	u64 loops = loops_per_jiffy * HZ;
	for (;;) {
		for (i = 0; i < loops; i++) {
			if (arch_spin_trylock(&lock->raw_lock))
				return;
			__delay(1);
		}
		...
	}

by never calling arch_spin_trylock() - resulting in the CPU locking
up in an infinite loop inside __spin_lock_debug().

Work around this by only writing to loops_per_jiffy only once we have
completed all the calibration decisions.

Tested-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Cc: <stable@kernel.org> (2.6.39-stable)
--
Better solutions (such as omitting the calibration for secondary CPUs,
or arranging for calibrate_delay() to return the LPJ value and leave
it to the caller to decide where to store it) are a possibility, but
would be much more invasive into each architecture.

I think this is the best solution for -rc and stable, but it should be
revisited for the next merge window.

 init/calibrate.c |   14 ++++++++------
 1 files changed, 8 insertions(+), 6 deletions(-)
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-06-23 08:59:38 -07:00
Borislav Petkov
de695e159e init/calibrate.c: remove annoying printk
Remove calibrate_delay_direct()'s KERN_DEBUG printk related to bogomips
calculation as it appears when booting every core on setups with
'ignore_loglevel' which dmesg people scan for possible issues.  As the
message doesn't show very useful information to the widest audience of
kernel boot message gazers, it should be removed.

Introduced by commit d2b463135f ("init/calibrate.c: fix for critical
bogoMIPS intermittent calculation failure").

Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
Cc: Andrew Worsley <amworsley@gmail.com>
Cc: Phil Carmody <ext-phil.2.carmody@nokia.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-06-15 20:04:01 -07:00
Andrew Worsley
d2b463135f init/calibrate.c: fix for critical bogoMIPS intermittent calculation failure
A fix to the TSC (Time Stamp Counter) based bogoMIPS calculation used on
secondary CPUs which has two faults:

1: Not handling wrapping of the lower 32 bits of the TSC counter on
   32bit kernel - perhaps TSC is not reset by a warm reset?

2: TSC and Jiffies are no incrementing together properly.  Either
   jiffies increment too quickly or Time Stamp Counter isn't incremented
   in during an SMI but the real time clock is and jiffies are
   incremented.

Case 1 can result in a factor of 16 too large a value which makes udelay()
values too small and can cause mysterious driver errors.  Case 2 appears
to give smaller 10-15% errors after averaging but enough to cause
occasional failures on my own board

I have tested this code on my own branch and attach patch suitable for
current kernel code.  See below for examples of the failures and how the
fix handles these situations now.

I reported this issue earlier here:
     Intermittent problem with BogoMIPs calculation on Intel AP CPUs -
http://marc.info/?l=linux-kernel&m=129947246316875&w=4

I suspect this issue has been seen by others but as it is intermittent and
bogoMIPS for secondary CPUs are no longer printed out it might have been
difficult to identify this as the cause.  Perhaps these unresolved issues,
although quite old, might be relevant as possibly this fault has been
around for a while.  In particular Case 1 may only be relevant to 32bit
kernels on newer HW (most people run 64bit kernels?).  Case 2 is less
dramatic since the earlier fix in this area and also intermittent.

   Re: bogomips discrepancy on Intel Core2 Quad CPU -
http://marc.info/?l=linux-kernel&m=118929277524298&w=4
   slow system and bogus bogomips  -
http://marc.info/?l=linux-kernel&m=116791286716107&w=4
   Re: Re: [RFC-PATCH] clocksource: update lpj if clocksource has -
http://marc.info/?l=linux-kernel&m=128952775819467&w=4

This issue is masked a little by commit feae3203d7 ("timers, init:
Limit the number of per cpu calibration bootup messages") which only
prints out the first bogoMIPS value making it much harder to notice other
values differing.  Perhaps it should be changed to only suppress them when
they are similar values?

Here are some outputs showing faults occurring and the new code handling
them properly.  See my earlier message for examples of the original
failure.

    Case 1:   A Time Stamp Counter wrap:
...
Calibrating delay loop (skipped), value calculated using timer
frequency.. 6332.70 BogoMIPS (lpj=31663540)
....
calibrate_delay_direct() timer_rate_max=31666493
timer_rate_min=31666151 pre_start=4170369255 pre_end=4202035539
calibrate_delay_direct() timer_rate_max=2425955274
timer_rate_min=2425954941 pre_start=4265368533 pre_end=2396356387
calibrate_delay_direct() ignoring timer_rate as we had a TSC wrap
around start=4265368581 >=post_end=2396356511
calibrate_delay_direct() timer_rate_max=31666274
timer_rate_min=31665942 pre_start=2440373374 pre_end=2472039515
calibrate_delay_direct() timer_rate_max=31666492
timer_rate_min=31666160 pre_start=2535372139 pre_end=2567038422
calibrate_delay_direct() timer_rate_max=31666455
timer_rate_min=31666207 pre_start=2630371084 pre_end=2662037415
Calibrating delay using timer specific routine.. 6333.28 BogoMIPS (lpj=31666428)
Total of 2 processors activated (12665.99 BogoMIPS).
....

    Case 2:  Some thing (presumably the SMM interrupt?) causing the
very low increase in TSC counter for the DELAY_CALIBRATION_TICKS
increase in jiffies
...
Calibrating delay loop (skipped), value calculated using timer
frequency.. 6333.25 BogoMIPS (lpj=31666270)
...
calibrate_delay_direct() timer_rate_max=31666483
timer_rate_min=31666074 pre_start=4199536526 pre_end=4231202809
calibrate_delay_direct() timer_rate_max=864348 timer_rate_min=864016
pre_start=2405343672 pre_end=2406207897
calibrate_delay_direct() timer_rate_max=31666483
timer_rate_min=31666179 pre_start=2469540464 pre_end=2501206823
calibrate_delay_direct() timer_rate_max=31666511
timer_rate_min=31666122 pre_start=2564539400 pre_end=2596205712
calibrate_delay_direct() timer_rate_max=31666084
timer_rate_min=31665685 pre_start=2659538782 pre_end=2691204657
calibrate_delay_direct() dropping min bogoMips estimate 1 = 864348
Calibrating delay using timer specific routine.. 6333.27 BogoMIPS (lpj=31666390)
Total of 2 processors activated (12666.53 BogoMIPS).
...

After 70 boots I saw 2 variations <1% slip through

[akpm@linux-foundation.org: coding-style fixes]
[akpm@linux-foundation.org: fix straggly printk mess]
Signed-off-by: Andrew Worsley <amworsley@gmail.com>
Reviewed-by: Phil Carmody <ext-phil.2.carmody@nokia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-05-25 08:39:46 -07:00
Phil Carmody
b1b5f65e53 calibrate: retry with wider bounds when converge seems to fail
Systems with unmaskable interrupts such as SMIs may massively
underestimate loops_per_jiffy, and fail to converge anywhere near the real
value.  A case seen on x86_64 was an initial estimate of 256<<12, which
converged to 511<<12 where the real value should have been over 630<<12.
This admitedly requires bypassing the TSC calibration (lpj_fine), and a
failure to settle in the direct calibration too, but is physically
possible.  This failure does not depend on my previous calibration
optimisation, but by luck is easy to fix with the optimisation in place
with a trivial retry loop.

In the context of the optimised converging method, as we can no longer
trust the starting estimate, enlarge the search bounds exponentially so
that the number of retries is logarithmically bounded.

[akpm@linux-foundation.org: mention x86_64 SMIs in comment]
Signed-off-by: Phil Carmody <ext-phil.2.carmody@nokia.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Tested-by: Stephen Boyd <sboyd@codeaurora.org>
Cc: Greg KH <greg@kroah.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-03-22 17:44:12 -07:00
Phil Carmody
191e56880a calibrate: home in on correct lpj value more quickly
Binary chop with a jiffy-resync on each step to find an upper bound is
slow, so just race in a tight-ish loop to find an underestimate.

If done with lots of individual steps, sometimes several hundreds of
iterations would be required, which would impose a significant overhead,
and make the initial estimate very low.  By taking slowly increasing steps
there will be less overhead.

E.g.  an x86_64 2.67GHz could have fitted in 613 individual small delays,
but in reality should have been able to fit in a single delay 644 times
longer, so underestimated by 31 steps.  To reach the equivalent of 644
small delays with the accelerating scheme now requires about 130
iterations, so has <1/4th of the overhead, and can therefore be expected
to underestimate by only 7 steps.

As now we have a better initial estimate we can binary chop over a smaller
range.  With the loop overhead in the initial estimate kept low, and the
step sizes moderate, we won't have under-estimated by much, so chose as
tight a range as we can.

Signed-off-by: Phil Carmody <ext-phil.2.carmody@nokia.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Tested-by: Stephen Boyd <sboyd@codeaurora.org>
Cc: Greg KH <greg@kroah.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-03-22 17:44:11 -07:00
Phil Carmody
71c696b1d0 calibrate: extract fall-back calculation into own helper
The motivation for this patch series is that currently our OMAP calibrates
itself using the trial-and-error binary chop fallback that some other
architectures no longer need to perform.  This is a lengthy process,
taking 0.2s in an environment where boot time is of great interest.

Patch 2/4 has two optimisations.  Firstly, it replaces the initial
repeated- doubling to find the relevant power of 2 with a tight loop that
just does as much as it can in a jiffy.  Secondly, it doesn't binary chop
over an entire power of 2 range, it choses a much smaller range based on
how much it squeezed in, and failed to squeeze in, during the first stage.
 Both are significant optimisations, and bring our calibration down from
23 jiffies to 5, and, in the process, often arrive at a more accurate lpj
value.

The 'bands' and 'sub-logarithmic' growth may look over-engineered, but
they only cost a small level of inaccuracy in the initial guess (for all
architectures) in order to avoid the very large inaccuracies that appeared
during testing (on x86_64 architectures, and presumably others with less
metronomic operation).  Note that due to the existence of the TSC and
other timers, the x86_64 will not typically use this fallback routine, but
I wanted to code defensively, able to cope with all kinds of processor
behaviours and kernel command line options.

Patch 3/4 is an additional trap for the nightmare scenario where the
initial estimate is very inaccurate, possibly due to things like SMIs.
It simply retries with a larger bound.

Stephen said:

I tried this patch set out on an MSM7630.
:
: Before:
:
: Calibrating delay loop... 681.57 BogoMIPS (lpj=3407872)
:
: After:
:
: Calibrating delay loop... 680.75 BogoMIPS (lpj=3403776)
:
: But the really good news is calibration time dropped from ~247ms to ~56ms.
:  Sadly we won't be able to benefit from this should my udelay patches make
: it into ARM because we would be using calibrate_delay_direct() instead (at
: least on machines who choose to).  Can we somehow reapply the logic behind
: this to calibrate_delay_direct()?  That would be even better, but this is
: definitely a boot time improvement.
:
: Or maybe we could just replace calibrate_delay_direct() with this fallback
: calculation?  If __delay() is a thin wrapper around read_current_timer()
: it should work just as well (plus patch 3 makes it handle SMIs).  I'll try
: that out.

This patch:

... so that it can be modified more clinically.

This is almost entirely cosmetic. The only change to the operation
is that the global variable is only set once after the estimation is
completed, rather than taking on all the intermediate values. However,
there are no readers of that variable, so this change is unimportant.

Signed-off-by: Phil Carmody <ext-phil.2.carmody@nokia.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Tested-by: Stephen Boyd <sboyd@codeaurora.org>
Cc: Greg KH <greg@kroah.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-03-22 17:44:11 -07:00
Tim Deegan
70a062286b fix jiffy calculations in calibrate_delay_direct to handle overflow
Fixes a hang when booting as dom0 under Xen, when jiffies can be
quite large by the time the kernel init gets this far.

Signed-off-by: Tim Deegan <Tim.Deegan@citrix.com>
[jbeulich@novell.com: !time_after() -> time_before_eq() as suggested by Jiri Slaby]
Signed-off-by: Jan Beulich <jbeulich@novell.com>
Cc: Jiri Slaby <jslaby@suse.cz>
Cc: Jeremy Fitzhardinge <jeremy@goop.org>
Cc: stable@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-02-10 11:00:09 -08:00
Mike Travis
feae3203d7 timers, init: Limit the number of per cpu calibration bootup messages
Limit the number of per cpu calibration messages by only
printing out results for the first cpu to boot.

Also, don't print "CPUx is down" as this is expected, and we
don't need 4096 reminders... ;-)

Signed-off-by: Mike Travis <travis@sgi.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Roland Dreier <rdreier@cisco.com>
Cc: Randy Dunlap <rdunlap@xenotime.net>
Cc: Tejun Heo <tj@kernel.org>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Greg Kroah-Hartman <gregkh@suse.de>
Cc: Yinghai Lu <yhlu.kernel@gmail.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Cc: Jack Steiner <steiner@sgi.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
LKML-Reference: <20091118002219.889552000@alcatraz.americas.sgi.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-11-26 10:18:42 +01:00
Joe Perches
d7ba11d01c x86: remove stray <6> in BogoMIPS printk
Rabin Vincent noticed that there's a stray <6> in BogoMIPS printk:

> Remove the extra KERN_INFO which causes this:
> Calibrating delay loop... <6>179.40 BogoMIPS (lpj=897024)
> -	printk(KERN_INFO "%lu.%02lu BogoMIPS (lpj=%lu)\n",
> -			loops_per_jiffy/(500000/HZ),
> -			(loops_per_jiffy/(5000/HZ)) % 100, loops_per_jiffy);
> +	printk("%lu.%02lu BogoMIPS (lpj=%lu)\n",
> +		loops_per_jiffy/(500000/HZ),
> +		(loops_per_jiffy/(5000/HZ)) % 100, loops_per_jiffy);
>  }

How about just using KERN_CONT and leaving the whitespace
for a patch that does the entire file?

Reported-by: Rabin Vincent <rabin@rab.in>
2008-07-28 14:22:26 +02:00
Alok Kataria
f3f3149f35 x86: use cpu_khz for loops_per_jiffy calculation, cleanup
As suggested by Ingo, remove all references to tsc from init/calibrate.c

TSC is x86 specific, and using tsc in variable names in a generic file should
be avoided. lpj_tsc is now called lpj_fine, since it is related to fine tuning
of lpj value. Also tsc_rate_*  is called timer_rate_*

Signed-off-by: Alok N Kataria <akataria@vmware.com>
Cc: Arjan van de Ven <arjan@infradead.org>
Cc: Daniel Hecht <dhecht@vmware.com>
Cc: Tim Mann <mann@vmware.com>
Cc: Zach Amsden <zach@vmware.com>
Cc: Sahil Rihan <srihan@vmware.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-06-24 13:53:46 +02:00
Alok Kataria
3da757daf8 x86: use cpu_khz for loops_per_jiffy calculation
On the x86 platform we can use the value of tsc_khz computed during tsc
calibration to calculate the loops_per_jiffy value. Its very important
to keep the error in lpj values to minimum as any error in that may
result in kernel panic in check_timer. In virtualization environment, On
a highly overloaded host the guest delay calibration may sometimes
result in errors beyond the ~50% that timer_irq_works can handle,
resulting in the guest panicking.

Does some formating changes to lpj_setup code to now have a single
printk to print the bogomips value.

We do this only for the boot processor because the AP's can have
different base frequencies or the BIOS might boot a AP at a different
frequency.

Signed-off-by: Alok N Kataria <akataria@vmware.com>
Cc: Arjan van de Ven <arjan@infradead.org>
Cc: Daniel Hecht <dhecht@vmware.com>
Cc: Tim Mann <mann@vmware.com>
Cc: Zach Amsden <zach@vmware.com>
Cc: Sahil Rihan <srihan@vmware.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-06-23 22:51:33 +02:00
Adrian Bunk
6c81c32f96 calibrate_delay() must be __cpuinit
calibrate_delay() must be __cpuinit, not __{dev,}init.

I've verified that this is correct for all users.

While doing the latter, I also did the following cleanups:
- remove pointless additional prototypes in C files
- ensure all users #include <linux/delay.h>

This fixes the following section mismatches with CONFIG_HOTPLUG=n,
CONFIG_HOTPLUG_CPU=y:

WARNING: vmlinux.o(.text+0x1128d): Section mismatch: reference to .init.text.1:calibrate_delay (between 'check_cx686_slop' and 'set_cx86_reorder')
WARNING: vmlinux.o(.text+0x25102): Section mismatch: reference to .init.text.1:calibrate_delay (between 'smp_callin' and 'cpu_coregroup_map')

Signed-off-by: Adrian Bunk <bunk@kernel.org>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: Richard Henderson <rth@twiddle.net>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Christian Zankel <chris@zankel.net>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-06 10:41:08 -08:00
Andrew Morton
941e492bdb read_current_timer() cleanups
- All implementations can be __devinit

- The function prototypes were in asm/timex.h but they all must be the same,
  so create a single declaration in linux/timex.h.

- uninline the sparc64 version to match the other architectures

- Don't bother #defining ARCH_HAS_READ_CURRENT_TIMER to a particular value.

[ezk@cs.sunysb.edu: fix build]
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Haavard Skinnemoen <hskinnemoen@atmel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Andi Kleen <ak@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-06 10:41:02 -08:00
Randy Dunlap
bfe8df3d31 slow down printk during boot
Optionally add a boot delay after each kernel printk() call, crudely
measured in milliseconds, with a maximum delay of 10 seconds per printk.

Enable CONFIG_BOOT_PRINTK_DELAY=y and then add (e.g.):
"lpj=loops_per_jiffy boot_delay=100"
to the kernel command line.

It has been useful in cases like "during boot, my machine just reboots or the
screen goes black" by slowing down printk, (and adding initcall_debug), we can
usually see the last thing that happened before the lights went out which is
usually a valuable clue.

[akpm@linux-foundation.org: not all architectures implement CONFIG_HZ]
[akpm@linux-foundation.org: fix lots of stuff]
[bunk@stusta.de: kernel/printk.c: make 2 variables static]
[heiko.carstens@de.ibm.com: fix slow down printk on boot compile error]
Signed-off-by: Randy Dunlap <rdunlap@xenotime.net>
Signed-off-by: Dave Jones <davej@redhat.com>
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:42:49 -07:00
Tim Schmielau
cd354f1ae7 [PATCH] remove many unneeded #includes of sched.h
After Al Viro (finally) succeeded in removing the sched.h #include in module.h
recently, it makes sense again to remove other superfluous sched.h includes.
There are quite a lot of files which include it but don't actually need
anything defined in there.  Presumably these includes were once needed for
macros that used to live in sched.h, but moved to other header files in the
course of cleaning it up.

To ease the pain, this time I did not fiddle with any header files and only
removed #includes from .c-files, which tend to cause less trouble.

Compile tested against 2.6.20-rc2 and 2.6.20-rc2-mm2 (with offsets) on alpha,
arm, i386, ia64, mips, powerpc, and x86_64 with allnoconfig, defconfig,
allmodconfig, and allyesconfig as well as a few randconfigs on x86_64 and all
configs in arch/arm/configs on arm.  I also checked that no new warnings were
introduced by the patch (actually, some warnings are removed that were emitted
by unnecessarily included header files).

Signed-off-by: Tim Schmielau <tim@physik3.uni-rostock.de>
Acked-by: Russell King <rmk+kernel@arm.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-14 08:09:54 -08:00
Venkatesh Pallipadi
8a9e1b0f56 [PATCH] Platform SMIs and their interferance with tsc based delay calibration
Issue:
Current tsc based delay_calibration can result in significant errors in
loops_per_jiffy count when the platform events like SMIs
(System Management Interrupts that are non-maskable) are present. This could
lead to potential kernel panic(). This issue is becoming more visible with 2.6
kernel (as default HZ is 1000) and on platforms with higher SMI handling
latencies. During the boot time, SMIs are mostly used by BIOS (for things
like legacy keyboard emulation).

Description:
The psuedocode for current delay calibration with tsc based delay looks like
(0) Estimate a value for loops_per_jiffy
(1) While (loops_per_jiffy estimate is accurate enough)
(2)   wait for jiffy transition (jiffy1)
(3)   Note down current tsc (tsc1)
(4)   loop until tsc becomes tsc1 + loops_per_jiffy
(5)   check whether jiffy changed since jiffy1 or not and refine
loops_per_jiffy estimate

Consider the following cases
Case 1:
If SMIs happen between (2) and (3) above, we can end up with a
loops_per_jiffy value that is too low. This results in shorted delays and
kernel can panic () during boot (Mostly at IOAPIC timer initialization
timer_irq_works() as we don't have enough timer interrupts in a specified
interval).

Case 2:
If SMIs happen between (3) and (4) above, then we can end up with a
loops_per_jiffy value that is too high. And with current i386 code, too
high lpj value (greater than 17M) can result in a overflow in
delay.c:__const_udelay() again resulting in shorter delay and panic().

Solution:
The patch below makes the calibration routine aware of asynchronous events
like SMIs. We increase the delay calibration time and also identify any
significant errors (greater than 12.5%) in the calibration and notify it to
user.

Patch below changes both i386 and x86-64 architectures to use this
new and improved calibrate_delay_direct() routine.

Signed-off-by: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 09:45:08 -07:00
Linus Torvalds
1da177e4c3 Linux-2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.

Let it rip!
2005-04-16 15:20:36 -07:00