2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-16 17:43:56 +08:00
Commit Graph

16 Commits

Author SHA1 Message Date
Kirill Tkhai
0c7c1bed7e mm: make counting of list_lru_one::nr_items lockless
During the reclaiming slab of a memcg, shrink_slab iterates over all
registered shrinkers in the system, and tries to count and consume
objects related to the cgroup.  In case of memory pressure, this behaves
bad: I observe high system time and time spent in list_lru_count_one()
for many processes on RHEL7 kernel.

This patch makes list_lru_node::memcg_lrus rcu protected, that allows to
skip taking spinlock in list_lru_count_one().

Shakeel Butt with the patch observes significant perf graph change.  He
says:

========================================================================
Setup: running a fork-bomb in a memcg of 200MiB on a 8GiB and 4 vcpu
VM and recording the trace with 'perf record -g -a'.

The trace without the patch:

+  34.19%     fb.sh  [kernel.kallsyms]  [k] queued_spin_lock_slowpath
+  30.77%     fb.sh  [kernel.kallsyms]  [k] _raw_spin_lock
+   3.53%     fb.sh  [kernel.kallsyms]  [k] list_lru_count_one
+   2.26%     fb.sh  [kernel.kallsyms]  [k] super_cache_count
+   1.68%     fb.sh  [kernel.kallsyms]  [k] shrink_slab
+   0.59%     fb.sh  [kernel.kallsyms]  [k] down_read_trylock
+   0.48%     fb.sh  [kernel.kallsyms]  [k] _raw_spin_unlock_irqrestore
+   0.38%     fb.sh  [kernel.kallsyms]  [k] shrink_node_memcg
+   0.32%     fb.sh  [kernel.kallsyms]  [k] queue_work_on
+   0.26%     fb.sh  [kernel.kallsyms]  [k] count_shadow_nodes

With the patch:

+   0.16%     swapper  [kernel.kallsyms]    [k] default_idle
+   0.13%     oom_reaper  [kernel.kallsyms]    [k] mutex_spin_on_owner
+   0.05%     perf  [kernel.kallsyms]    [k] copy_user_generic_string
+   0.05%     init.real  [kernel.kallsyms]    [k] wait_consider_task
+   0.05%     kworker/0:0  [kernel.kallsyms]    [k] finish_task_switch
+   0.04%     kworker/2:1  [kernel.kallsyms]    [k] finish_task_switch
+   0.04%     kworker/3:1  [kernel.kallsyms]    [k] finish_task_switch
+   0.04%     kworker/1:0  [kernel.kallsyms]    [k] finish_task_switch
+   0.03%     binary  [kernel.kallsyms]    [k] copy_page
========================================================================

Thanks Shakeel for the testing.

[ktkhai@virtuozzo.com: v2]
  Link: http://lkml.kernel.org/r/151203869520.3915.2587549826865799173.stgit@localhost.localdomain
Link: http://lkml.kernel.org/r/150583358557.26700.8490036563698102569.stgit@localhost.localdomain
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Tested-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-05 21:36:27 -07:00
Greg Kroah-Hartman
b24413180f License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.

By default all files without license information are under the default
license of the kernel, which is GPL version 2.

Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier.  The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.

This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.

How this work was done:

Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
 - file had no licensing information it it.
 - file was a */uapi/* one with no licensing information in it,
 - file was a */uapi/* one with existing licensing information,

Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.

The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne.  Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.

The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed.  Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.

Criteria used to select files for SPDX license identifier tagging was:
 - Files considered eligible had to be source code files.
 - Make and config files were included as candidates if they contained >5
   lines of source
 - File already had some variant of a license header in it (even if <5
   lines).

All documentation files were explicitly excluded.

The following heuristics were used to determine which SPDX license
identifiers to apply.

 - when both scanners couldn't find any license traces, file was
   considered to have no license information in it, and the top level
   COPYING file license applied.

   For non */uapi/* files that summary was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0                                              11139

   and resulted in the first patch in this series.

   If that file was a */uapi/* path one, it was "GPL-2.0 WITH
   Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0 WITH Linux-syscall-note                        930

   and resulted in the second patch in this series.

 - if a file had some form of licensing information in it, and was one
   of the */uapi/* ones, it was denoted with the Linux-syscall-note if
   any GPL family license was found in the file or had no licensing in
   it (per prior point).  Results summary:

   SPDX license identifier                            # files
   ---------------------------------------------------|------
   GPL-2.0 WITH Linux-syscall-note                       270
   GPL-2.0+ WITH Linux-syscall-note                      169
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
   LGPL-2.1+ WITH Linux-syscall-note                      15
   GPL-1.0+ WITH Linux-syscall-note                       14
   ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
   LGPL-2.0+ WITH Linux-syscall-note                       4
   LGPL-2.1 WITH Linux-syscall-note                        3
   ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
   ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1

   and that resulted in the third patch in this series.

 - when the two scanners agreed on the detected license(s), that became
   the concluded license(s).

 - when there was disagreement between the two scanners (one detected a
   license but the other didn't, or they both detected different
   licenses) a manual inspection of the file occurred.

 - In most cases a manual inspection of the information in the file
   resulted in a clear resolution of the license that should apply (and
   which scanner probably needed to revisit its heuristics).

 - When it was not immediately clear, the license identifier was
   confirmed with lawyers working with the Linux Foundation.

 - If there was any question as to the appropriate license identifier,
   the file was flagged for further research and to be revisited later
   in time.

In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.

Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights.  The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.

Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.

In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.

Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
 - a full scancode scan run, collecting the matched texts, detected
   license ids and scores
 - reviewing anything where there was a license detected (about 500+
   files) to ensure that the applied SPDX license was correct
 - reviewing anything where there was no detection but the patch license
   was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
   SPDX license was correct

This produced a worksheet with 20 files needing minor correction.  This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.

These .csv files were then reviewed by Greg.  Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected.  This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.)  Finally Greg ran the script using the .csv files to
generate the patches.

Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-02 11:10:55 +01:00
Sahitya Tummala
2c80cd57c7 mm/list_lru.c: fix list_lru_count_node() to be race free
list_lru_count_node() iterates over all memcgs to get the total number of
entries on the node but it can race with memcg_drain_all_list_lrus(),
which migrates the entries from a dead cgroup to another.  This can return
incorrect number of entries from list_lru_count_node().

Fix this by keeping track of entries per node and simply return it in
list_lru_count_node().

Link: http://lkml.kernel.org/r/1498707555-30525-1-git-send-email-stummala@codeaurora.org
Signed-off-by: Sahitya Tummala <stummala@codeaurora.org>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Alexander Polakov <apolyakov@beget.ru>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10 16:32:33 -07:00
Johannes Weiner
127424c86b mm: memcontrol: move kmem accounting code to CONFIG_MEMCG
The cgroup2 memory controller will account important in-kernel memory
consumers per default.  Move all necessary components to CONFIG_MEMCG.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-20 17:09:18 -08:00
Vladimir Davydov
2788cf0c40 memcg: reparent list_lrus and free kmemcg_id on css offline
Now, the only reason to keep kmemcg_id till css free is list_lru, which
uses it to distribute elements between per-memcg lists.  However, it can
be easily sorted out - we only need to change kmemcg_id of an offline
cgroup to its parent's id, making further list_lru_add()'s add elements to
the parent's list, and then move all elements from the offline cgroup's
list to the one of its parent.  It will work, because a racing
list_lru_del() does not need to know the list it is deleting the element
from.  It can decrement the wrong nr_items counter though, but the ongoing
reparenting will fix it.  After list_lru reparenting is done we are free
to release kmemcg_id saving a valuable slot in a per-memcg array for new
cgroups.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Tejun Heo <tj@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Dave Chinner <david@fromorbit.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-12 18:54:10 -08:00
Vladimir Davydov
3f97b16320 list_lru: add helpers to isolate items
Currently, the isolate callback passed to the list_lru_walk family of
functions is supposed to just delete an item from the list upon returning
LRU_REMOVED or LRU_REMOVED_RETRY, while nr_items counter is fixed by
__list_lru_walk_one after the callback returns.  Since the callback is
allowed to drop the lock after removing an item (it has to return
LRU_REMOVED_RETRY then), the nr_items can be less than the actual number
of elements on the list even if we check them under the lock.  This makes
it difficult to move items from one list_lru_one to another, which is
required for per-memcg list_lru reparenting - we can't just splice the
lists, we have to move entries one by one.

This patch therefore introduces helpers that must be used by callback
functions to isolate items instead of raw list_del/list_move.  These are
list_lru_isolate and list_lru_isolate_move.  They not only remove the
entry from the list, but also fix the nr_items counter, making sure
nr_items always reflects the actual number of elements on the list if
checked under the appropriate lock.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Tejun Heo <tj@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Dave Chinner <david@fromorbit.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-12 18:54:10 -08:00
Vladimir Davydov
60d3fd32a7 list_lru: introduce per-memcg lists
There are several FS shrinkers, including super_block::s_shrink, that
keep reclaimable objects in the list_lru structure.  Hence to turn them
to memcg-aware shrinkers, it is enough to make list_lru per-memcg.

This patch does the trick.  It adds an array of lru lists to the
list_lru_node structure (per-node part of the list_lru), one for each
kmem-active memcg, and dispatches every item addition or removal to the
list corresponding to the memcg which the item is accounted to.  So now
the list_lru structure is not just per node, but per node and per memcg.

Not all list_lrus need this feature, so this patch also adds a new
method, list_lru_init_memcg, which initializes a list_lru as memcg
aware.  Otherwise (i.e.  if initialized with old list_lru_init), the
list_lru won't have per memcg lists.

Just like per memcg caches arrays, the arrays of per-memcg lists are
indexed by memcg_cache_id, so we must grow them whenever
memcg_nr_cache_ids is increased.  So we introduce a callback,
memcg_update_all_list_lrus, invoked by memcg_alloc_cache_id if the id
space is full.

The locking is implemented in a manner similar to lruvecs, i.e.  we have
one lock per node that protects all lists (both global and per cgroup) on
the node.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Greg Thelen <gthelen@google.com>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-12 18:54:09 -08:00
Vladimir Davydov
c0a5b56093 list_lru: organize all list_lrus to list
To make list_lru memcg aware, we need all list_lrus to be kept on a list
protected by a mutex, so that we could sleep while walking over the
list.

Therefore after this change list_lru_destroy may sleep.  Fortunately,
there is only one user that calls it from an atomic context - it's
put_super - and we can easily fix it by calling list_lru_destroy before
put_super in destroy_locked_super - anyway we don't longer need lrus by
that time.

Another point that should be noted is that list_lru_destroy is allowed
to be called on an uninitialized zeroed-out object, in which case it is
a no-op.  Before this patch this was guaranteed by kfree, but now we
need an explicit check there.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Greg Thelen <gthelen@google.com>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-12 18:54:09 -08:00
Vladimir Davydov
ff0b67ef5b list_lru: get rid of ->active_nodes
The active_nodes mask allows us to skip empty nodes when walking over
list_lru items from all nodes in list_lru_count/walk.  However, these
functions are never called from hot paths, so it doesn't seem we need
such kind of optimization there.  OTOH, removing the mask will make it
easier to make list_lru per-memcg.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Greg Thelen <gthelen@google.com>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-12 18:54:09 -08:00
Vladimir Davydov
503c358cf1 list_lru: introduce list_lru_shrink_{count,walk}
Kmem accounting of memcg is unusable now, because it lacks slab shrinker
support.  That means when we hit the limit we will get ENOMEM w/o any
chance to recover.  What we should do then is to call shrink_slab, which
would reclaim old inode/dentry caches from this cgroup.  This is what
this patch set is intended to do.

Basically, it does two things.  First, it introduces the notion of
per-memcg slab shrinker.  A shrinker that wants to reclaim objects per
cgroup should mark itself as SHRINKER_MEMCG_AWARE.  Then it will be
passed the memory cgroup to scan from in shrink_control->memcg.  For
such shrinkers shrink_slab iterates over the whole cgroup subtree under
the target cgroup and calls the shrinker for each kmem-active memory
cgroup.

Secondly, this patch set makes the list_lru structure per-memcg.  It's
done transparently to list_lru users - everything they have to do is to
tell list_lru_init that they want memcg-aware list_lru.  Then the
list_lru will automatically distribute objects among per-memcg lists
basing on which cgroup the object is accounted to.  This way to make FS
shrinkers (icache, dcache) memcg-aware we only need to make them use
memcg-aware list_lru, and this is what this patch set does.

As before, this patch set only enables per-memcg kmem reclaim when the
pressure goes from memory.limit, not from memory.kmem.limit.  Handling
memory.kmem.limit is going to be tricky due to GFP_NOFS allocations, and
it is still unclear whether we will have this knob in the unified
hierarchy.

This patch (of 9):

NUMA aware slab shrinkers use the list_lru structure to distribute
objects coming from different NUMA nodes to different lists.  Whenever
such a shrinker needs to count or scan objects from a particular node,
it issues commands like this:

        count = list_lru_count_node(lru, sc->nid);
        freed = list_lru_walk_node(lru, sc->nid, isolate_func,
                                   isolate_arg, &sc->nr_to_scan);

where sc is an instance of the shrink_control structure passed to it
from vmscan.

To simplify this, let's add special list_lru functions to be used by
shrinkers, list_lru_shrink_count() and list_lru_shrink_walk(), which
consolidate the nid and nr_to_scan arguments in the shrink_control
structure.

This will also allow us to avoid patching shrinkers that use list_lru
when we make shrink_slab() per-memcg - all we will have to do is extend
the shrink_control structure to include the target memcg and make
list_lru_shrink_{count,walk} handle this appropriately.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Suggested-by: Dave Chinner <david@fromorbit.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Greg Thelen <gthelen@google.com>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-12 18:54:08 -08:00
Johannes Weiner
449dd6984d mm: keep page cache radix tree nodes in check
Previously, page cache radix tree nodes were freed after reclaim emptied
out their page pointers.  But now reclaim stores shadow entries in their
place, which are only reclaimed when the inodes themselves are
reclaimed.  This is problematic for bigger files that are still in use
after they have a significant amount of their cache reclaimed, without
any of those pages actually refaulting.  The shadow entries will just
sit there and waste memory.  In the worst case, the shadow entries will
accumulate until the machine runs out of memory.

To get this under control, the VM will track radix tree nodes
exclusively containing shadow entries on a per-NUMA node list.  Per-NUMA
rather than global because we expect the radix tree nodes themselves to
be allocated node-locally and we want to reduce cross-node references of
otherwise independent cache workloads.  A simple shrinker will then
reclaim these nodes on memory pressure.

A few things need to be stored in the radix tree node to implement the
shadow node LRU and allow tree deletions coming from the list:

1. There is no index available that would describe the reverse path
   from the node up to the tree root, which is needed to perform a
   deletion.  To solve this, encode in each node its offset inside the
   parent.  This can be stored in the unused upper bits of the same
   member that stores the node's height at no extra space cost.

2. The number of shadow entries needs to be counted in addition to the
   regular entries, to quickly detect when the node is ready to go to
   the shadow node LRU list.  The current entry count is an unsigned
   int but the maximum number of entries is 64, so a shadow counter
   can easily be stored in the unused upper bits.

3. Tree modification needs tree lock and tree root, which are located
   in the address space, so store an address_space backpointer in the
   node.  The parent pointer of the node is in a union with the 2-word
   rcu_head, so the backpointer comes at no extra cost as well.

4. The node needs to be linked to an LRU list, which requires a list
   head inside the node.  This does increase the size of the node, but
   it does not change the number of objects that fit into a slab page.

[akpm@linux-foundation.org: export the right function]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Minchan Kim <minchan@kernel.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Bob Liu <bob.liu@oracle.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jan Kara <jack@suse.cz>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Luigi Semenzato <semenzato@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Metin Doslu <metin@citusdata.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Ozgun Erdogan <ozgun@citusdata.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Roman Gushchin <klamm@yandex-team.ru>
Cc: Ryan Mallon <rmallon@gmail.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-03 16:21:01 -07:00
Glauber Costa
5ca302c8e5 list_lru: dynamically adjust node arrays
We currently use a compile-time constant to size the node array for the
list_lru structure.  Due to this, we don't need to allocate any memory at
initialization time.  But as a consequence, the structures that contain
embedded list_lru lists can become way too big (the superblock for
instance contains two of them).

This patch aims at ameliorating this situation by dynamically allocating
the node arrays with the firmware provided nr_node_ids.

Signed-off-by: Glauber Costa <glommer@openvz.org>
Cc: Dave Chinner <dchinner@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Cc: Arve Hjønnevåg <arve@android.com>
Cc: Carlos Maiolino <cmaiolino@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Chuck Lever <chuck.lever@oracle.com>
Cc: Daniel Vetter <daniel.vetter@ffwll.ch>
Cc: David Rientjes <rientjes@google.com>
Cc: Gleb Natapov <gleb@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: J. Bruce Fields <bfields@redhat.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Kent Overstreet <koverstreet@google.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Steven Whitehouse <swhiteho@redhat.com>
Cc: Thomas Hellstrom <thellstrom@vmware.com>
Cc: Trond Myklebust <Trond.Myklebust@netapp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2013-09-10 18:56:32 -04:00
Glauber Costa
4e717f5c10 list_lru: remove special case function list_lru_dispose_all.
The list_lru implementation has one function, list_lru_dispose_all, with
only one user (the dentry code).  At first, such function appears to make
sense because we are really not interested in the result of isolating each
dentry separately - all of them are going away anyway.  However, it's
implementation is buggy in the following way:

When we call list_lru_dispose_all in fs/dcache.c, we scan all dentries
marking them with DCACHE_SHRINK_LIST.  However, this is done without the
nlru->lock taken.  The imediate result of that is that someone else may
add or remove the dentry from the LRU at the same time.  When list_lru_del
happens in that scenario we will see an element that is not yet marked
with DCACHE_SHRINK_LIST (even though it will be in the future) and
obviously remove it from an lru where the element no longer is.  Since
list_lru_dispose_all will in effect count down nlru's nr_items and
list_lru_del will do the same, this will lead to an imbalance.

The solution for this would not be so simple: we can obviously just keep
the lru_lock taken, but then we have no guarantees that we will be able to
acquire the dentry lock (dentry->d_lock).  To properly solve this, we need
a communication mechanism between the lru and dentry code, so they can
coordinate this with each other.

Such mechanism already exists in the form of the list_lru_walk_cb
callback.  So it is possible to construct a dcache-side prune function
that does the right thing only by calling list_lru_walk in a loop until no
more dentries are available.

With only one user, plus the fact that a sane solution for the problem
would involve boucing between dcache and list_lru anyway, I see little
justification to keep the special case list_lru_dispose_all in tree.

Signed-off-by: Glauber Costa <glommer@openvz.org>
Cc: Michal Hocko <mhocko@suse.cz>
Acked-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2013-09-10 18:56:31 -04:00
Glauber Costa
6a4f496fd2 list_lru: per-node API
This patch adapts the list_lru API to accept an optional node argument, to
be used by NUMA aware shrinking functions.  Code that does not care about
the NUMA placement of objects can still call into the very same functions
as before.  They will simply iterate over all nodes.

Signed-off-by: Glauber Costa <glommer@openvz.org>
Cc: Dave Chinner <dchinner@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Cc: Arve Hjønnevåg <arve@android.com>
Cc: Carlos Maiolino <cmaiolino@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Chuck Lever <chuck.lever@oracle.com>
Cc: Daniel Vetter <daniel.vetter@ffwll.ch>
Cc: David Rientjes <rientjes@google.com>
Cc: Gleb Natapov <gleb@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: J. Bruce Fields <bfields@redhat.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Kent Overstreet <koverstreet@google.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Steven Whitehouse <swhiteho@redhat.com>
Cc: Thomas Hellstrom <thellstrom@vmware.com>
Cc: Trond Myklebust <Trond.Myklebust@netapp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2013-09-10 18:56:30 -04:00
Dave Chinner
3b1d58a4c9 list_lru: per-node list infrastructure
Now that we have an LRU list API, we can start to enhance the
implementation.  This splits the single LRU list into per-node lists and
locks to enhance scalability.  Items are placed on lists according to the
node the memory belongs to.  To make scanning the lists efficient, also
track whether the per-node lists have entries in them in a active
nodemask.

Note: We use a fixed-size array for the node LRU, this struct can be very
big if MAX_NUMNODES is big.  If this becomes a problem this is fixable by
turning this into a pointer and dynamically allocating this to
nr_node_ids.  This quantity is firwmare-provided, and still would provide
room for all nodes at the cost of a pointer lookup and an extra
allocation.  Because that allocation will most likely come from a may very
well fail.

[glommer@openvz.org: fix warnings, added note about node lru]
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Glauber Costa <glommer@openvz.org>
Reviewed-by: Greg Thelen <gthelen@google.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Cc: Arve Hjønnevåg <arve@android.com>
Cc: Carlos Maiolino <cmaiolino@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Chuck Lever <chuck.lever@oracle.com>
Cc: Daniel Vetter <daniel.vetter@ffwll.ch>
Cc: David Rientjes <rientjes@google.com>
Cc: Gleb Natapov <gleb@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: J. Bruce Fields <bfields@redhat.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Kent Overstreet <koverstreet@google.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Steven Whitehouse <swhiteho@redhat.com>
Cc: Thomas Hellstrom <thellstrom@vmware.com>
Cc: Trond Myklebust <Trond.Myklebust@netapp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2013-09-10 18:56:30 -04:00
Dave Chinner
a38e408248 list: add a new LRU list type
Several subsystems use the same construct for LRU lists - a list head, a
spin lock and and item count.  They also use exactly the same code for
adding and removing items from the LRU.  Create a generic type for these
LRU lists.

This is the beginning of generic, node aware LRUs for shrinkers to work
with.

[glommer@openvz.org: enum defined constants for lru. Suggested by gthelen, don't relock over retry]
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Glauber Costa <glommer@openvz.org>
Reviewed-by: Greg Thelen <gthelen@google.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Cc: Arve Hjønnevåg <arve@android.com>
Cc: Carlos Maiolino <cmaiolino@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Chuck Lever <chuck.lever@oracle.com>
Cc: Daniel Vetter <daniel.vetter@ffwll.ch>
Cc: David Rientjes <rientjes@google.com>
Cc: Gleb Natapov <gleb@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: J. Bruce Fields <bfields@redhat.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Kent Overstreet <koverstreet@google.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Steven Whitehouse <swhiteho@redhat.com>
Cc: Thomas Hellstrom <thellstrom@vmware.com>
Cc: Trond Myklebust <Trond.Myklebust@netapp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2013-09-10 18:56:30 -04:00