cgroup is transitioning to using css (cgroup_subsys_state) instead of
cgroup as the primary subsystem handle. The cgroupfs file interface
will be converted to use css's which requires finding out the
subsystem from cftype so that the matching css can be determined from
the cgroup.
This patch adds cftype->ss which points to the subsystem the file
belongs to. The field is initialized while a cftype is being
registered. This makes it unnecessary to explicitly specify the
subsystem for other cftype handling functions. @ss argument dropped
from various cftype handling functions.
This patch shouldn't introduce any behavior differences.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Acked-by: Vivek Goyal <vgoyal@redhat.com>
Cc: Jens Axboe <axboe@kernel.dk>
cgroup is currently in the process of transitioning to using struct
cgroup_subsys_state * as the primary handle instead of struct cgroup *
in subsystem implementations for the following reasons.
* With unified hierarchy, subsystems will be dynamically bound and
unbound from cgroups and thus css's (cgroup_subsys_state) may be
created and destroyed dynamically over the lifetime of a cgroup,
which is different from the current state where all css's are
allocated and destroyed together with the associated cgroup. This
in turn means that cgroup_css() should be synchronized and may
return NULL, making it more cumbersome to use.
* Differing levels of per-subsystem granularity in the unified
hierarchy means that the task and descendant iterators should behave
differently depending on the specific subsystem the iteration is
being performed for.
* In majority of the cases, subsystems only care about its part in the
cgroup hierarchy - ie. the hierarchy of css's. Subsystem methods
often obtain the matching css pointer from the cgroup and don't
bother with the cgroup pointer itself. Passing around css fits
much better.
This patch converts all cgroup_subsys methods to take @css instead of
@cgroup. The conversions are mostly straight-forward. A few
noteworthy changes are
* ->css_alloc() now takes css of the parent cgroup rather than the
pointer to the new cgroup as the css for the new cgroup doesn't
exist yet. Knowing the parent css is enough for all the existing
subsystems.
* In kernel/cgroup.c::offline_css(), unnecessary open coded css
dereference is replaced with local variable access.
This patch shouldn't cause any behavior differences.
v2: Unnecessary explicit cgrp->subsys[] deref in css_online() replaced
with local variable @css as suggested by Li Zefan.
Rebased on top of new for-3.12 which includes for-3.11-fixes so
that ->css_free() invocation added by da0a12caff ("cgroup: fix a
leak when percpu_ref_init() fails") is converted too. Suggested
by Li Zefan.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Aristeu Rozanski <aris@redhat.com>
Acked-by: Daniel Wagner <daniel.wagner@bmw-carit.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Matt Helsley <matthltc@us.ibm.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Steven Rostedt <rostedt@goodmis.org>
Currently, given a cgroup_subsys_state, there's no way to find out
which subsystem the css is for, which we'll need to convert the cgroup
controller API to primarily use @css instead of @cgroup. This patch
adds cgroup_subsys_state->ss which points to the subsystem the @css
belongs to.
While at it, remove the comment about accessing @css->cgroup to
determine the hierarchy. cgroup core will provide API to traverse
hierarchy of css'es and we don't want subsystems to directly walk
cgroup hierarchies anymore.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
The names of the two struct cgroup_subsys_state accessors -
cgroup_subsys_state() and task_subsys_state() - are somewhat awkward.
The former clashes with the type name and the latter doesn't even
indicate it's somehow related to cgroup.
We're about to revamp large portion of cgroup API, so, let's rename
them so that they're less awkward. Most per-controller usages of the
accessors are localized in accessor wrappers and given the amount of
scheduled changes, this isn't gonna add any noticeable headache.
Rename cgroup_subsys_state() to cgroup_css() and task_subsys_state()
to task_css(). This patch is pure rename.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
for-3.12 branch is about to receive invasive updates which are
dependent on da0a12caff ("cgroup: fix a leak when percpu_ref_init()
fails"). Given the amount of scheduled changes, I think it'd less
painful to pull in for-3.11-fixes as preparation. Pull in
for-3.11-fixes into for-3.12.
Signed-off-by: Tejun Heo <tj@kernel.org>
It uses a single label and checks the validity of each pointer. This
is err-prone, and actually we had a bug because one of the check was
insufficient.
Use multi lables as we do in other places.
v2:
- drop initializations of local variables.
Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
This enables us to lookup a cgroup by its id.
v4:
- add a comment for idr_remove() in cgroup_offline_fn().
v3:
- on success, idr_alloc() returns the id but not 0, so fix the BUG_ON()
in cgroup_init().
- pass the right value to idr_alloc() so that the id for dummy cgroup is 0.
Signed-off-by: Li Zefan <lizefan@huawei.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Tejun Heo <tj@kernel.org>
Constantly use @cset for css_set variables and use @cgrp as cgroup
variables.
Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
We can use struct cfent instead.
v2:
- remove cgroup_seqfile_release().
Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
This should have been removed in commit d7eeac1913
("cgroup: hold cgroup_mutex before calling css_offline").
While at it, update the comments.
Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
rebind_subsystems() performs santiy checks even on subsystems which
aren't specified to be added or removed and the checks aren't all that
useful given that these are in a very cold path while the violations
they check would trip up in much hotter paths.
Let's remove these from rebind_subsystems().
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Module ref handling in cgroup is rather weird.
parse_cgroupfs_options() grabs all the modules for the specified
subsystems. A module ref is kept if the specified subsystem is newly
bound to the hierarchy. If not, or the operation fails, the refs are
dropped. This scatters module ref handling across multiple functions
making it difficult to track. It also make the function nasty to use
for dynamic subsystem binding which is necessary for the planned
unified hierarchy.
There's nothing which requires the subsystem modules to be pinned
between parse_cgroupfs_options() and rebind_subsystems() in both mount
and remount paths. parse_cgroupfs_options() can just parse and
rebind_subsystems() can handle pinning the subsystems that it wants to
bind, which is a natural part of its task - binding - anyway.
Move module ref handling into rebind_subsystems() which makes the code
a lot simpler - modules are gotten iff it's gonna be bound and put iff
unbound or binding fails.
v2: Li pointed out that if a controller module is unloaded between
parsing and binding, rebind_subsystems() won't notice the missing
controller as it only iterates through existing controllers. Fix
it by updating rebind_subsystems() to compare @added_mask to
@pinned and fail with -ENOENT if they don't match.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
task_cgroup_path_from_hierarchy() was added for the planned new users
and none of the currently planned users wants to know about multiple
hierarchies. This patch drops the multiple hierarchy part and makes
it always return the path in the first non-dummy hierarchy.
As unified hierarchy will always have id 1, this is guaranteed to
return the path for the unified hierarchy if mounted; otherwise, it
will return the path from the hierarchy which happens to occupy the
lowest hierarchy id, which will usually be the first hierarchy mounted
after boot.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Cc: Lennart Poettering <lennart@poettering.net>
Cc: Kay Sievers <kay.sievers@vrfy.org>
Cc: Jan Kaluža <jkaluza@redhat.com>
rebind_subsystems() currently fails if the hierarchy has any !root
cgroups; however, on the planned unified hierarchy,
rebind_subsystems() will be used while populated. Move the test to
cgroup_remount(), which is the only place the test is necessary
anyway.
As it's impossible for the other two callers of rebind_subsystems() to
have populated hierarchy, this doesn't make any behavior changes.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Currently, creating and removing cgroup files in the root directory
are handled separately from the actual subsystem binding and unbinding
which happens in rebind_subsystems(). Also, rebind_subsystems() users
aren't handling file creation errors properly. Let's integrate
top_cgroup file handling into rebind_subsystems() so that it's simpler
to use and everyone handles file creation errors correctly.
* On a successful return, rebind_subsystems() is guaranteed to have
created all files of the new subsystems and deleted the ones
belonging to the removed subsystems. After a failure, no file is
created or removed.
* cgroup_remount() no longer needs to make explicit populate/clear
calls as it's all handled by rebind_subsystems(), and it gets proper
error handling automatically.
* cgroup_mount() has been updated such that the root dentry and cgroup
are linked before rebind_subsystems(). Also, the init_cred dancing
and base file handling are moved right above rebind_subsystems()
call and proper error handling for the base files is added. While
at it, add a comment explaining what's going on with the cred thing.
* cgroup_kill_sb() calls rebind_subsystems() to unbind all subsystems
which now implies removing all subsystem files which requires the
directory's i_mutex. Grab it. This means that files on the root
cgroup are removed earlier - they used to be deleted from generic
super_block cleanup from vfs. This doesn't lead to any functional
difference and it's cleaner to do the clean up explicitly for all
files.
Combined with the previous changes, this makes all cgroup file
creation errors handled correctly.
v2: Added comment on init_cred.
v3: Li spotted that cgroup_mount() wasn't freeing tmp_links after base
file addition failure. Fix it by adding free_tmp_links error
handling label.
v4: v3 introduced build bugs which got noticed by Fengguang's awesome
kbuild test robot. Fixed, and shame on me.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Cc: Fengguang Wu <fengguang.wu@intel.com>
rebind_subsystems() will be updated to handle file creations and
removals with proper error handling and to do that will need to
perform file operations before actually adding the subsystem to the
hierarchy.
To enable such usage, update cgroup_populate/clear_dir() to use
for_each_subsys() instead of for_each_root_subsys() so that they
operate on all subsystems specified by @subsys_mask whether that
subsystem is currently bound to the hierarchy or not.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
cgroup_populate_dir() didn't use to check whether the actual file
creations were successful and could return success with only subset of
the requested files created, which is nasty.
This patch udpates cgroup_populate_dir() so that it either succeeds
with all files or fails with no file.
v2: The original patch also converted for_each_root_subsys() usages to
for_each_subsys() without explaining why. That part has been
moved to a separate patch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
cgroup_populate/clear_dir() currently take @base_files and adds and
removes, respectively, cgroup_base_files[] to the directory. File
additions and removals are being reorganized for proper error handling
and more dynamic handling for the unified hierarchy, and mixing base
and subsys file handling into the same functions gets a bit confusing.
This patch moves base file handling out of cgroup_populate/clear_dir()
into their users - cgroup_mount(), cgroup_create() and
cgroup_destroy_locked().
Note that this changes the behavior of base file removal. If
@base_files is %true, cgroup_clear_dir() used to delete files
regardless of cftype until there's no files left. Now, only files
with matching cfts are removed. As files can only be created by the
base or registered cftypes, this shouldn't result in any behavior
difference.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
cgroup_add_cftypes() uses cgroup_cfts_commit() to actually create the
files; however, both functions ignore actual file creation errors and
just assume success. This can lead to, for example, blkio hierarchy
with some of the cgroups with only subset of interface files populated
after cfq-iosched is loaded under heavy memory pressure, which is
nasty.
This patch updates cgroup_cfts_commit() and cgroup_add_cftypes() to
guarantee that all files are created on success and no file is created
on failure.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
cgroup_addrm_files() mishandled error return value from
cgroup_add_file() and returns error iff the last file fails to create.
As we're in the process of cleaning up file add/rm error handling and
will reliably propagate file creation failures, there's no point in
keeping adding files after a failure.
Replace the broken error collection logic with immediate error return.
While at it, add lockdep assertions and function comment.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
* Rename it to cgroup_clear_dir() and make it take the pointer to the
target cgroup instead of the the dentry. This makes the function
consistent with its counterpart - cgroup_populate_dir().
* Move cgroup_clear_directory() invocation from cgroup_d_remove_dir()
to cgroup_remount() so that the function doesn't have to determine
the cgroup pointer back from the dentry. cgroup_d_remove_dir() now
only deals with vfs, which is slightly cleaner.
This patch doesn't introduce any functional differences.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
0ce6cba357 ("cgroup: CGRP_ROOT_SUBSYS_BOUND should be ignored when
comparing mount options") only updated the remount path but
CGRP_ROOT_SUBSYS_BOUND should also be ignored when comparing options
while mounting an existing hierarchy. As option mismatch triggers a
warning but doesn't fail the mount without sane_behavior, this only
triggers a spurious warning message.
Fix it by only comparing CGRP_ROOT_OPTION_MASK bits when comparing new
and existing root options.
Signed-off-by: Tejun Heo <tj@kernel.org>
1672d04070 ("cgroup: fix cgroupfs_root early destruction path")
introduced CGRP_ROOT_SUBSYS_BOUND which is used to mark completion of
subsys binding on a new root; however, this broke remounts.
cgroup_remount() doesn't allow changing root options via remount and
CGRP_ROOT_SUBSYS_BOUND, which is set on all fully initialized roots,
makes the function reject all remounts.
Fix it by putting the options part in the lower 16 bits of root->flags
and masking the comparions. While at it, make cgroup_remount() emit
an error message explaining why it's rejecting a remount request, so
that it's less of a mystery.
Signed-off-by: Tejun Heo <tj@kernel.org>
kernel/cgroup.c still has places where a RCU pointer is set and
accessed directly without going through RCU_INIT_POINTER() or
rcu_dereference_protected(). They're all properly protected accesses
so nothing is broken but it leads to spurious sparse RCU address space
warnings.
Substitute direct accesses with RCU_INIT_POINTER() and
rcu_dereference_protected(). Note that %true is specified as the
extra condition for all derference updates. This isn't ideal as all
it does is suppressing warning without actually policing
synchronization rules; however, most are scheduled to be removed
pretty soon along with css_id itself, so no reason to be more
elaborate.
Combined with the previous changes, this removes all RCU related
sparse warnings from cgroup.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Fengguang Wu <fengguang.wu@intel.com>
Acked-by; Li Zefan <lizefan@huawei.com>
There are several places in kernel/cgroup.c where task->cgroups is
accessed and modified without going through proper RCU accessors.
None is broken as they're all lock protected accesses; however, this
still triggers sparse RCU address space warnings.
* Consistently use task_css_set() for task->cgroups dereferencing.
* Use RCU_INIT_POINTER() to clear task->cgroups to &init_css_set on
exit.
* Remove unnecessary rcu_dereference_raw() from cset->subsys[]
dereference in cgroup_exit().
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Fengguang Wu <fengguang.wu@intel.com>
Acked-by: Li Zefan <lizefan@huawei.com>
This isn't strictly necessary as all subsystems specified in
@subsys_mask are guaranteed to be pinned; however, it does spuriously
trigger lockdep warning. Let's grab cgroup_mutex around it.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
cgroupfs_root used to have ->actual_subsys_mask in addition to
->subsys_mask. a8a648c4ac ("cgroup: remove
cgroup->actual_subsys_mask") removed it noting that the subsys_mask is
essentially temporary and doesn't belong in cgroupfs_root; however,
the patch made it impossible to tell whether a cgroupfs_root actually
has the subsystems bound or just have the bits set leading to the
following BUG when trying to mount with subsystems which are already
mounted elsewhere.
kernel BUG at kernel/cgroup.c:1038!
invalid opcode: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC
...
CPU: 1 PID: 7973 Comm: mount Tainted: G W 3.10.0-rc7-next-20130625-sasha-00011-g1c1dc0e #1105
task: ffff880fc0ae8000 ti: ffff880fc0b9a000 task.ti: ffff880fc0b9a000
RIP: 0010:[<ffffffff81249b29>] [<ffffffff81249b29>] rebind_subsystems+0x409/0x5f0
...
Call Trace:
[<ffffffff8124bd4f>] cgroup_kill_sb+0xff/0x210
[<ffffffff813d21af>] deactivate_locked_super+0x4f/0x90
[<ffffffff8124f3b3>] cgroup_mount+0x673/0x6e0
[<ffffffff81257169>] cpuset_mount+0xd9/0x110
[<ffffffff813d2580>] mount_fs+0xb0/0x2d0
[<ffffffff81404afd>] vfs_kern_mount+0xbd/0x180
[<ffffffff814070b5>] do_new_mount+0x145/0x2c0
[<ffffffff814085d6>] do_mount+0x356/0x3c0
[<ffffffff8140873d>] SyS_mount+0xfd/0x140
[<ffffffff854eb600>] tracesys+0xdd/0xe2
We still want rebind_subsystems() to take added/removed masks, so
let's fix it by marking whether a cgroupfs_root has finished binding
or not. Also, document what's going on around ->subsys_mask
initialization so that similar mistakes aren't repeated.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Sasha Levin <sasha.levin@oracle.com>
Acked-by: Li Zefan <lizefan@huawei.com>
Before 1a57423166 ("cgroup: make hierarchy_id use cyclic idr"),
hierarchy IDs were allocated from 0. As the dummy hierarchy was
always the one first initialized, it got assigned 0 and all other
hierarchies from 1. The patch accidentally changed the minimum
useable ID to 2.
Let's restore ID 0 for dummy_root and while at it reserve 1 for
unified hierarchy.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Cc: stable@vger.kernel.org
There are quite a few places where all loaded [builtin] subsys are
iterated. Implement for_each_[builtin_]subsys() and replace manual
iterations with those to simplify those places a bit. The new
iterators automatically skip NULL subsystems. This shouldn't cause
any functional difference.
Iteration loops which scan all subsystems and then skipping modular
ones explicitly are converted to use for_each_builtin_subsys().
While at it, reorder variable declarations and adjust whitespaces a
bit in the affected functions.
v2: Add lockdep_assert_held() in for_each_subsys() and add comments
about synchronization as suggested by Li.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
cgroup_init() was doing init_css_set initialization outside
cgroup_mutex, which is fine but we want to add lockdep annotation on
subsystem iterations and cgroup_init() will trigger it spuriously.
Move init_css_set initialization inside cgroup_mutex.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
for_each_subsys() walks over subsystems attached to a hierarchy and
we're gonna add iterators which walk over all available subsystems.
Rename for_each_subsys() to for_each_root_subsys() so that it's more
appropriately named and for_each_subsys() can be used to iterate all
subsystems.
While at it, remove unnecessary underbar prefix from macro arguments,
put them inside parentheses, and adjust indentation for the two
for_each_*() macros.
This patch is purely cosmetic.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
find_css_set() passes uninitialized on-stack template[] array to
find_existing_css_set() which sets the entries for all subsystems.
Passing around an uninitialized array is a bit icky and we want to
introduce an iterator which only iterates loaded subsystems. Let's
initialize it on definition.
While at it, also make the following cosmetic cleanups.
* Convert to proper /** comments.
* Reorder variable declarations.
* Replace comment on synchronization with lockdep_assert_held().
This patch doesn't make any functional differences.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
cgroup curiously has two subsystem masks, ->subsys_mask and
->actual_subsys_mask. The latter only exists because the new target
subsys_mask is passed into rebind_subsystems() via @root>subsys_mask.
rebind_subsystems() needs to know what the current mask is to decide
how to reach the target mask so ->actual_subsys_mask is used as the
temp location to remember the current state.
Adding a temporary field to a permanent data structure is rather silly
and can be misleading. Update rebind_subsystems() to take @added_mask
and @removed_mask instead and remove @root->actual_subsys_mask.
This patch shouldn't introduce any behavior changes.
v2: Comment and description updated as suggested by Li.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Global variable names in kernel/cgroup.c are asking for trouble -
subsys, roots, rootnode and so on. Rename them to have "cgroup_"
prefix.
* s/subsys/cgroup_subsys/
* s/rootnode/cgroup_dummy_root/
* s/dummytop/cgroup_cummy_top/
* s/roots/cgroup_roots/
* s/root_count/cgroup_root_count/
This patch is purely cosmetic.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Cont is short for container. control group was named process container
at first, but then people found container already has a meaning in
linux kernel.
Clean up the leftover variable name @cont.
Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
cgroup_serial_nr_cursor was created atomic64_t because I thought it
was never gonna used for anything other than assigning unique numbers
to cgroups and didn't want to worry about synchronization; however,
now we're using it as an event-stamp to distinguish cgroups created
before and after certain point which assumes that it's protected by
cgroup_mutex.
Let's make it clear by making it a u64. Also, rename it to
cgroup_serial_nr_next and make it point to the next nr to allocate so
that where it's pointing to is clear and more conventional.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Li Zefan <lizefan@huawei.com>
We used root->allcg_list to iterate cgroup hierarchy because at that time
cgroup_for_each_descendant_pre() hasn't been invented.
tj: In cgroup_cfts_commit(), s/@serial_nr/@update_upto/, move the
assignment right above releasing cgroup_mutex and explain what's
going on there.
Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
The next patch will use it to determine if a cgroup is newly created
while we're iterating the cgroup hierarchy.
tj: Rephrased the comment on top of cgroup_serial_nr_cursor.
Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
The memory allocated in cgroup_add_cftypes() should be freed. The
effect of this bug is we leak a bit memory everytime we unload
cfq-iosched module if blkio cgroup is enabled.
Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
commit 5db9a4d99b
Author: Tejun Heo <tj@kernel.org>
Date: Sat Jul 7 16:08:18 2012 -0700
cgroup: fix cgroup hierarchy umount race
This commit fixed a race caused by the dput() in css_dput_fn(), but
the dput() in cgroup_event_remove() can also lead to the same BUG().
Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: stable@vger.kernel.org
cgroup_cfts_commit() uses dget() to keep cgroup alive after cgroup_mutex
is dropped, but dget() won't prevent cgroupfs from being umounted. When
the race happens, vfs will see some dentries with non-zero refcnt while
umount is in process.
Keep running this:
mount -t cgroup -o blkio xxx /cgroup
umount /cgroup
And this:
modprobe cfq-iosched
rmmod cfs-iosched
After a while, the BUG() in shrink_dcache_for_umount_subtree() may
be triggered:
BUG: Dentry xxx{i=0,n=blkio.yyy} still in use (1) [umount of cgroup cgroup]
Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: stable@vger.kernel.org
cgroup's rename(2) isn't a proper migration implementation - it can't
move the cgroup to a different parent in the hierarchy. All it can do
is swapping the name string for that cgroup. This isn't useful and
can mislead users to think that cgroup supports proper cgroup-level
migration. Disallow rename(2) if sane_behavior.
v2: Fail with -EPERM instead of -EINVAL so that it matches the vfs
return value when ->rename is not implemented as suggested by Li.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
A css (cgroup_subsys_state) is how each cgroup is represented to a
controller. As such, it can be used in hot paths across the various
subsystems different controllers are associated with.
One of the common operations is reference counting, which up until now
has been implemented using a global atomic counter and can have
significant adverse impact on scalability. For example, css refcnt
can be gotten and put multiple times by blkcg for each IO request.
For highops configurations which try to do as much per-cpu as
possible, the global frequent refcnting can be very expensive.
In general, given the various and hugely diverse paths css's end up
being used from, we need to make it cheap and highly scalable. In its
usage, css refcnting isn't very different from module refcnting.
This patch converts css refcnting to use the recently added
percpu_ref. css_get/tryget/put() directly maps to the matching
percpu_ref operations and the deactivation logic is no longer
necessary as percpu_ref already has refcnt killing.
The only complication is that as the refcnt is per-cpu,
percpu_ref_kill() in itself doesn't ensure that further tryget
operations will fail, which we need to guarantee before invoking
->css_offline()'s. This is resolved collecting kill confirmation
using percpu_ref_kill_and_confirm() and initiating the offline phase
of destruction after all css refcnt's are confirmed to be seen as
killed on all CPUs. The previous patches already splitted destruction
into two phases, so percpu_ref_kill_and_confirm() can be hooked up
easily.
This patch removes css_refcnt() which is used for rcu dereference
sanity check in css_id(). While we can add a percpu refcnt API to ask
the same question, css_id() itself is scheduled to be removed fairly
soon, so let's not bother with it. Just drop the sanity check and use
rcu_dereference_raw() instead.
v2: - init_cgroup_css() was calling percpu_ref_init() without checking
the return value. This causes two problems - the obvious lack
of error handling and percpu_ref_init() being called from
cgroup_init_subsys() before the allocators are up, which
triggers warnings but doesn't cause actual problems as the
refcnt isn't used for roots anyway. Fix both by moving
percpu_ref_init() to cgroup_create().
- The base references were put too early by
percpu_ref_kill_and_confirm() and cgroup_offline_fn() put the
refs one extra time. This wasn't noticeable because css's go
through another RCU grace period before being freed. Update
cgroup_destroy_locked() to grab an extra reference before
killing the refcnts. This problem was noticed by Kent.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Kent Overstreet <koverstreet@google.com>
Acked-by: Li Zefan <lizefan@huawei.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Mike Snitzer <snitzer@redhat.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: "Alasdair G. Kergon" <agk@redhat.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Mikulas Patocka <mpatocka@redhat.com>
Cc: Glauber Costa <glommer@gmail.com>
Split cgroup_destroy_locked() into two steps and put the latter half
into cgroup_offline_fn() which is executed from a work item. The
latter half is responsible for offlining the css's, removing the
cgroup from internal lists, and propagating release notification to
the parent. The separation is to allow using percpu refcnt for css.
Note that this allows for other cgroup operations to happen between
the first and second halves of destruction, including creating a new
cgroup with the same name. As the target cgroup is marked DEAD in the
first half and cgroup internals don't care about the names of cgroups,
this should be fine. A comment explaining this will be added by the
next patch which implements the actual percpu refcnting.
As RCU freeing is guaranteed to happen after the second step of
destruction, we can use the same work item for both. This patch
renames cgroup->free_work to ->destroy_work and uses it for both
purposes. INIT_WORK() is now performed right before queueing the work
item.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
This patch reorders the operations in cgroup_destroy_locked() such
that the userland visible parts happen before css offlining and
removal from the ->sibling list. This will be used to make css use
percpu refcnt.
While at it, split out CGRP_DEAD related comment from the refcnt
deactivation one and correct / clarify how different guarantees are
met.
While this patch changes the specific order of operations, it
shouldn't cause any noticeable behavior difference.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
cgroup->count tracks the number of css_sets associated with the cgroup
and used only to verify that no css_set is associated when the cgroup
is being destroyed. It's superflous as the destruction path can
simply check whether cgroup->cset_links is empty instead.
Drop cgroup->count and check ->cset_links directly from
cgroup_destroy_locked().
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>