It is possible to register _Qxx from namespace and use the ECDT EC to
perform event handling. The reported bug reveals that Windows is using ECDT
in this way in case the namespace EC is not present. This patch facilitates
Linux to support ECDT in this way.
Link: https://bugzilla.kernel.org/show_bug.cgi?id=115021
Reported-and-tested-by: Luya Tshimbalanga <luya@fedoraproject.org>
Tested-by: Jonh Henderson <jw.hendy@gmail.com>
Reviewed-by: Peter Wu <peter@lekensteyn.nl>
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
When the handler installation failed, there was no code to free the
allocated EC device. This patch fixes this memory leakage issue.
Link: https://bugzilla.kernel.org/show_bug.cgi?id=115021
Reported-and-tested-by: Luya Tshimbalanga <luya@fedoraproject.org>
Tested-by: Jonh Henderson <jw.hendy@gmail.com>
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
In order to support full ECDT (driving the ECDT EC after probing the
namespace EC), we need to change our EC device alloc/free algorithm, ensure
not to free old boot EC before qualifying new boot EC.
This patch achieves this by cleaning up first_ec/boot_ec logic:
1. first_ec: used to perform transactions, so it is assigned in new
acpi_ec_setup() function.
2. boot_ec: used to track early EC device, so it is assigned in new
acpi_config_boot_ec() function which explictly tells the driver to save
the EC device as early EC device.
Link: https://bugzilla.kernel.org/show_bug.cgi?id=115021
Reported-and-tested-by: Luya Tshimbalanga <luya@fedoraproject.org>
Tested-by: Jonh Henderson <jw.hendy@gmail.com>
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
This patch enables the event freeze mode, flushing the EC event handling in
.suspend() callback. This feature is experimental, if it is bisected out to
be the cause of the real issues, please report the issues to the kernel
bugzilla for further root causing and improvement.
This mode eliminates useless _Qxx handling during the power saving
operations, thus can help to tune the power saving operations faster. Tests
show that this mode can efficiently block flooding _Qxx during the suspend
process and tune the speed of the suspend faster.
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Tested-by: Todd E Brandt <todd.e.brandt@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
In the original EC driver, though the event handling is not explicitly
stopped, the EC driver is actually not able to handle events during the
noirq stage as the EC driver is not prepared to handle the EC events in the
polling mode. So if there is no advance_transaction() triggered, the EC
driver couldn't notice the EC events.
However, do we actually need to handle EC events during suspend/resume
stage? EC events are mostly useless for the suspend/resume period (key
strokes and battery/thermal updates, etc.,), and the useful ones (lid
close, power/sleep button press) should have already been delivered to the
OSPM to trigger the power saving operations.
Thus this patch implements acpi_ec_disable_event() to be a reverse call of
acpi_ec_enable_event(), with which, the EC driver is able to stop handling
the EC events in a position before entering the noirq stage.
Since there are actually 2 choices for us:
1. implement event handling in polling mode;
2. stop event handling before entering noirq stage.
And this patch only implements the second choice using .suspend() callback.
Thus this is experimental (first choice is better? or different hook
position is better?). This patch finally keeps the old behavior by default
and prepares a boot parameter to enable this feature.
The differences of the event handling availability between the old behavior
(this patch is not applied) and the new behavior (this patch is applied)
are as follows:
!FreezeEvents FreezeEvents
before suspend Y Y
suspend before EC Y Y
suspend after EC Y N
suspend_late Y N
suspend_noirq Y (actually N) N
resume_noirq Y (actually N) N
resume_late Y (actually N) N
resume before EC Y (actually N) N
resume after EC Y Y
after resume Y Y
Where "actually N" means if there is no EC transactions, the EC driver
is actually not able to notice the pending events.
We can see that FreezeEvents is the only approach now can actually flush
the EC event handling with both query commands and _Qxx evaluations
flushed, other modes can only flush the EC event handling with only query
commands flushed, _Qxx evaluations occurred after stopping the EC driver
may end up failure due to the failure of the EC transaction carried out in
the _Qxx control methods.
We also can see that this feature should be able to trigger some platform
notifications later than resuming other drivers.
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Tested-by: Todd E Brandt <todd.e.brandt@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
This patch makes 2 changes:
1. Restore old behavior
Originally, EC driver stops handling both events and transactions in
acpi_ec_block_transactions(), and restarts to handle transactions in
acpi_ec_unblock_transactions_early(), restarts to handle both events and
transactions in acpi_ec_unblock_transactions().
While currently, EC driver still stops handling both events and
transactions in acpi_ec_block_transactions(), but restarts to handle both
events and transactions in acpi_ec_unblock_transactions_early().
This patch tries to restore the old behavior by dropping
__acpi_ec_enable_event() from acpi_unblock_transactions_early().
2. Improve old behavior
However this still cannot fix the real issue as both of the
acpi_ec_unblock_xxx() functions are invoked in the noirq stage. Since the
EC driver actually doesn't implement the event handling in the polling
mode, re-enabling the event handling too early in the noirq stage could
result in the problem that if there is no triggering source causing
advance_transaction() to be invoked, pending SCI_EVT cannot be detected by
the EC driver and _Qxx cannot be triggered.
It actually makes sense to restart the event handling in any point during
resuming after the noirq stage. Just like the boot stage where the event
handling is enabled in .add(), this patch further moves
acpi_ec_enable_event() to .resume(). After doing that, the following 2
functions can be combined:
acpi_ec_unblock_transactions_early()/acpi_ec_unblock_transactions().
The differences of the event handling availability between the old behavior
(this patch isn't applied) and the new behavior (this patch is applied) are
as follows:
!Applied Applied
before suspend Y Y
suspend before EC Y Y
suspend after EC Y Y
suspend_late Y Y
suspend_noirq Y (actually N) Y (actually N)
resume_noirq Y (actually N) Y (actually N)
resume_late Y (actually N) Y (actually N)
resume before EC Y (actually N) Y (actually N)
resume after EC Y (actually N) Y
after resume Y (actually N) Y
Where "actually N" means if there is no triggering source, the EC driver
is actually not able to notice the pending SCI_EVT occurred in the noirq
stage. So we can clearly see that this patch has improved the situation.
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Tested-by: Todd E Brandt <todd.e.brandt@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
After enabling the EC event handling, Linux is still in the noirq stage, if
there is no triggering source (EC transaction, GPE STS status),
advance_transaction() will not be invoked and SCI_EVT cannot be detected.
This patch adds one more triggering source after enabling the EC event
handling to poll the pending SCI_EVT.
Known issues:
1. Still no SCI_EVT triggering source
There could still be no SCI_EVT triggering source after handling the
first SCI_EVT (polled by this patch if any). Because after handling the
first SCI_EVT, Linux could still be in noirq stage and there could still
be no further triggering source in this stage. Then the second SCI_EVT
indicated during this stage still cannot be detected by the EC driver.
With this improvement applied, it is then possible to move
acpi_ec_enable_event() out of the noirq stage to fix this issue (if the
first SCI_EVT is handled out of the noirq stage, the follow-up SCI_EVTs
should be able to trigger IRQs).
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Tested-by: Todd E Brandt <todd.e.brandt@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
There is a hidden logic in the EC driver:
1. During boot, EC_FLAGS_QUERY_PENDING is responsible for blocking event
handling;
2. During suspend, EC_FLAGS_STARTED is responsible for blocking event
handling.
This patch uses a new EC_FLAGS_QUERY_ENABLED flag to make this hidden
logic explicit and have code cleaned up. No functional change.
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Tested-by: Todd E Brandt <todd.e.brandt@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
It is reported that on some platforms, resume speed is not fast. The cause
is: in noirq stage, EC driver is working in polling mode, and each state
machine advancement requires a context switch.
The context switch is not necessary to the EC driver's polling mode. This
patch implements PM hooks to automatically switch the driver to/from the
busy polling mode to eliminate the overhead caused by the context switch.
This finally contributes to the tuning result: acpi_pm_finish() execution
time is improved from 192ms to 6ms.
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Reported-and-tested-by: Todd E Brandt <todd.e.brandt@linux.intel.com>
[ rjw: Subject ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
A regression is caused by the following commit:
Commit: 02b771b64b
Subject: ACPI / EC: Fix an issue caused by the serialized _Qxx evaluations
In this commit, using system workqueue causes that the maximum parallel
executions of _Qxx can exceed 255. This violates the method reentrancy
limit in ACPICA and generates the following error log:
ACPI Error: Method reached maximum reentrancy limit (255) (20150818/dsmethod-341)
This patch creates a seperate workqueue and limits the number of parallel
_Qxx evaluations down to a configurable value (can be tuned against number
of online CPUs).
Since EC events are handled after driver probe, we can create the workqueue
in acpi_ec_init().
Fixes: 02b771b64b (ACPI / EC: Fix an issue caused by the serialized _Qxx evaluations)
Link: https://bugzilla.kernel.org/show_bug.cgi?id=135691
Cc: 4.3+ <stable@vger.kernel.org> # 4.3+
Reported-and-tested-by: Helen Buus <ubuntu@hbuus.com>
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
There is an order issue in ec_remove_handlers() that acpi_ec_stop()
is called before removing the operation region handler. That is
incorrect, because the operation region handler removal triggers
_REG(DISCONNECT) which may result in new EC transactions to carry
out.
That existing issue has been triggered by the following commit:
Commit: dcf15cbded
Subject: ACPI / EC: Fix a boot EC regresion by restoring boot EC
which changed the driver to call ec_remove_handlers() after invoking
_REG(CONNECT), so the issue has become visible.
Fixes: dcf15cbded (ACPI / EC: Fix a boot EC regresion by restoring boot EC)
Link: https://bugzilla.kernel.org/show_bug.cgi?id=102421
Reported-and-tested-by: Wolfram Sang <wsa@the-dreams.de>
Reported-by: Nicholas <nkudriavtsev@gmail.com>
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
[ rjw: Changelog ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Our Windows probe result shows that EC._REG is evaluated after evaluating
all _INI/_STA control methods.
With boot EC always switched in acpi_ec_dsdt_probe(), we can see that as
long as there is no EC opregion accesses in the MLC (module level code, AML
code out of any control methods) and in _INI/_STA, there is no need to make
sure that ECDT must be correct.
Bugs of 9399/12461 were reported against an order issue that BAT0/1._STA
evaluations contain EC accesses while the ECDT setting is wrong.
>From the acpidump output posted on bug 9399, we can see that it is actually
a different issue. In this table, if EC._REG is not executed, EC accesses
will be done in a platform specific manner. As we've already ensured not to
execute EC._REG during the eary stage, we can remove the quirks for bug
9399.
From the acpidump output posted on bug 12461, we can see that it still
needs the quirk. In this table, EC._REG flags a named object whose default
value is One, thus BAT1._STA surely should invoke EC accesses whatever we
invoke EC._REG or not. We have to keep the quirk for it before we can root
cause the issue.
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Failure handling of the boot EC code is not tidy. This patch cleans
them up with acpi_ec_alloc().
This patch also changes acpi_ec_dsdt_probe(), always switches the
boot EC from the ECDT one to the DSDT one in this function.
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
According to the Windows probing result, during the table loading, the EC
device described in the ECDT should be used. And the ECDT EC is also
effective during the period the namespace objects are initialized (we can
see a separate process executing _STA/_INI on Windows before executing
other device specific control methods, for example, EC._REG). During the
device enumration, the EC device described in the DSDT should be used. But
there are differences between Linux and Windows around the device probing
order. Thus in Linux, we should enable the DSDT EC as early as possible
before enumerating devices in order not to trigger issues related to the
device enumeration order differences.
This patch thus converts acpi_boot_ec_enable() into acpi_ec_dsdt_probe() to
fix the gap. This also fixes a user reported regression triggered after we
switched the "table loading"/"ECDT support" to be ACPI spec 2.0 compliant.
Fixes: 59f0aa9480 (ACPI 2.0 / ECDT: Remove early namespace reference from EC)
Link: https://bugzilla.kernel.org/show_bug.cgi?id=119261
Reported-and-tested-by: Gabriele Mazzotta <gabriele.mzt@gmail.com>
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
All operation region accesses are allowed by AML interpreter when AML is
executed, so actually BIOSen are responsible to avoid the operation region
accesses in AML before OSPM has prepared an operation region driver. This
is done via _REG control method. So AML code normally sets a global named
object REGC to 1 when _REG(3, 1) is evaluated.
Then what is ECDT? Quoting from ACPI spec 6.0, 5.2.15 Embedded Controller
Boot Resources Table (ECDT):
"The presence of this table allows OSPM to provide Embedded Controller
operation region space access before the namespace has been evaluated."
Spec also suggests a compatible mean to indicate the early EC access
availability:
Device (EC)
{
Name (REGC, Ones)
Method (_REG, 2)
{
If (LEqual (Arg0, 3))
{
Store (Arg1, REGC)
}
}
Method (ECAV)
{
If (LEqual (REGC, Ones))
{
If (LGreaterEqual (_REV, 2))
{
Return (One)
}
Else
{
Return (Zero)
}
}
Else
{
Return (REGC)
}
}
}
In this way, it allows EC accesses to happen before EC._REG(3, 1) is
invoked.
But ECAV is not the only way practical BIOSen using to indicate the early
EC access availibility, the known variations include:
1. Setting REGC to One in \_SB._INI when _REV >= 2. Since \_SB._INI is the
first control method evaluated by OSPM during the enumeration, this
allows EC accesses to happen for the entire enumeration process before
the namespace EC is enumerated.
2. Initialize REGC to One by default, this even allows EC accesses to
happen during the table loading.
Linux is now broken around ECDT support during the long term bug fixing
work because it has merged many wrong ECDT bug fixes (see details below).
Linux currently uses namespace EC's settings instead of ECDT settings when
ECDT is detected. This apparently will result in namespace walk and
_CRS/_GPE/_REG evaluations. Such stuffs could only happen after namespace
is ready, while ECDT is purposely to be used before namespace is ready.
The wrong bug fixing story is:
1. Link 1:
At Linux ACPI early stages, "no _Lxx/_Exx/_Qxx evaluation can happen
before the namespace is ready" are not ensured by ACPICA core and Linux.
This is currently ensured by deferred enabling of GPE and defered
registering of EC query methods (acpi_ec_register_query_methods).
2. Link 2:
Reporters reported buggy ECDTs, expecting quirks for the platform.
Originally, the quirk is simple, only doing things with ECDT.
Bug 9399 and 12461 are platforms (Asus L4R, Asus M6R, MSI MS-171F)
reported to have wrong ECDT IO port addresses, the port addresses are
reversed.
Bug 11880 is a platform (Asus X50GL) reported to have 0 valued port
addresses, we can see that all EC accesses are protected by ECAV on
this platform, so actually no early EC accesses is required by this
platform.
3. Link 3:
But when the bug fixing developer was requested to provide a handy and
non-quirk bug fix, he tried to use correct EC settings from namespace
and broke the spec purpose. We can even see that the developer was
suffered from many regrssions. One interesting one is 14086, where the
actual root cause obviously should be: _REG is evaluated too early. But
unfortunately, the bug is fixed in a totally wrong way.
So everything goes wrong from these commits:
Commit: c6cb0e8784
Subject: ACPI: EC: Don't trust ECDT tables from ASUS
Commit: a5032bfdd9
Subject: ACPI: EC: Always parse EC device
This patch reverts Linux behavior to simple ECDT quirk support in order to
stop early _CRS/_GPE/_REG evaluations.
For Bug 9399, 12461, since it is reported that the platforms require early
EC accesses, this patch restores the simple ECDT quirks for them.
For Bug 11880, since it is not reported that the platform requires early EC
accesses and its ACPI tables contain correct ECAV, we choose an ECDT
enumeration failure for this platform.
Link 1: https://bugzilla.kernel.org/show_bug.cgi?id=9916http://bugzilla.kernel.org/show_bug.cgi?id=10100https://lkml.org/lkml/2008/2/25/282
Link 2: https://bugzilla.kernel.org/show_bug.cgi?id=9399https://bugzilla.kernel.org/show_bug.cgi?id=12461https://bugzilla.kernel.org/show_bug.cgi?id=11880
Link 3: https://bugzilla.kernel.org/show_bug.cgi?id=11884https://bugzilla.kernel.org/show_bug.cgi?id=14081https://bugzilla.kernel.org/show_bug.cgi?id=14086https://bugzilla.kernel.org/show_bug.cgi?id=14446
Link 4: https://bugzilla.kernel.org/show_bug.cgi?id=112911
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Tested-by: Chris Bainbridge <chris.bainbridge@gmail.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
This patch splits EC_FLAGS_HANDLERS_INSTALLED so that address space handler
can be installed when it is not possible to install GPE handler during
early stage.
This patch also tunes address space handler installation, making it
happening earlier than GPE handler installation for the same purpose.
Since acpi_ec_start()/acpi_ec_stop() will be entered multiple times after
applying this change, it is also required to protect acpi_enable_gpe()/
acpi_disable_gpe() invocations.
Link: https://bugzilla.kernel.org/show_bug.cgi?id=112911
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Tested-by: Chris Bainbridge <chris.bainbridge@gmail.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The acpi_ec_delete_query() function tests whether its argument is NULL
and then returns immediately. Thus the test around the call is not needed.
This issue was detected by using the Coccinelle software.
Signed-off-by: Markus Elfring <elfring@users.sourceforge.net>
[ rjw: Subject ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
In acpi_ec_guard_event(), EC transaction state machine variables should be
checked with the EC spinlock locked.
The bug doesn't trigger any real issue now because this bug can only occur
when the ec_event_clearing=event mode is applied while there is no user
currently using this mode.
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
1. acpi_ec_remove_query_handlers()
This patch refines the query handler removal logic implemented in
acpi_ec_remove_query_handler(), making it to invoke new
acpi_ec_remove_query_handlers() API, and ensuring all other removal code
paths to invoke the new API to honor the reference count of the query
handlers.
2. acpi_ec_get_query_handler_by_value()
This patch also refines the query handler search logic originally
implemented in acpi_ec_query(), collecting it into
acpi_ec_get_query_handler_by_value(). And since schedule_work() can ensure
the serilization of acpi_ec_event_handler(), we needn't put the
mutex_lock() around schedule_work().
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
When query handler is not found, "result" is actually stil 0, and
"struct acpi_ec_query" is not NULL, so the deletion code of
"struct acpi_ec_query" at the end of the function cannot be invoked.
As a consequence, memory leak can be observed.
The issue is introduced by this commit:
Commit: 02b771b64b
Subject: ACPI / EC: Fix an issue caused by the serialized _Qxx
This patch fixes such memory leakage.
Fixes: 02b771b64b (ACPI / EC: Fix an issue caused by the serialized _Qxx evaluations)
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
It is proven that Windows evaluates _Qxx handlers in a parallel way. This
patch follows this fact, splits _Qxx evaluations from the NOTIFY queue to
form a separate queue, so that _Qxx evaluations can be queued up on
different CPUs rather than being queued up on a CPU0 bound queue.
Event handling related callbacks are also renamed and sorted in this patch.
Link: https://bugzilla.kernel.org/show_bug.cgi?id=94411
Reported-and-tested-by: Gabriele Mazzotta <gabriele.mzt@gmail.com>
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
There is no need to carry potentially outdated Free Software Foundation
mailing address in file headers since the COPYING file includes it.
Signed-off-by: Jarkko Nikula <jarkko.nikula@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
When the QR_EC transaction fails, the EC_FLAGS_QUERY_PENDING flag prevents
the event handling work queue from being scheduled again.
Though there shouldn't be failed QR_EC transactions, and this gap was
efficiently used for catching and learning the SCI_EVT clearing timing
compliance issues, we need to fix this as we are not fully compatible
with all platforms/Windows to handle SCI_EVT clearing timing correctly.
Fixing this gives the EC driver the chances to recover from a state machine
failure.
So this patch fixes this issue. When nr_pending_queries drops to 0, it
clears EC_FLAGS_QUERY_PENDING at the proper position for different modes in
order to ensure that the SCI_EVT handling can proceed.
In order to be clearer for future ec_event_clearing modes, all checks in
this patch are written in the inclusive style, not the exclusive style.
Cc: 3.16+ <stable@vger.kernel.org> # 3.16+
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
It is reported that on several platforms, EC firmware will not respond
non-expected QR_EC (see EC_FLAGS_QUERY_HANDSHAKE, only write QR_EC when
SCI_EVT is set).
Unfortunately, ACPI specification doesn't define when the SCI_EVT should be
cleared by the firmware, thus the original implementation queued up second
QR_EC right after writing QR_EC command and before reading the returned
event value as at that time the SCI_EVT is ensured not cleared. This
behavior is also based on the assumption that the firmware should be able
to return 0x00 to indicate "no outstanding event". This behavior did fix
issues on Samsung platforms where the spurious query value of 0x00 is
supported and didn't break platforms in my test queue.
But recently, specific Acer, Asus, Lenovo platforms keep on blaming this
change.
This patch changes the behavior to re-check the SCI_EVT a bit later and
removes EC_FLAGS_QUERY_HANDSHAKE quirks, hoping this is the Windows
compliant EC driver behavior.
In order to be robust to the possible regressions, instead of removing the
quirk directly, this patch keeps the quirk code, removes the quirk users
and keeps old behavior for Samsung platforms.
Cc: 3.16+ <stable@vger.kernel.org> # 3.16+
Link: https://bugzilla.kernel.org/show_bug.cgi?id=94411
Link: https://bugzilla.kernel.org/show_bug.cgi?id=97381
Link: https://bugzilla.kernel.org/show_bug.cgi?id=98111
Reported-and-tested-by: Gabriele Mazzotta <gabriele.mzt@gmail.com>
Reported-and-tested-by: Tigran Gabrielyan <tigrangab@gmail.com>
Reported-and-tested-by: Adrien D <ghbdtn@openmailbox.org>
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
We've been suffering from the uncertainty of the SCI_EVT clearing timing.
This patch implements 3 of 4 possible modes to handle SCI_EVT clearing
variations. The old behavior is kept in this patch.
Status: QR_EC is re-checked as early as possible after checking previous
SCI_EVT. This always leads to 2 QR_EC transactions per SCI_EVT
indication and the target may implement event queue which returns
0x00 indicating "no outstanding event".
This is proven to be a conflict against Windows behavior, but is
still kept in this patch to make the EC driver robust to the
possible regressions that may occur on Samsung platforms.
Query: QR_EC is re-checked after the target has handled the QR_EC query
request command pushed by the host.
Event: QR_EC is re-checked after the target has noticed the query event
response data pulled by the host.
This timing is not determined by any IRQs, so we may need to use a
guard period in this mode, which may explain the existence of the
ec_guard() code used by the old EC driver where the re-check timing
is implemented in the similar way as this mode.
Method: QR_EC is re-checked as late as possible after completing the _Qxx
evaluation. The target may implement SCI_EVT like a level triggered
interrupt.
It is proven on kernel bugzilla 94411 that, Windows will have all
_Qxx evaluations parallelized. Thus unless required by further
evidences, we needn't implement this mode as it is a conflict of
the _Qxx parallelism requirement.
Note that, according to the reports, there are platforms that cannot be
handled using the "Status" mode without enabling the
EC_FLAGS_QUERY_HANDSHAKE quirk. But they can be handled with the other
modes according to the tests (kernel bugzilla 97381).
The following log entry can be used to confirm the differences of the 3
modes as it should appear at the different positions for the 3 modes:
Command(QR_EC) unblocked
Status: appearing after
EC_SC(W) = 0x84
Query: appearing after
EC_DATA(R) = 0xXX
where XX is the event number used to determine _QXX
Event: appearing after first
EC_SC(R) = 0xX0 SCI_EVT=x BURST=0 CMD=0 IBF=0 OBF=0
that is next to the following log entry:
Command(QR_EC) completed by hardware
Link: https://bugzilla.kernel.org/show_bug.cgi?id=94411
Link: https://bugzilla.kernel.org/show_bug.cgi?id=97381
Link: https://bugzilla.kernel.org/show_bug.cgi?id=98111
Reported-and-tested-by: Gabriele Mazzotta <gabriele.mzt@gmail.com>
Reported-and-tested-by: Tigran Gabrielyan <tigrangab@gmail.com>
Reported-and-tested-by: Adrien D <ghbdtn@openmailbox.org>
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
During the period that a work queue is scheduled (queued up for run) but
hasn't been run, second schedule_work() could fail. This may not lead to
the loss of queries because QR_EC is always ensured to be submitted after
the work queue has been in the running state.
The event handling work queue can be changed into the loop style to allow
us to control the code in a more flexible way:
1. Makes it possible to add event=0x00 termination condition in the loop.
2. Increases the thoughput of the QR_EC transactions as the 2nd+ QR_EC
transactions may be handled in the same work item used for the 1st QR_EC
transaction, thus the delay caused by the 2nd+ work item scheduling can
be eliminated.
Except the logging message changes and the throughput improvement, this
patch is just a funcitonal no-op.
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Tested-by: Gabriele Mazzotta <gabriele.mzt@gmail.com>
Tested-by: Tigran Gabrielyan <tigrangab@gmail.com>
Tested-by: Adrien D <ghbdtn@openmailbox.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
This patch collects transaction state transition code into one function. We
then could have a single function to maintain transaction transition
related behaviors. No functional changes.
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Tested-by: Gabriele Mazzotta <gabriele.mzt@gmail.com>
Tested-by: Tigran Gabrielyan <tigrangab@gmail.com>
Tested-by: Adrien D <ghbdtn@openmailbox.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
{ Update to correct 1 patch subject in the description }
We have fixed a lot of race issues in the EC driver recently.
The following commit introduces MSI udelay()/msleep() quirk to MSI laptops
to make EC firmware working for bug 12011 without root causing any EC
driver race issues:
Commit: 5423a0cb3f
Subject: ACPI: EC: Add delay for slow MSI controller
Commit: 34ff4dbccc
Subject: ACPI: EC: Separate delays for MSI hardware
The following commit extends ECDT validation quirk to MSI laptops to make
EC driver locating EC registers properly for bug 12461:
Commit: a5032bfdd9
Subject: ACPI: EC: Always parse EC device
This is a different quirk than the MSI udelay()/msleep() quirk. This patch
keeps validating ECDT for only "Micro-Star MS-171F" as reported.
The following commit extends MSI udelay()/msleep() quirk to Quanta laptops
to make EC firmware working for bug 20242, there is no requirement to
validate ECDT for Quanta laptops:
Commit: 534bc4e3d2 Mon Sep 17 00:00:00 2001
Subject: ACPI EC: enable MSI workaround for Quanta laptops
The following commit extends MSI udelay()/msleep() quirk to Clevo laptops
to make EC firmware working for bug 77431, there is no requirement to
validate ECDT for Clevo laptops:
Commit: 777cb38295
Subject: ACPI / EC: Add msi quirk for Clevo W350etq
All udelay()/msleep() quirks for MSI/Quanta/Clevo seem to be the wrong
fixes generated without fixing the EC driver race issues.
And even if it is not wrong, the guarding can be covered by the following
commits in wait polling mode:
Commit: 9e295ac14d
Subject: ACPI / EC: Reduce ec_poll() by referencing the last register access timestamp.
Commit: commit in the same series
Subject: ACPI / EC: Fix and clean up register access guarding logics.
The only case that is not covered is the inter-transaction guarding. And
there is no evidence that we need the inter-transaction guarding upon
reading the noted bug entries.
So it is time to remove the quirks and let the users to try again. If there
is a regression, the only thing we need to do is to restore the
inter-transaction guarding for the reported platforms.
Link: https://bugzilla.kernel.org/show_bug.cgi?id=12011
Link: https://bugzilla.kernel.org/show_bug.cgi?id=12461
Link: https://bugzilla.kernel.org/show_bug.cgi?id=20242
Link: https://bugzilla.kernel.org/show_bug.cgi?id=77431
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
We have 2 polling modes in the EC driver:
1. busy polling: originally used for the MSI quirks. udelay() is used to
perform register access guarding.
2. wait polling: normal code path uses wait_event_timeout() and it can be
woken up as soon as the transaction is completed in the interrupt mode.
It also contains the register acces guarding logic in case the interrupt
doesn't arrive and the EC driver is about to advance the transaction in
task context (the polling mode).
The wait polling is useful for interrupt mode to allow other tasks to use
the CPU during the wait.
But for the polling mode, the busy polling takes less time than the wait
polling, because if no interrupt arrives, the wait polling has to wait the
minimal HZ interval.
We have a new use case for using the busy polling mode. Some GPIO drivers
initialize PIN configuration which cause a GPIO multiplexed EC GPE to be
disabled out of the GPE register's control. Busy polling mode is useful
here as it takes less time than the wait polling. But the guarding logic
prevents it from responding even faster. We should spinning around the EC
status rather than spinning around the nop execution lasted a determined
period.
This patch introduces 2 module params for the polling mode switch and the
guard time, so that users can use the busy polling mode without the
guarding in case the guarding is not necessary. This is an example to use
the 2 module params for this purpose:
acpi.ec_busy_polling acpi.ec_polling_guard=0
We've tested the patch on a test platform. The platform suffers from such
kind of the GPIO PIN issue. The GPIO driver resets all PIN configuration
and after that, EC interrupt cannot arrive because of the multiplexing.
Then the platform suffers from a long delay carried out by the
wait_event_timeout() as all further EC transactions will run in the polling
mode. We switched the EC driver to use the busy polling mechanism instead
of the wait timeout polling mechanism and the delay is still high:
[ 44.283005] calling PNP0C0B:00+ @ 1305, parent: platform
[ 44.417548] call PNP0C0B:00+ returned 0 after 131323 usecs
And this patch can significantly reduce the delay:
[ 44.502625] calling PNP0C0B:00+ @ 1308, parent: platform
[ 44.503760] call PNP0C0B:00+ returned 0 after 1103 usecs
Tested-by: Chen Yu <yu.c.chen@intel.com>
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
In the polling mode, EC driver shouldn't access the EC registers too
frequently. Though this statement is concluded from the non-root caused
bugs (see links below), we've maintained the register access guarding
logics in the current EC driver. The guarding logics can be found here and
there, makes it hard to root cause real timing issues. This patch collects
the guarding logics into one single function so that all hidden logics
related to this can be seen clearly.
The current guarding related code also has several issues:
1. Per-transaction timestamp prevents inter-transaction guarding from being
implemented in the same place. We have an inter-transaction udelay() in
acpi_ec_transaction_unblocked(), this logic can be merged into ec_poll()
if we can use per-device timestamp. This patch completes such merge to
form a new ec_guard() function and collects all guarding related hidden
logics in it.
One hidden logic is: there is no inter-transaction guarding performed
for non MSI quirk (wait polling mode), this patch skips
inter-transaction guarding before wait_event_timeout() for the wait
polling mode to reveal the hidden logic.
The other hidden logic is: there is msleep() inter-transaction guarding
performed when the GPE storming is observed. As after merging this
commit:
Commit: e1d4d90fc0
Subject: ACPI / EC: Refine command storm prevention support
EC_FLAGS_COMMAND_STORM is ensured to be cleared after invoking
acpi_ec_transaction_unlocked(), the msleep() guard logic will never
happen now. Since no one complains such change, this logic is likely
added during the old times where the EC race issues are not fixed and
the bugs are false root-caused to the timing issue. This patch simply
removes the out-dated logic. We can restore it by stop skipping
inter-transaction guarding for wait polling mode.
Two different delay values are defined for msleep() and udelay() while
they are merged in this patch to 550us.
2. time_after() causes additional delay in the polling mode (can only be
observed in noirq suspend/resume processes where polling mode is always
used) before advance_transaction() is invoked ("wait polling" log is
added before wait_event_timeout()). We can see 2 wait_event_timeout()
invocations. This is because time_after() ensures a ">" validation while
we only need a ">=" validation here:
[ 86.739909] ACPI: Waking up from system sleep state S3
[ 86.742857] ACPI : EC: 2: Increase command
[ 86.742859] ACPI : EC: ***** Command(RD_EC) started *****
[ 86.742861] ACPI : EC: ===== TASK (0) =====
[ 86.742871] ACPI : EC: EC_SC(R) = 0x20 SCI_EVT=1 BURST=0 CMD=0 IBF=0 OBF=0
[ 86.742873] ACPI : EC: EC_SC(W) = 0x80
[ 86.742876] ACPI : EC: ***** Event started *****
[ 86.742880] ACPI : EC: ~~~~~ wait polling ~~~~~
[ 86.743972] ACPI : EC: ~~~~~ wait polling ~~~~~
[ 86.747966] ACPI : EC: ===== TASK (0) =====
[ 86.747977] ACPI : EC: EC_SC(R) = 0x20 SCI_EVT=1 BURST=0 CMD=0 IBF=0 OBF=0
[ 86.747978] ACPI : EC: EC_DATA(W) = 0x06
[ 86.747981] ACPI : EC: ~~~~~ wait polling ~~~~~
[ 86.751971] ACPI : EC: ~~~~~ wait polling ~~~~~
[ 86.755969] ACPI : EC: ===== TASK (0) =====
[ 86.755991] ACPI : EC: EC_SC(R) = 0x21 SCI_EVT=1 BURST=0 CMD=0 IBF=0 OBF=1
[ 86.755993] ACPI : EC: EC_DATA(R) = 0x03
[ 86.755994] ACPI : EC: ~~~~~ wait polling ~~~~~
[ 86.755995] ACPI : EC: ***** Command(RD_EC) stopped *****
[ 86.755996] ACPI : EC: 1: Decrease command
This patch corrects this by using time_before() instead in ec_guard():
[ 54.283146] ACPI: Waking up from system sleep state S3
[ 54.285414] ACPI : EC: 2: Increase command
[ 54.285415] ACPI : EC: ***** Command(RD_EC) started *****
[ 54.285416] ACPI : EC: ~~~~~ wait polling ~~~~~
[ 54.285417] ACPI : EC: ===== TASK (0) =====
[ 54.285424] ACPI : EC: EC_SC(R) = 0x20 SCI_EVT=1 BURST=0 CMD=0 IBF=0 OBF=0
[ 54.285425] ACPI : EC: EC_SC(W) = 0x80
[ 54.285427] ACPI : EC: ***** Event started *****
[ 54.285429] ACPI : EC: ~~~~~ wait polling ~~~~~
[ 54.287209] ACPI : EC: ===== TASK (0) =====
[ 54.287218] ACPI : EC: EC_SC(R) = 0x20 SCI_EVT=1 BURST=0 CMD=0 IBF=0 OBF=0
[ 54.287219] ACPI : EC: EC_DATA(W) = 0x06
[ 54.287222] ACPI : EC: ~~~~~ wait polling ~~~~~
[ 54.291190] ACPI : EC: ===== TASK (0) =====
[ 54.291210] ACPI : EC: EC_SC(R) = 0x21 SCI_EVT=1 BURST=0 CMD=0 IBF=0 OBF=1
[ 54.291213] ACPI : EC: EC_DATA(R) = 0x03
[ 54.291214] ACPI : EC: ~~~~~ wait polling ~~~~~
[ 54.291215] ACPI : EC: ***** Command(RD_EC) stopped *****
[ 54.291216] ACPI : EC: 1: Decrease command
After cleaning up all guarding logics, we have one single function
ec_guard() collecting all old, non-root-caused, hidden logics. Then we can
easily tune the logics in one place to respond to the bug reports.
Except the time_before() change, all other changes do not change the
behavior of the EC driver.
Link: https://bugzilla.kernel.org/show_bug.cgi?id=12011
Link: https://bugzilla.kernel.org/show_bug.cgi?id=20242
Link: https://bugzilla.kernel.org/show_bug.cgi?id=77431
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The following commit merges polling and interrupt modes for EC driver:
Commit: 2a84cb9852 Mon Sep 17 00:00:00 2001
Subject: ACPI: EC: Merge IRQ and POLL modes
The irqs_disabled() check introduced in it tries to fall into busy polling
mode when the context of ec_poll() cannot sleep.
Actually ec_poll() is ensured to be invoked in the contexts that can sleep
(from a sysfs /sys/kernel/debug/ec/ec0/io access, or from
acpi_evaluate_object(), or from acpi_ec_gpe_poller()). Without the MSI
quirk, we never saw the udelay() logic invoked. Thus this check is useless
and can be removed.
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
This patch removes the storming threashold enlarging quirk.
After applying the following commit, we can notice that there is no no-op
GPE handling invocation can be observed, thus it is unlikely that the
no-op counts can exceed the storming threashold:
Commit: ca37bfdfbc
Subject: ACPI / EC: Fix several GPE handling issues by deploying ACPI_GPE_DISPATCH_RAW_HANDLER mode.
Even when the storming happens, we have already limited its affection to
the only transaction and no further transactions will be affected. This is
done by this commit:
Commit: e1d4d90fc0
Subject: ACPI / EC: Refine command storm prevention support
So it's time to remove this quirk.
Link: https://bugzilla.kernel.org/show_bug.cgi?id=45151
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
This patch updates acpi_ec_is_gpe_raised() according to the following
commit:
Commit: 09af8e8290
Subject: ACPICA: Events: Add support to return both enable/status register values for GPE and fixed event.
This is actually a no-op change as both the flags are defined to a same
value.
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Use list_for_each_entry_safe for iterating because handler may be freed
in the loop.
BUG: unable to handle kernel NULL pointer dereference at 000000000000002c
IP: [<ffffffff814d69c8>] acpi_ec_put_query_handler+0x7/0x1a
Call Trace:
acpi_ec_remove_query_handler+0x87/0x97
acpi_smbus_hc_remove+0x2a/0x44 [sbshc]
acpi_device_remove+0x7b/0x9a
__device_release_driver+0x7e/0x110
driver_detach+0xb0/0xc0
bus_remove_driver+0x54/0xe0
driver_unregister+0x2b/0x60
acpi_bus_unregister_driver+0x10/0x12
acpi_smb_hc_driver_exit+0x10/0x12 [sbshc]
SyS_delete_module+0x1b8/0x210
system_call_fastpath+0x12/0x6a
Signed-off-by: Chris Bainbridge <chris.bainbridge@gmail.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
On some machines(E,G Mircosoft surface 3), ACPI battery depends on
the EC operation region and it has _DEP method which contains EC.
Current code doesn't support such devices whose dep_unmet will be
not be decreased after EC opregion handler being installed. This
blocks battery device to be attached with its driver. This patch
is to fix the issue.
Link: https://bugzilla.kernel.org/show_bug.cgi?id=90161
Reported-and-tested-by: Lompik <lompik@voila.fr>
Tested-by: Valentin Lab <valentin.lab_bugzilla.kernel.org@kalysto.org>
Signed-off-by: Lan Tianyu <tianyu.lan@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
This patch enhances debugging with the GPE reference count messages added.
This kind of log entries can be used by the platform validators to validate
if there is an EC transaction broken because of firmware/driver bugs.
No functional changes.
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
This patch refines logging/debugging splitter support so that when DEBUG is
disabled, splitters won't be visible in the kernel logs while they are
still available for developers when DEBUG is enabled.
This patch also refines the splitters to mark the following handling
process boundaries:
+++++: boundary of driver starting/stopping
boundary of IRQ storming
=====: boundary of transaction advancement
*****: boundary of EC command
boundary of EC query
#####: boundary of EC _Qxx evaluation
The following 2 log entries are originally logged using pr_info() in order
to be used as the boot/suspend/resume log entries for the EC device, this
patch also restores them to pr_info() logging level:
ACPI : EC: EC started
ACPI : EC: EC stopped
In this patch, one log entry around "Polling quirk" is converted into
ec_dbg_raw() which doesn't contain the boundary marker.
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Remove unusual pr_info() visual emphasis introduced in ad479e7f47
"ACPI / EC: Introduce STARTED/STOPPED flags to replace BLOCKED flag".
Signed-off-by: Scot Doyle <lkml14@scotdoyle.com>
[ rjw: Change pr_info() to pr_debug() too in those places. ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Revert commit f252cb09e1 (ACPI / EC: Add query flushing support),
because it breaks system suspend on Acer Aspire S5. The machine
just hangs solid at the last stage of suspend (after taking non-boot
CPUs offline).
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Revert commit b5bca896ef (ACPI / EC: Add GPE reference counting
debugging messages), because it depends on commit f252cb09e1
(ACPI / EC: Add query flushing support) which breaks system suspend
on Acer Aspire S5 and needs to be reverted.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
This patch enhances debugging with the GPE reference count messages added.
No functional changes.
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
This patch implementes the QR_EC flushing support.
Grace periods are implemented from the detection of an SCI_EVT to the
submission/completion of the QR_EC transaction. During this period, all
EC command transactions are allowed to be submitted.
Note that query periods and event periods are intentionally distiguished to
allow further improvements.
1. Query period: from the detection of an SCI_EVT to the sumission of the
QR_EC command. This period is used for storming prevention, as currently
QR_EC is deferred to a work queue rather than directly issued from the
IRQ context even there is no other transactions pending, so malicous
SCI_EVT GPE can act like "level triggered" to trigger a GPE storm. We
need to be prepared for this. And in the future, we may change it to be
a part of the advance_transaction() where we will try QR_EC submission
in appropriate positions to avoid such GPE storming.
2. Event period: from the detection of an SCI_EVT to the completion of the
QR_EC command. We may extend it to the completion of _Qxx evaluation.
This is actually a grace period for event flushing, but we only flush
queries due to the reason stated in known issue 1. That's also why we
use EC_FLAGS_EVENT_xxx. During this period, QR_EC transactions need to
pass the flushable submission check.
In this patch, the following flags are implemented:
1. EC_FLAGS_EVENT_ENABLED: this is derived from the old
EC_FLAGS_QUERY_PENDING flag which can block SCI_EVT handlings.
With this flag, the logics implemented by the original flag are
extended:
1. Old logic: unless both of the flags are set, the event poller will
not be scheduled, and
2. New logic: as soon as both of the flags are set, the evet poller will
be scheduled.
2. EC_FLAGS_EVENT_DETECTED: this is also derived from the old
EC_FLAGS_QUERY_PENDING flag which can block SCI_EVT detection. It thus
can be used to indicate the storming prevention period for query
submission.
acpi_ec_submit_request()/acpi_ec_complete_request() are invoked to
implement this period so that acpi_set_gpe() can be invoked under the
"reference count > 0" condition.
3. EC_FLAGS_EVENT_PENDING: this is newly added to indicate the grace period
for event flushing (query flushing for now).
acpi_ec_submit_request()/acpi_ec_complete_request() are invoked to
implement this period so that the flushing process can wait until the
event handling (query transaction for now) to be completed.
Link: https://bugzilla.kernel.org/show_bug.cgi?id=82611
Link: https://bugzilla.kernel.org/show_bug.cgi?id=77431
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Tested-by: Ortwin Glück <odi@odi.ch>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
This patch refines EC command storm prevention support.
Current command storming code is wrong, when the storming condition is
detected, it only flags the condition without doing anything for the
current command but performing storming prevention for the follow-up
commands. So:
1. The first command which suffers from the storming still suffers from
storming.
2. The follow-up commands which may not suffer from the storming are
unconditionally forced into the storming prevention mode.
Ideally, we should only enable storm prevention immediately after detection
for the current command so that the next command can try the
power/performance efficient interrupt mode again.
This patch improves the command storm prevention by disabling GPE right
after the detection and re-enabling it right before completing the command
transaction using the GPE storming prevention APIs. This thus deploys the
following GPE handling model:
1. acpi_enable_gpe()/acpi_disable_gpe() for reference count changes:
This set of APIs are used for EC usage reference counting.
2. acpi_set_gpe(ACPI_GPE_ENABLE)/acpi_set_gpe(ACPI_GPE_DISABLE):
This set of APIs are used for preventing GPE storm. They must be invoked
when the reference count > 0.
Note that as the storming prevention should always happen when there is
an outstanding request, or GPE enabling value will be messed up by the
races. This patch also adds BUG_ON() to enforces this rule to prevent
future bugs.
The msleep(1) used after completing a transaction is useless now as this
sounds like a guard time only useful for platforms that need the
EC_FLAGS_MSI quirks while we have fixed GPE race issues using the previous
raw handler mode enabling. It is kept to avoid regressions. A seperate
patch which deletes EC_FLAGS_MSI quirks should take care of deleting it.
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
This patch implements the EC command flushing support.
During the grace period indicated by EC_FLAGS_STARTED and EC_FLAGS_STOPPED,
all submitted EC command transactions can be completed and new submissions
are prevented before suspending so that the EC hardware can be ensured to
be in the idle state when the system is resumed.
There is a good indicator for flush support:
All acpi_ec_submit_request() is invoked after checking driver state with
acpi_ec_started() except the first one. This means all code paths can be
flushed as fast as possible by discarding the requests occurred after the
flush operation. The reference increased for such kind of code path is
wrapped by acpi_ec_submit_flushable_request().
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Tested-by: Ortwin Glück <odi@odi.ch>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
By using the 2 flags, we can indicate an inter-mediate state where the
current transactions should be completed while the new transactions should
be dropped.
The comparison of the old flag and the new flags:
Old New
about to set BLOCKED STOPPED set / STARTED set
BLOCKED set STOPPED clear / STARTED clear
BLOCKED clear STOPPED clear / STARTED set
A new period can be indicated by the 2 flags. The new period is between the
point where we are about to set BLOCKED and the point when the BLOCKED is
set. The new flags facilitate us with acpi_ec_started() check to allow the
EC transaction to be submitted during the new period. This period thus can
be used as a grace period for the EC transaction flushing.
The only functional change after applying this patch is:
1. The GPE enabling/disabling is protected by the EC specific lock. We can
do this because of recent ACPICA GPE API enhancement. This is reasonable
as the GPE disabling/enabling state should only be determined by the EC
driver's state machine which is protected by the EC spinlock.
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Tested-by: Ortwin Glück <odi@odi.ch>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The bug fixes around GPE races have been done to the EC driver by the
previous commits. This patch increases the revision to 3 to indicate the
behavior differences between the old and the new drivers. The
copyright/authorship notices are also updated.
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Timeout in the ec_poll() doesn't refer to the last register access time. It
thus can win the competition against the acpi_ec_gpe_handler() if a
transaction takes longer than 1ms but individual register accesses are less
than 1ms. In some cases, it can make the following silicon bug easier to
be triggered:
GPE EN is not wired to the GPE trigger line, so when GPE STS is already
set when 1 is written to GPE EN, no GPE can be triggered.
This patch adds register access timestamp reference support for ec_poll()
to reduce the number of ec_poll() invocations.
Reported-by: Venkat Raghavulu <venkat.raghavulu@intel.com>
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>