mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-23 04:54:01 +08:00
2a313cdf1e
7 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
David Howells
|
372ee16386 |
rxrpc: Fix races between skb free, ACK generation and replying
Inside the kafs filesystem it is possible to occasionally have a call processed and terminated before we've had a chance to check whether we need to clean up the rx queue for that call because afs_send_simple_reply() ends the call when it is done, but this is done in a workqueue item that might happen to run to completion before afs_deliver_to_call() completes. Further, it is possible for rxrpc_kernel_send_data() to be called to send a reply before the last request-phase data skb is released. The rxrpc skb destructor is where the ACK processing is done and the call state is advanced upon release of the last skb. ACK generation is also deferred to a work item because it's possible that the skb destructor is not called in a context where kernel_sendmsg() can be invoked. To this end, the following changes are made: (1) kernel_rxrpc_data_consumed() is added. This should be called whenever an skb is emptied so as to crank the ACK and call states. This does not release the skb, however. kernel_rxrpc_free_skb() must now be called to achieve that. These together replace rxrpc_kernel_data_delivered(). (2) kernel_rxrpc_data_consumed() is wrapped by afs_data_consumed(). This makes afs_deliver_to_call() easier to work as the skb can simply be discarded unconditionally here without trying to work out what the return value of the ->deliver() function means. The ->deliver() functions can, via afs_data_complete(), afs_transfer_reply() and afs_extract_data() mark that an skb has been consumed (thereby cranking the state) without the need to conditionally free the skb to make sure the state is correct on an incoming call for when the call processor tries to send the reply. (3) rxrpc_recvmsg() now has to call kernel_rxrpc_data_consumed() when it has finished with a packet and MSG_PEEK isn't set. (4) rxrpc_packet_destructor() no longer calls rxrpc_hard_ACK_data(). Because of this, we no longer need to clear the destructor and put the call before we free the skb in cases where we don't want the ACK/call state to be cranked. (5) The ->deliver() call-type callbacks are made to return -EAGAIN rather than 0 if they expect more data (afs_extract_data() returns -EAGAIN to the delivery function already), and the caller is now responsible for producing an abort if that was the last packet. (6) There are many bits of unmarshalling code where: ret = afs_extract_data(call, skb, last, ...); switch (ret) { case 0: break; case -EAGAIN: return 0; default: return ret; } is to be found. As -EAGAIN can now be passed back to the caller, we now just return if ret < 0: ret = afs_extract_data(call, skb, last, ...); if (ret < 0) return ret; (7) Checks for trailing data and empty final data packets has been consolidated as afs_data_complete(). So: if (skb->len > 0) return -EBADMSG; if (!last) return 0; becomes: ret = afs_data_complete(call, skb, last); if (ret < 0) return ret; (8) afs_transfer_reply() now checks the amount of data it has against the amount of data desired and the amount of data in the skb and returns an error to induce an abort if we don't get exactly what we want. Without these changes, the following oops can occasionally be observed, particularly if some printks are inserted into the delivery path: general protection fault: 0000 [#1] SMP Modules linked in: kafs(E) af_rxrpc(E) [last unloaded: af_rxrpc] CPU: 0 PID: 1305 Comm: kworker/u8:3 Tainted: G E 4.7.0-fsdevel+ #1303 Hardware name: ASUS All Series/H97-PLUS, BIOS 2306 10/09/2014 Workqueue: kafsd afs_async_workfn [kafs] task: ffff88040be041c0 ti: ffff88040c070000 task.ti: ffff88040c070000 RIP: 0010:[<ffffffff8108fd3c>] [<ffffffff8108fd3c>] __lock_acquire+0xcf/0x15a1 RSP: 0018:ffff88040c073bc0 EFLAGS: 00010002 RAX: 6b6b6b6b6b6b6b6b RBX: 0000000000000000 RCX: ffff88040d29a710 RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffff88040d29a710 RBP: ffff88040c073c70 R08: 0000000000000001 R09: 0000000000000001 R10: 0000000000000001 R11: 0000000000000000 R12: 0000000000000000 R13: 0000000000000000 R14: ffff88040be041c0 R15: ffffffff814c928f FS: 0000000000000000(0000) GS:ffff88041fa00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007fa4595f4750 CR3: 0000000001c14000 CR4: 00000000001406f0 Stack: 0000000000000006 000000000be04930 0000000000000000 ffff880400000000 ffff880400000000 ffffffff8108f847 ffff88040be041c0 ffffffff81050446 ffff8803fc08a920 ffff8803fc08a958 ffff88040be041c0 ffff88040c073c38 Call Trace: [<ffffffff8108f847>] ? mark_held_locks+0x5e/0x74 [<ffffffff81050446>] ? __local_bh_enable_ip+0x9b/0xa1 [<ffffffff8108f9ca>] ? trace_hardirqs_on_caller+0x16d/0x189 [<ffffffff810915f4>] lock_acquire+0x122/0x1b6 [<ffffffff810915f4>] ? lock_acquire+0x122/0x1b6 [<ffffffff814c928f>] ? skb_dequeue+0x18/0x61 [<ffffffff81609dbf>] _raw_spin_lock_irqsave+0x35/0x49 [<ffffffff814c928f>] ? skb_dequeue+0x18/0x61 [<ffffffff814c928f>] skb_dequeue+0x18/0x61 [<ffffffffa009aa92>] afs_deliver_to_call+0x344/0x39d [kafs] [<ffffffffa009ab37>] afs_process_async_call+0x4c/0xd5 [kafs] [<ffffffffa0099e9c>] afs_async_workfn+0xe/0x10 [kafs] [<ffffffff81063a3a>] process_one_work+0x29d/0x57c [<ffffffff81064ac2>] worker_thread+0x24a/0x385 [<ffffffff81064878>] ? rescuer_thread+0x2d0/0x2d0 [<ffffffff810696f5>] kthread+0xf3/0xfb [<ffffffff8160a6ff>] ret_from_fork+0x1f/0x40 [<ffffffff81069602>] ? kthread_create_on_node+0x1cf/0x1cf Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net> |
||
David Howells
|
dc44b3a09a |
rxrpc: Differentiate local and remote abort codes in structs
In the rxrpc_connection and rxrpc_call structs, there's one field to hold the abort code, no matter whether that value was generated locally to be sent or was received from the peer via an abort packet. Split the abort code fields in two for cleanliness sake and add an error field to hold the Linux error number to the rxrpc_call struct too (sometimes this is generated in a context where we can't return it to userspace directly). Furthermore, add a skb mark to indicate a packet that caused a local abort to be generated so that recvmsg() can pick up the correct abort code. A future addition will need to be to indicate to userspace the difference between aborts via a control message. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net> |
||
David Howells
|
8e688d9c16 |
rxrpc: Move some miscellaneous bits out into their own file
Move some miscellaneous bits out into their own file to make it easier to split the call handling. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net> |
||
Joe Perches
|
cd2cf63a56 |
af_rxrpc.h: Remove extern from function prototypes
There are a mix of function prototypes with and without extern in the kernel sources. Standardize on not using extern for function prototypes. Function prototypes don't need to be written with extern. extern is assumed by the compiler. Its use is as unnecessary as using auto to declare automatic/local variables in a block. Reflow modified prototypes to 80 columns. Signed-off-by: Joe Perches <joe@perches.com> Signed-off-by: David S. Miller <davem@davemloft.net> |
||
David S. Miller
|
2a9e950701 |
net: Remove __KERNEL__ cpp checks from include/net
These header files are never installed to user consumption, so any __KERNEL__ cpp checks are superfluous. Projects should also not copy these files into their userland utility sources and try to use them there. If they insist on doing so, the onus is on them to sanitize the headers as needed. Signed-off-by: David S. Miller <davem@davemloft.net> |
||
David Howells
|
651350d10f |
[AF_RXRPC]: Add an interface to the AF_RXRPC module for the AFS filesystem to use
Add an interface to the AF_RXRPC module so that the AFS filesystem module can more easily make use of the services available. AFS still opens a socket but then uses the action functions in lieu of sendmsg() and registers an intercept functions to grab messages before they're queued on the socket Rx queue. This permits AFS (or whatever) to: (1) Avoid the overhead of using the recvmsg() call. (2) Use different keys directly on individual client calls on one socket rather than having to open a whole slew of sockets, one for each key it might want to use. (3) Avoid calling request_key() at the point of issue of a call or opening of a socket. This is done instead by AFS at the point of open(), unlink() or other VFS operation and the key handed through. (4) Request the use of something other than GFP_KERNEL to allocate memory. Furthermore: (*) The socket buffer markings used by RxRPC are made available for AFS so that it can interpret the cooked RxRPC messages itself. (*) rxgen (un)marshalling abort codes are made available. The following documentation for the kernel interface is added to Documentation/networking/rxrpc.txt: ========================= AF_RXRPC KERNEL INTERFACE ========================= The AF_RXRPC module also provides an interface for use by in-kernel utilities such as the AFS filesystem. This permits such a utility to: (1) Use different keys directly on individual client calls on one socket rather than having to open a whole slew of sockets, one for each key it might want to use. (2) Avoid having RxRPC call request_key() at the point of issue of a call or opening of a socket. Instead the utility is responsible for requesting a key at the appropriate point. AFS, for instance, would do this during VFS operations such as open() or unlink(). The key is then handed through when the call is initiated. (3) Request the use of something other than GFP_KERNEL to allocate memory. (4) Avoid the overhead of using the recvmsg() call. RxRPC messages can be intercepted before they get put into the socket Rx queue and the socket buffers manipulated directly. To use the RxRPC facility, a kernel utility must still open an AF_RXRPC socket, bind an addess as appropriate and listen if it's to be a server socket, but then it passes this to the kernel interface functions. The kernel interface functions are as follows: (*) Begin a new client call. struct rxrpc_call * rxrpc_kernel_begin_call(struct socket *sock, struct sockaddr_rxrpc *srx, struct key *key, unsigned long user_call_ID, gfp_t gfp); This allocates the infrastructure to make a new RxRPC call and assigns call and connection numbers. The call will be made on the UDP port that the socket is bound to. The call will go to the destination address of a connected client socket unless an alternative is supplied (srx is non-NULL). If a key is supplied then this will be used to secure the call instead of the key bound to the socket with the RXRPC_SECURITY_KEY sockopt. Calls secured in this way will still share connections if at all possible. The user_call_ID is equivalent to that supplied to sendmsg() in the control data buffer. It is entirely feasible to use this to point to a kernel data structure. If this function is successful, an opaque reference to the RxRPC call is returned. The caller now holds a reference on this and it must be properly ended. (*) End a client call. void rxrpc_kernel_end_call(struct rxrpc_call *call); This is used to end a previously begun call. The user_call_ID is expunged from AF_RXRPC's knowledge and will not be seen again in association with the specified call. (*) Send data through a call. int rxrpc_kernel_send_data(struct rxrpc_call *call, struct msghdr *msg, size_t len); This is used to supply either the request part of a client call or the reply part of a server call. msg.msg_iovlen and msg.msg_iov specify the data buffers to be used. msg_iov may not be NULL and must point exclusively to in-kernel virtual addresses. msg.msg_flags may be given MSG_MORE if there will be subsequent data sends for this call. The msg must not specify a destination address, control data or any flags other than MSG_MORE. len is the total amount of data to transmit. (*) Abort a call. void rxrpc_kernel_abort_call(struct rxrpc_call *call, u32 abort_code); This is used to abort a call if it's still in an abortable state. The abort code specified will be placed in the ABORT message sent. (*) Intercept received RxRPC messages. typedef void (*rxrpc_interceptor_t)(struct sock *sk, unsigned long user_call_ID, struct sk_buff *skb); void rxrpc_kernel_intercept_rx_messages(struct socket *sock, rxrpc_interceptor_t interceptor); This installs an interceptor function on the specified AF_RXRPC socket. All messages that would otherwise wind up in the socket's Rx queue are then diverted to this function. Note that care must be taken to process the messages in the right order to maintain DATA message sequentiality. The interceptor function itself is provided with the address of the socket and handling the incoming message, the ID assigned by the kernel utility to the call and the socket buffer containing the message. The skb->mark field indicates the type of message: MARK MEANING =============================== ======================================= RXRPC_SKB_MARK_DATA Data message RXRPC_SKB_MARK_FINAL_ACK Final ACK received for an incoming call RXRPC_SKB_MARK_BUSY Client call rejected as server busy RXRPC_SKB_MARK_REMOTE_ABORT Call aborted by peer RXRPC_SKB_MARK_NET_ERROR Network error detected RXRPC_SKB_MARK_LOCAL_ERROR Local error encountered RXRPC_SKB_MARK_NEW_CALL New incoming call awaiting acceptance The remote abort message can be probed with rxrpc_kernel_get_abort_code(). The two error messages can be probed with rxrpc_kernel_get_error_number(). A new call can be accepted with rxrpc_kernel_accept_call(). Data messages can have their contents extracted with the usual bunch of socket buffer manipulation functions. A data message can be determined to be the last one in a sequence with rxrpc_kernel_is_data_last(). When a data message has been used up, rxrpc_kernel_data_delivered() should be called on it.. Non-data messages should be handled to rxrpc_kernel_free_skb() to dispose of. It is possible to get extra refs on all types of message for later freeing, but this may pin the state of a call until the message is finally freed. (*) Accept an incoming call. struct rxrpc_call * rxrpc_kernel_accept_call(struct socket *sock, unsigned long user_call_ID); This is used to accept an incoming call and to assign it a call ID. This function is similar to rxrpc_kernel_begin_call() and calls accepted must be ended in the same way. If this function is successful, an opaque reference to the RxRPC call is returned. The caller now holds a reference on this and it must be properly ended. (*) Reject an incoming call. int rxrpc_kernel_reject_call(struct socket *sock); This is used to reject the first incoming call on the socket's queue with a BUSY message. -ENODATA is returned if there were no incoming calls. Other errors may be returned if the call had been aborted (-ECONNABORTED) or had timed out (-ETIME). (*) Record the delivery of a data message and free it. void rxrpc_kernel_data_delivered(struct sk_buff *skb); This is used to record a data message as having been delivered and to update the ACK state for the call. The socket buffer will be freed. (*) Free a message. void rxrpc_kernel_free_skb(struct sk_buff *skb); This is used to free a non-DATA socket buffer intercepted from an AF_RXRPC socket. (*) Determine if a data message is the last one on a call. bool rxrpc_kernel_is_data_last(struct sk_buff *skb); This is used to determine if a socket buffer holds the last data message to be received for a call (true will be returned if it does, false if not). The data message will be part of the reply on a client call and the request on an incoming call. In the latter case there will be more messages, but in the former case there will not. (*) Get the abort code from an abort message. u32 rxrpc_kernel_get_abort_code(struct sk_buff *skb); This is used to extract the abort code from a remote abort message. (*) Get the error number from a local or network error message. int rxrpc_kernel_get_error_number(struct sk_buff *skb); This is used to extract the error number from a message indicating either a local error occurred or a network error occurred. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net> |
||
David Howells
|
17926a7932 |
[AF_RXRPC]: Provide secure RxRPC sockets for use by userspace and kernel both
Provide AF_RXRPC sockets that can be used to talk to AFS servers, or serve answers to AFS clients. KerberosIV security is fully supported. The patches and some example test programs can be found in: http://people.redhat.com/~dhowells/rxrpc/ This will eventually replace the old implementation of kernel-only RxRPC currently resident in net/rxrpc/. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net> |