We want to use the "struct slab" size, not the size of the pointer to
same. As it is, we'd not print out the last <n> entry pointers in the
slab (where <n> is ~10, depending on whether it's a 32-bit or 64-bit
kernel).
Gaah, that slab code was written by somebody who likes unreadable crud.
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
numa_maps should not scan over huge vmas in order not to cause problems for
non IA64 platforms that may have pte entries pointing to huge pages in a
variety of ways in their page tables. Add a simple check to ignore vmas
containing huge pages.
Signed-off-by: Christoph Lameter <clameter@engr.sgi.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Andi Kleen <ak@muc.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
I seem to have lost this read_unlock().
While we're there, let's turn that interruptible sleep unto uninterruptible,
so we don't get a busywait if signal_pending(). (Again. We seem to have a
habit of doing this).
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Under some circumstances `points' can get printed before it's initialised.
Spotted by Carlos Martin <carlos@cmartin.tk>.
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
remove_from_swap() currently attempts to use page_lock_anon_vma to obtain
an anon_vma lock. That is not working since the page may have been
remapped via swap ptes in order to move the page.
However, do_migrate_pages() obtain the mmap_sem lock and therefore there is
a guarantee that the anonymous vma will not vanish from under us. There is
therefore no need to use page_lock_anon_vma.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Acked-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Currently sys_migrate_pages only moves pages belonging to a process. This
is okay when invoked from a regular user. But if invoked from root it
should move all pages as documented in the migrate_pages manpage.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Cc: Andi Kleen <ak@muc.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
- PF_SWAPWRITE needs to be set for RECLAIM_SWAP to be able to write
out pages to swap. Currently RECLAIM_SWAP may not do that.
- remove setting nr_reclaimed pages after slab reclaim since the slab shrinking
code does not use that and the nr_reclaimed pages is just right for the
intended follow up action.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
migrate_pages_to() allocates a list of new pages on the intended target
node or with the intended policy and then uses the list of new pages as
targets for the migration of a list of pages out of place.
When the pages are allocated it is not clear which of the out of place
pages will be moved to the new pages. So we cannot specify an address as
needed by alloc_page_vma(). This causes problem for MPOL_INTERLEAVE which
will currently allocate the pages on the first node of the set. If mbind
is used with vma that has the policy of MPOL_INTERLEAVE then the
interleaving of pages may be destroyed.
This patch fixes that by generating a fake address for each alloc_page_vma
which will result is a distribution of pages as prescribed by
MPOL_INTERLEAVE.
Lee also noted that the sequence of nodes for the new pages seems to be
inverted. So we also invert the way the lists of pages for migration are
build.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Looks-ok-to: Andi Kleen <ak@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
I've been dissatisfied with the mpol_nodelist mount option which was
added to tmpfs earlier in -rc. Replace it by mpol=policy:nodelist.
And it was broken: a nodelist is a comma-separated list of numbers and
ranges; the mount options are a comma-separated list of token=values.
Whoops, blindly strsep'ing on commas doesn't work so well: since we've
no numeric tokens, and unlikely to add them, use that to distinguish.
Move the mpol= parsing to shmem_parse_mpol under CONFIG_NUMA, reject
all its options as invalid if not NUMA. /proc shows MPOL_PREFERRED
as "prefer", so use that name for the policy instead of "preferred".
Enforce that mpol=default has no nodelist; that mpol=prefer has one
node only; that mpol=bind has a nodelist; but let mpol=interleave use
node_online_map if no nodelist given. Describe this in tmpfs.txt.
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Acked-by: Robin Holt <holt@sgi.com>
Acked-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
[akpm; it happens that the code was still correct, only inefficient ]
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Christoph Lameter <christoph@lameter.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Signed-off-by: Luke Yang <luke.adi@gmail.com>
Acked-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
maxnode is a bit index and can't be directly compared against a byte length
like PAGE_SIZE
Signed-off-by: Andi Kleen <ak@suse.de>
Cc: Chris Wright <chrisw@sous-sol.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Some allocations are restricted to a limited set of nodes (due to memory
policies or cpuset constraints). If the page allocator is not able to find
enough memory then that does not mean that overall system memory is low.
In particular going postal and more or less randomly shooting at processes
is not likely going to help the situation but may just lead to suicide (the
whole system coming down).
It is better to signal to the process that no memory exists given the
constraints that the process (or the configuration of the process) has
placed on the allocation behavior. The process may be killed but then the
sysadmin or developer can investigate the situation. The solution is
similar to what we do when running out of hugepages.
This patch adds a check before we kill processes. At that point
performance considerations do not matter much so we just scan the zonelist
and reconstruct a list of nodes. If the list of nodes does not contain all
online nodes then this is a constrained allocation and we should kill the
current process.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Andi Kleen <ak@muc.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
In the badness() calculation, there's currently this piece of code:
/*
* Processes which fork a lot of child processes are likely
* a good choice. We add the vmsize of the children if they
* have an own mm. This prevents forking servers to flood the
* machine with an endless amount of children
*/
list_for_each(tsk, &p->children) {
struct task_struct *chld;
chld = list_entry(tsk, struct task_struct, sibling);
if (chld->mm = p->mm && chld->mm)
points += chld->mm->total_vm;
}
The intention is clear: If some server (apache) keeps spawning new children
and we run OOM, we want to kill the father rather than picking a child.
This -- to some degree -- also helps a bit with getting fork bombs under
control, though I'd consider this a desirable side-effect rather than a
feature.
There's one problem with this: No matter how many or few children there are,
if just one of them misbehaves, and all others (including the father) do
everything right, we still always kill the whole family. This hits in real
life; whether it's javascript in konqueror resulting in kdeinit (and thus the
whole KDE session) being hit or just a classical server that spawns children.
Sidenote: The killer does kill all direct children as well, not only the
selected father, see oom_kill_process().
The idea in attached patch is that we do want to account the memory
consumption of the (direct) children to the father -- however not fully.
This maintains the property that fathers with too many children will still
very likely be picked, whereas a single misbehaving child has the chance to
be picked by the OOM killer.
In the patch I account only half (rounded up) of the children's vm_size to
the parent. This means that if one child eats more mem than the rest of
the family, it will be picked, otherwise it's still the father and thus the
whole family that gets selected.
This is heuristics -- we could debate whether accounting for a fourth would
be better than for half of it. Or -- if people would consider it worth the
trouble -- make it a sysctl. For now I sticked to accounting for half,
which should IMHO be a significant improvement.
The patch does one more thing: As users tend to be irritated by the choice
of killed processes (mainly because the children are killed first, despite
some of them having a very low OOM score), I added some more output: The
selected (father) process will be reported first and it's oom_score printed
to syslog.
Description:
Only account for half of children's vm size in oom score calculation
This should still give the parent enough point in case of fork bombs. If
any child however has more than 50% of the vm size of all children
together, it'll get a higher score and be elected.
This patch also makes the kernel display the oom_score.
Signed-off-by: Kurt Garloff <garloff@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Make sure maxnodes is safe size before calculating nlongs in
get_nodes().
Signed-off-by: Chris Wright <chrisw@sous-sol.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Change the find_next_best_node algorithm to correctly skip
over holes in the node online mask. Previously it would not handle
missing nodes correctly and cause crashes at boot.
[Written by Linus, tested by AK]
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
The memory allocator doesn't like empty zones (which have an
uninitialized freelist), so a x86-64 system with a node fully
in GFP_DMA32 only would crash on mbind.
Fix that up by putting all possible zones as fallback into the zonelist
and skipping the empty ones.
In fact the code always enough allocated space for all zones,
but only used it for the highest. This change just uses all the
memory that was allocated before.
This should work fine for now, but whoever implements node hot removal
needs to fix this somewhere else too (or make sure zone datastructures
by itself never go away, only their memory)
Signed-off-by: Andi Kleen <ak@suse.de>
Acked-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
AMD SimNow!'s JIT doesn't like them at all in the guest. For distribution
installation it's easiest if it's a boot time option.
Also I moved the variable to a more appropiate place and make
it independent from sysctl
And marked __read_mostly which it is.
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Currently, copy-on-write may change the physical address of a page even if the
user requested that the page is pinned in memory (either by mlock or by
get_user_pages). This happens if the process forks meanwhile, and the parent
writes to that page. As a result, the page is orphaned: in case of
get_user_pages, the application will never see any data hardware DMA's into
this page after the COW. In case of mlock'd memory, the parent is not getting
the realtime/security benefits of mlock.
In particular, this affects the Infiniband modules which do DMA from and into
user pages all the time.
This patch adds madvise options to control whether memory range is inherited
across fork. Useful e.g. for when hardware is doing DMA from/into these
pages. Could also be useful to an application wanting to speed up its forks
by cutting large areas out of consideration.
Signed-off-by: Michael S. Tsirkin <mst@mellanox.co.il>
Acked-by: Hugh Dickins <hugh@veritas.com>
Cc: Michael Kerrisk <mtk-manpages@gmx.net>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Somehow I imagined that calling a NULL destructor would free a compound page
rather than oopsing. No, we must supply a default destructor, __free_pages_ok
using the order noted by prep_compound_page. hugetlb can still replace this
as before with its own free_huge_page pointer.
The case that needs this is not common: rarely does put_compound_page's
put_page_testzero bring the count down to 0. But if get_user_pages is applied
to some part of a compound page, without immediate release (e.g. AIO or
Infiniband), then it's possible for its put_page to come after the containing
vma has been unmapped and the driver done its free_pages.
That's just the kind of case compound pages are supposed to be guarding
against (but Nick points out, nor did PageReserved handle this right).
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
If a compound page has its own put_page_testzero destructor (the only current
example is free_huge_page), that is noted in page[1].mapping of the compound
page. But that's rather a poor place to keep it: functions which call
set_page_dirty_lock after get_user_pages (e.g. Infiniband's
__ib_umem_release) ought to be checking first, otherwise set_page_dirty is
liable to crash on what's not the address of a struct address_space.
And now I'm about to make that worse: it turns out that every compound page
needs a destructor, so we can no longer rely on hugetlb pages going their own
special way, to avoid further problems of page->mapping reuse. For example,
not many people know that: on 50% of i386 -Os builds, the first tail page of a
compound page purports to be PageAnon (when its destructor has an odd
address), which surprises page_add_file_rmap.
Keep the compound page destructor in page[1].lru.next instead. And to free up
the common pairing of mapping and index, also move compound page order from
index to lru.prev. Slab reuses page->lru too: but if we ever need slab to use
compound pages, it can easily stack its use above this.
(akpm: decoded version of the above: the tail pages of a compound page now
have ->mapping==NULL, so there's no need for the set_page_dirty[_lock]()
caller to check that they're not compund pages before doing the dirty).
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This puts the variables and the way to get to reclaim_mapped in one block.
And allows zone_reclaim or other things to skip the determination (maybe
this whole block of code does not belong into refill_inactive_zone()?)
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
shrink_zone() already increments reclaim_in_progress. No need to do it in
balance_pgdat.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
shrink_list() and refill_inactive() check all ptes pointing to a page for
reference bits in order to decide if the page should be put on the active
list. This is not necessary for zone_reclaim since we are only interested
in removing unmapped pages. Skip the checks in both functions.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This adds some additional comments in order to help others figure out how
exactly the code works. And fix a variable name.
Also swap_page does need to ignore all reference bits when unmapping a
page. Otherwise we may have to repeatedly unmap a frequently touched page.
So change the try_to_unmap parameter to 1.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Prevents deadlock situation between
kmem_cache_create()/kmem_cache_destory(), and kmem_cache_create() /cpu
hotplug. The locking order probably got moved over time.
Signed-off-by: Ravikiran Thirumalai <kiran@scalex86.org>
Signed-off-by: Shai Fultheim <shai@scalex86.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
fix CONFIG_SLOB=y (when CONFIG_SMP=y): get rid of the 'align' parameter
from its __alloc_percpu() implementation. Boot-tested on x86.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Compound pages on SMP systems can now often be freed from pagetables via
the release_pages path. This uses put_page_testzero which does not handle
compound pages at all. Releasing constituent pages from process mappings
decrements their count to a large negative number and leaks the reference
at the head page - net result is a memory leak.
The problem was hidden because the debug check in put_page_testzero itself
actually did take compound pages into consideration.
Fix the bug and the debug check.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Acked-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Remove wrong and misleading comments.
Return VM_FAULT_OOM if the hugetlbpage fault handler cannot allocate a
page. do_no_page will end up doing do_exit(SIGKILL).
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
When hugepages are newly allocated to a file in mm/hugetlb.c, we clear them
with a call to clear_highpage() on each of the subpages. We should be
using clear_user_highpage(): on powerpc, at least, clear_highpage() doesn't
correctly mark the page as icache dirty so if the page is executed shortly
after it's possible to get strange results.
Signed-off-by: David Gibson <dwg@au1.ibm.com>
Acked-by: William Lee Irwin III <wli@holomorphy.com>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
The non-NUMA case would do an unmatched "free_alien_cache()" on an alien
pointer that had never been allocated.
It might not matter from a code generation standpoint (since in the
non-NUMA case, the code doesn't actually _do_ anything), but it not only
results in a compiler warning, it's really really ugly too.
Fix the compiler warning by just having a matching dummy allocation.
That also avoids an unnecessary #ifdef in the code.
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This fixes locking and bugs in cpu_down and cpu_up paths of the NUMA slab
allocator. Sonny Rao <sonny@burdell.org> reported problems sometime back on
POWER5 boxes, when the last cpu on the nodes were being offlined. We could
not reproduce the same on x86_64 because the cpumask (node_to_cpumask) was not
being updated on cpu down. Since that issue is now fixed, we can reproduce
Sonny's problems on x86_64 NUMA, and here is the fix.
The problem earlier was on CPU_DOWN, if it was the last cpu on the node to go
down, the array_caches (shared, alien) and the kmem_list3 of the node were
being freed (kfree) with the kmem_list3 lock held. If the l3 or the
array_caches were to come from the same cache being cleared, we hit on
badness.
This patch cleans up the locking in cpu_up and cpu_down path. We cannot
really free l3 on cpu down because, there is no node offlining yet and even
though a cpu is not yet up, node local memory can be allocated for it. So l3s
are usually allocated at keme_cache_create and destroyed at
kmem_cache_destroy. Hence, we don't need cachep->spinlock protection to get
to the cachep->nodelist[nodeid] either.
Patch survived onlining and offlining on a 4 core 2 node Tyan box with a 4
dbench process running all the time.
Signed-off-by: Alok N Kataria <alokk@calsoftinc.com>
Signed-off-by: Ravikiran Thirumalai <kiran@scalex86.org>
Cc: Christoph Lameter <christoph@lameter.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Earlier, we had to disable on chip interrupts while taking the
cachep->spinlock because, at cache_grow, on every addition of a slab to a slab
cache, we incremented colour_next which was protected by the cachep->spinlock,
and cache_grow could occur at interrupt context. Since, now we protect the
per-node colour_next with the node's list_lock, we do not need to disable on
chip interrupts while taking the per-cache spinlock, but we just need to
disable interrupts when taking the per-node kmem_list3 list_lock.
Signed-off-by: Alok N Kataria <alokk@calsoftinc.com>
Signed-off-by: Ravikiran Thirumalai <kiran@scalex86.org>
Signed-off-by: Shai Fultheim <shai@scalex86.org>
Cc: Christoph Lameter <christoph@lameter.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
colour_next is used as an index to add a colouring offset to a new slab in the
cache (colour_off * colour_next). Now with the NUMA aware slab allocator, it
makes sense to colour slabs added on the same node sequentially with
colour_next.
This patch moves the colouring index "colour_next" per-node by placing it on
kmem_list3 rather than kmem_cache.
This also helps simplify locking for CPU up and down paths.
Signed-off-by: Alok N Kataria <alokk@calsoftinc.com>
Signed-off-by: Ravikiran Thirumalai <kiran@scalex86.org>
Signed-off-by: Shai Fultheim <shai@scalex86.org>
Cc: Christoph Lameter <christoph@lameter.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
I just spent some time researching a Bus Error. Turns out that the huge
page fault handler can return VM_FAULT_SIGBUS for various conditions where
no huge page is available.
Add a note explaining the reasoning in the source.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Acked-by: William Lee Irwin III <wli@holomorphy.com>
Cc: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
percpu_data blindly allocates bootmem memory to store NR_CPUS instances of
cpudata, instead of allocating memory only for possible cpus.
As a preparation for changing that, we need to convert various 0 -> NR_CPUS
loops to use for_each_cpu().
(The above only applies to users of asm-generic/percpu.h. powerpc has gone it
alone and is presently only allocating memory for present CPUs, so it's
currently corrupting memory).
Signed-off-by: Eric Dumazet <dada1@cosmosbay.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: James Bottomley <James.Bottomley@steeleye.com>
Acked-by: Ingo Molnar <mingo@elte.hu>
Cc: Jens Axboe <axboe@suse.de>
Cc: Anton Blanchard <anton@samba.org>
Acked-by: William Irwin <wli@holomorphy.com>
Cc: Andi Kleen <ak@muc.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
> mm/mempolicy.c: In function `huge_zonelist':
> mm/mempolicy.c:1045: error: `HPAGE_SHIFT' undeclared (first use in this function)
> mm/mempolicy.c:1045: error: (Each undeclared identifier is reported only once
> mm/mempolicy.c:1045: error: for each function it appears in.)
> make[1]: *** [mm/mempolicy.o] Error 1
Need to wrap huge_zonelist function with CONFIG_HUGETLBFS.
Signed-off-by: Ken Chen <kenneth.w.chen@intel.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Fix kzalloc() and kstrdup() caller report for CONFIG_DEBUG_SLAB. We must
pass the caller to __cache_alloc() instead of directly doing
__builtin_return_address(0) there; otherwise kzalloc() and kstrdup() are
reported as the allocation site instead of the real one.
Thanks to Valdis Kletnieks for reporting the problem and Steven Rostedt for
the original idea.
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Replace uses of kmem_cache_t with proper struct kmem_cache in mm/slab.c.
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Rename the ac_data() function to more descriptive cpu_cache_get().
Acked-by: Manfred Spraul <manfred@colorfullife.com>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Introduce virt_to_cache() and virt_to_slab() functions to reduce duplicate
code and introduce a proper abstraction should we want to support other kind
of mapping for address to slab and cache (eg. for vmalloc() or I/O memory).
Acked-by: Manfred Spraul <manfred@colorfullife.com>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
From: Manfred Spraul <manfred@colorfullife.com>
Reduce the amount of inline functions in slab to the functions that
are used in the hot path:
- no inline for debug functions
- no __always_inline, inline is already __always_inline
- remove inline from a few numa support functions.
Before:
text data bss dec hex filename
13588 752 48 14388 3834 mm/slab.o (defconfig)
16671 2492 48 19211 4b0b mm/slab.o (numa)
After:
text data bss dec hex filename
13366 752 48 14166 3756 mm/slab.o (defconfig)
16230 2492 48 18770 4952 mm/slab.o (numa)
Signed-off-by: Manfred Spraul <manfred@colorfullife.com>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Create two helper functions slab_get_obj() and slab_put_obj() to replace
duplicated code in mm/slab.c
Signed-off-by: Matthew Dobson <colpatch@us.ibm.com>
Acked-by: Manfred Spraul <manfred@colorfullife.com>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Create a helper function, slab_destroy_objs() which called from
slab_destroy(). This makes slab_destroy() smaller and more readable, and
moves ifdefs outside the function body.
Signed-off-by: Matthew Dobson <colpatch@us.ibm.com>
Acked-by: Manfred Spraul <manfred@colorfullife.com>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Clean up cache_estimate() in mm/slab.c and improves the algorithm from O(n) to
O(1). We first calculate the maximum number of objects a slab can hold after
struct slab and kmem_bufctl_t for each object has been given enough space.
After that, to respect alignment rules, we decrease the number of objects if
necessary. As required padding is at most align-1 and memory of obj_size is
at least align, it is always enough to decrease number of objects by one.
The optimization was originally made by Balbir Singh with more improvements
from Steven Rostedt. Manfred Spraul provider further modifications: no loop
at all for the off-slab case and added comments to explain the background.
Acked-by: Balbir Singh <bsingharora@gmail.com>
Signed-off-by: Manfred Spraul <manfred@colorfullife.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
I noticed the code for index_of is a creative way of finding the cache
index using the compiler to optimize to a single hard coded number. But
I couldn't help noticing that it uses two methods to let you know that
someone used it wrong. One is at compile time (the correct way), and
the other is at run time (not good).
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Acked-by: Manfred Spraul <manfred@colorfullife.com>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>