2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-27 14:43:58 +08:00
Commit Graph

21 Commits

Author SHA1 Message Date
Nikolay Borisov
a491abb2e7 btrfs: Make btrfs_del_inode_ref take btrfs_inode
Signed-off-by: Nikolay Borisov <n.borisov.lkml@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2017-02-14 15:50:54 +01:00
Nikolay Borisov
49f34d1f96 btrfs: Make btrfs_del_dir_entries_in_log take btrfs_inode
Signed-off-by: Nikolay Borisov <n.borisov.lkml@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2017-02-14 15:50:54 +01:00
Nikolay Borisov
9ca5fbfbb9 btrfs: Make btrfs_log_new_name take btrfs_inode
Signed-off-by: Nikolay Borisov <n.borisov.lkml@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2017-02-14 15:50:54 +01:00
Nikolay Borisov
436635571b btrfs: Make btrfs_record_snapshot_destroy take btrfs_inode
Signed-off-by: Nikolay Borisov <n.borisov.lkml@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2017-02-14 15:50:54 +01:00
Nikolay Borisov
4176bdbf2d btrfs: Make btrfs_record_unlink_dir take btrfs_inode
Signed-off-by: Nikolay Borisov <n.borisov.lkml@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2017-02-14 15:50:53 +01:00
Seraphime Kirkovski
20c7bcec6f Btrfs: ACCESS_ONCE cleanup
This replaces ACCESS_ONCE macro with the corresponding
READ|WRITE macros

Signed-off-by: Seraphime Kirkovski <kirkseraph@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2017-02-14 15:50:50 +01:00
Filipe Manana
28a235931b Btrfs: fix lockdep warning on deadlock against an inode's log mutex
Commit 44f714dae5 ("Btrfs: improve performance on fsync against new
inode after rename/unlink"), which landed in 4.8-rc2, introduced a
possibility for a deadlock due to double locking of an inode's log mutex
by the same task, which lockdep reports with:

[23045.433975] =============================================
[23045.434748] [ INFO: possible recursive locking detected ]
[23045.435426] 4.7.0-rc6-btrfs-next-34+ #1 Not tainted
[23045.436044] ---------------------------------------------
[23045.436044] xfs_io/3688 is trying to acquire lock:
[23045.436044]  (&ei->log_mutex){+.+...}, at: [<ffffffffa038552d>] btrfs_log_inode+0x13a/0xc95 [btrfs]
[23045.436044]
               but task is already holding lock:
[23045.436044]  (&ei->log_mutex){+.+...}, at: [<ffffffffa038552d>] btrfs_log_inode+0x13a/0xc95 [btrfs]
[23045.436044]
               other info that might help us debug this:
[23045.436044]  Possible unsafe locking scenario:

[23045.436044]        CPU0
[23045.436044]        ----
[23045.436044]   lock(&ei->log_mutex);
[23045.436044]   lock(&ei->log_mutex);
[23045.436044]
                *** DEADLOCK ***

[23045.436044]  May be due to missing lock nesting notation

[23045.436044] 3 locks held by xfs_io/3688:
[23045.436044]  #0:  (&sb->s_type->i_mutex_key#15){+.+...}, at: [<ffffffffa035f2ae>] btrfs_sync_file+0x14e/0x425 [btrfs]
[23045.436044]  #1:  (sb_internal#2){.+.+.+}, at: [<ffffffff8118446b>] __sb_start_write+0x5f/0xb0
[23045.436044]  #2:  (&ei->log_mutex){+.+...}, at: [<ffffffffa038552d>] btrfs_log_inode+0x13a/0xc95 [btrfs]
[23045.436044]
               stack backtrace:
[23045.436044] CPU: 4 PID: 3688 Comm: xfs_io Not tainted 4.7.0-rc6-btrfs-next-34+ #1
[23045.436044] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.9.1-0-gb3ef39f-prebuilt.qemu-project.org 04/01/2014
[23045.436044]  0000000000000000 ffff88022f5f7860 ffffffff8127074d ffffffff82a54b70
[23045.436044]  ffffffff82a54b70 ffff88022f5f7920 ffffffff81092897 ffff880228015d68
[23045.436044]  0000000000000000 ffffffff82a54b70 ffffffff829c3f00 ffff880228015d68
[23045.436044] Call Trace:
[23045.436044]  [<ffffffff8127074d>] dump_stack+0x67/0x90
[23045.436044]  [<ffffffff81092897>] __lock_acquire+0xcbb/0xe4e
[23045.436044]  [<ffffffff8109155f>] ? mark_lock+0x24/0x201
[23045.436044]  [<ffffffff8109179a>] ? mark_held_locks+0x5e/0x74
[23045.436044]  [<ffffffff81092de0>] lock_acquire+0x12f/0x1c3
[23045.436044]  [<ffffffff81092de0>] ? lock_acquire+0x12f/0x1c3
[23045.436044]  [<ffffffffa038552d>] ? btrfs_log_inode+0x13a/0xc95 [btrfs]
[23045.436044]  [<ffffffffa038552d>] ? btrfs_log_inode+0x13a/0xc95 [btrfs]
[23045.436044]  [<ffffffff814a51a4>] mutex_lock_nested+0x77/0x3a7
[23045.436044]  [<ffffffffa038552d>] ? btrfs_log_inode+0x13a/0xc95 [btrfs]
[23045.436044]  [<ffffffffa039705e>] ? btrfs_release_delayed_node+0xb/0xd [btrfs]
[23045.436044]  [<ffffffffa038552d>] btrfs_log_inode+0x13a/0xc95 [btrfs]
[23045.436044]  [<ffffffffa038552d>] ? btrfs_log_inode+0x13a/0xc95 [btrfs]
[23045.436044]  [<ffffffff810a0ed1>] ? vprintk_emit+0x453/0x465
[23045.436044]  [<ffffffffa0385a61>] btrfs_log_inode+0x66e/0xc95 [btrfs]
[23045.436044]  [<ffffffffa03c084d>] log_new_dir_dentries+0x26c/0x359 [btrfs]
[23045.436044]  [<ffffffffa03865aa>] btrfs_log_inode_parent+0x4a6/0x628 [btrfs]
[23045.436044]  [<ffffffffa0387552>] btrfs_log_dentry_safe+0x5a/0x75 [btrfs]
[23045.436044]  [<ffffffffa035f464>] btrfs_sync_file+0x304/0x425 [btrfs]
[23045.436044]  [<ffffffff811acaf4>] vfs_fsync_range+0x8c/0x9e
[23045.436044]  [<ffffffff811acb22>] vfs_fsync+0x1c/0x1e
[23045.436044]  [<ffffffff811acc79>] do_fsync+0x31/0x4a
[23045.436044]  [<ffffffff811ace99>] SyS_fsync+0x10/0x14
[23045.436044]  [<ffffffff814a88e5>] entry_SYSCALL_64_fastpath+0x18/0xa8
[23045.436044]  [<ffffffff8108f039>] ? trace_hardirqs_off_caller+0x3f/0xaa

An example reproducer for this is:

   $ mkfs.btrfs -f /dev/sdb
   $ mount /dev/sdb /mnt
   $ mkdir /mnt/dir
   $ touch /mnt/dir/foo
   $ sync
   $ mv /mnt/dir/foo /mnt/dir/bar
   $ touch /mnt/dir/foo
   $ xfs_io -c "fsync" /mnt/dir/bar

This is because while logging the inode of file bar we end up logging its
parent directory (since its inode has an unlink_trans field matching the
current transaction id due to the rename operation), which in turn logs
the inodes for all its new dentries, so that the new inode for the new
file named foo gets logged which in turn triggered another logging attempt
for the inode we are fsync'ing, since that inode had an old name that
corresponds to the name of the new inode.

So fix this by ensuring that when logging the inode for a new dentry that
has a name matching an old name of some other inode, we don't log again
the original inode that we are fsync'ing.

Fixes: 44f714dae5 ("Btrfs: improve performance on fsync against new inode after rename/unlink")
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2016-08-25 03:58:32 -07:00
Filipe Manana
1ec9a1ae1e Btrfs: fix unreplayable log after snapshot delete + parent dir fsync
If we delete a snapshot, fsync its parent directory and crash/power fail
before the next transaction commit, on the next mount when we attempt to
replay the log tree of the root containing the parent directory we will
fail and prevent the filesystem from mounting, which is solvable by wiping
out the log trees with the btrfs-zero-log tool but very inconvenient as
we will lose any data and metadata fsynced before the parent directory
was fsynced.

For example:

  $ mkfs.btrfs -f /dev/sdc
  $ mount /dev/sdc /mnt
  $ mkdir /mnt/testdir
  $ btrfs subvolume snapshot /mnt /mnt/testdir/snap
  $ btrfs subvolume delete /mnt/testdir/snap
  $ xfs_io -c "fsync" /mnt/testdir
  < crash / power failure and reboot >
  $ mount /dev/sdc /mnt
  mount: mount(2) failed: No such file or directory

And in dmesg/syslog we get the following message and trace:

[192066.361162] BTRFS info (device dm-0): failed to delete reference to snap, inode 257 parent 257
[192066.363010] ------------[ cut here ]------------
[192066.365268] WARNING: CPU: 4 PID: 5130 at fs/btrfs/inode.c:3986 __btrfs_unlink_inode+0x17a/0x354 [btrfs]()
[192066.367250] BTRFS: Transaction aborted (error -2)
[192066.368401] Modules linked in: btrfs dm_flakey dm_mod ppdev sha256_generic xor raid6_pq hmac drbg ansi_cprng aesni_intel acpi_cpufreq tpm_tis aes_x86_64 tpm ablk_helper evdev cryptd sg parport_pc i2c_piix4 psmouse lrw parport i2c_core pcspkr gf128mul processor serio_raw glue_helper button loop autofs4 ext4 crc16 mbcache jbd2 sd_mod sr_mod cdrom ata_generic virtio_scsi ata_piix libata virtio_pci virtio_ring crc32c_intel scsi_mod e1000 virtio floppy [last unloaded: btrfs]
[192066.377154] CPU: 4 PID: 5130 Comm: mount Tainted: G        W       4.4.0-rc6-btrfs-next-20+ #1
[192066.378875] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS by qemu-project.org 04/01/2014
[192066.380889]  0000000000000000 ffff880143923670 ffffffff81257570 ffff8801439236b8
[192066.382561]  ffff8801439236a8 ffffffff8104ec07 ffffffffa039dc2c 00000000fffffffe
[192066.384191]  ffff8801ed31d000 ffff8801b9fc9c88 ffff8801086875e0 ffff880143923710
[192066.385827] Call Trace:
[192066.386373]  [<ffffffff81257570>] dump_stack+0x4e/0x79
[192066.387387]  [<ffffffff8104ec07>] warn_slowpath_common+0x99/0xb2
[192066.388429]  [<ffffffffa039dc2c>] ? __btrfs_unlink_inode+0x17a/0x354 [btrfs]
[192066.389236]  [<ffffffff8104ec68>] warn_slowpath_fmt+0x48/0x50
[192066.389884]  [<ffffffffa039dc2c>] __btrfs_unlink_inode+0x17a/0x354 [btrfs]
[192066.390621]  [<ffffffff81184b55>] ? iput+0xb0/0x266
[192066.391200]  [<ffffffffa039ea25>] btrfs_unlink_inode+0x1c/0x3d [btrfs]
[192066.391930]  [<ffffffffa03ca623>] check_item_in_log+0x1fe/0x29b [btrfs]
[192066.392715]  [<ffffffffa03ca827>] replay_dir_deletes+0x167/0x1cf [btrfs]
[192066.393510]  [<ffffffffa03cccc7>] replay_one_buffer+0x417/0x570 [btrfs]
[192066.394241]  [<ffffffffa03ca164>] walk_up_log_tree+0x10e/0x1dc [btrfs]
[192066.394958]  [<ffffffffa03cac72>] walk_log_tree+0xa5/0x190 [btrfs]
[192066.395628]  [<ffffffffa03ce8b8>] btrfs_recover_log_trees+0x239/0x32c [btrfs]
[192066.396790]  [<ffffffffa03cc8b0>] ? replay_one_extent+0x50a/0x50a [btrfs]
[192066.397891]  [<ffffffffa0394041>] open_ctree+0x1d8b/0x2167 [btrfs]
[192066.398897]  [<ffffffffa03706e1>] btrfs_mount+0x5ef/0x729 [btrfs]
[192066.399823]  [<ffffffff8108ad98>] ? trace_hardirqs_on+0xd/0xf
[192066.400739]  [<ffffffff8108959b>] ? lockdep_init_map+0xb9/0x1b3
[192066.401700]  [<ffffffff811714b9>] mount_fs+0x67/0x131
[192066.402482]  [<ffffffff81188560>] vfs_kern_mount+0x6c/0xde
[192066.403930]  [<ffffffffa03702bd>] btrfs_mount+0x1cb/0x729 [btrfs]
[192066.404831]  [<ffffffff8108ad98>] ? trace_hardirqs_on+0xd/0xf
[192066.405726]  [<ffffffff8108959b>] ? lockdep_init_map+0xb9/0x1b3
[192066.406621]  [<ffffffff811714b9>] mount_fs+0x67/0x131
[192066.407401]  [<ffffffff81188560>] vfs_kern_mount+0x6c/0xde
[192066.408247]  [<ffffffff8118ae36>] do_mount+0x893/0x9d2
[192066.409047]  [<ffffffff8113009b>] ? strndup_user+0x3f/0x8c
[192066.409842]  [<ffffffff8118b187>] SyS_mount+0x75/0xa1
[192066.410621]  [<ffffffff8147e517>] entry_SYSCALL_64_fastpath+0x12/0x6b
[192066.411572] ---[ end trace 2de42126c1e0a0f0 ]---
[192066.412344] BTRFS: error (device dm-0) in __btrfs_unlink_inode:3986: errno=-2 No such entry
[192066.413748] BTRFS: error (device dm-0) in btrfs_replay_log:2464: errno=-2 No such entry (Failed to recover log tree)
[192066.415458] BTRFS error (device dm-0): cleaner transaction attach returned -30
[192066.444613] BTRFS: open_ctree failed

This happens because when we are replaying the log and processing the
directory entry pointing to the snapshot in the subvolume tree, we treat
its btrfs_dir_item item as having a location with a key type matching
BTRFS_INODE_ITEM_KEY, which is wrong because the type matches
BTRFS_ROOT_ITEM_KEY and therefore must be processed differently, as the
object id refers to a root number and not to an inode in the root
containing the parent directory.

So fix this by triggering a transaction commit if an fsync against the
parent directory is requested after deleting a snapshot. This is the
simplest approach for a rare use case. Some alternative that avoids the
transaction commit would require more code to explicitly delete the
snapshot at log replay time (factoring out common code from ioctl.c:
btrfs_ioctl_snap_destroy()), special care at fsync time to remove the
log tree of the snapshot's root from the log root of the root of tree
roots, amongst other steps.

A test case for xfstests that triggers the issue follows.

  seq=`basename $0`
  seqres=$RESULT_DIR/$seq
  echo "QA output created by $seq"
  tmp=/tmp/$$
  status=1	# failure is the default!
  trap "_cleanup; exit \$status" 0 1 2 3 15

  _cleanup()
  {
      _cleanup_flakey
      cd /
      rm -f $tmp.*
  }

  # get standard environment, filters and checks
  . ./common/rc
  . ./common/filter
  . ./common/dmflakey

  # real QA test starts here
  _need_to_be_root
  _supported_fs btrfs
  _supported_os Linux
  _require_scratch
  _require_dm_target flakey
  _require_metadata_journaling $SCRATCH_DEV

  rm -f $seqres.full

  _scratch_mkfs >>$seqres.full 2>&1
  _init_flakey
  _mount_flakey

  # Create a snapshot at the root of our filesystem (mount point path), delete it,
  # fsync the mount point path, crash and mount to replay the log. This should
  # succeed and after the filesystem is mounted the snapshot should not be visible
  # anymore.
  _run_btrfs_util_prog subvolume snapshot $SCRATCH_MNT $SCRATCH_MNT/snap1
  _run_btrfs_util_prog subvolume delete $SCRATCH_MNT/snap1
  $XFS_IO_PROG -c "fsync" $SCRATCH_MNT
  _flakey_drop_and_remount
  [ -e $SCRATCH_MNT/snap1 ] && \
      echo "Snapshot snap1 still exists after log replay"

  # Similar scenario as above, but this time the snapshot is created inside a
  # directory and not directly under the root (mount point path).
  mkdir $SCRATCH_MNT/testdir
  _run_btrfs_util_prog subvolume snapshot $SCRATCH_MNT $SCRATCH_MNT/testdir/snap2
  _run_btrfs_util_prog subvolume delete $SCRATCH_MNT/testdir/snap2
  $XFS_IO_PROG -c "fsync" $SCRATCH_MNT/testdir
  _flakey_drop_and_remount
  [ -e $SCRATCH_MNT/testdir/snap2 ] && \
      echo "Snapshot snap2 still exists after log replay"

  _unmount_flakey

  echo "Silence is golden"
  status=0
  exit

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Tested-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
2016-03-01 08:23:25 -08:00
Filipe Manana
2f2ff0ee5e Btrfs: fix metadata inconsistencies after directory fsync
We can get into inconsistency between inodes and directory entries
after fsyncing a directory. The issue is that while a directory gets
the new dentries persisted in the fsync log and replayed at mount time,
the link count of the inode that directory entries point to doesn't
get updated, staying with an incorrect link count (smaller then the
correct value). This later leads to stale file handle errors when
accessing (including attempt to delete) some of the links if all the
other ones are removed, which also implies impossibility to delete the
parent directories, since the dentries can not be removed.

Another issue is that (unlike ext3/4, xfs, f2fs, reiserfs, nilfs2),
when fsyncing a directory, new files aren't logged (their metadata and
dentries) nor any child directories. So this patch fixes this issue too,
since it has the same resolution as the incorrect inode link count issue
mentioned before.

This is very easy to reproduce, and the following excerpt from my test
case for xfstests shows how:

  _scratch_mkfs >> $seqres.full 2>&1
  _init_flakey
  _mount_flakey

  # Create our main test file and directory.
  $XFS_IO_PROG -f -c "pwrite -S 0xaa 0 8K" $SCRATCH_MNT/foo | _filter_xfs_io
  mkdir $SCRATCH_MNT/mydir

  # Make sure all metadata and data are durably persisted.
  sync

  # Add a hard link to 'foo' inside our test directory and fsync only the
  # directory. The btrfs fsync implementation had a bug that caused the new
  # directory entry to be visible after the fsync log replay but, the inode
  # of our file remained with a link count of 1.
  ln $SCRATCH_MNT/foo $SCRATCH_MNT/mydir/foo_2

  # Add a few more links and new files.
  # This is just to verify nothing breaks or gives incorrect results after the
  # fsync log is replayed.
  ln $SCRATCH_MNT/foo $SCRATCH_MNT/mydir/foo_3
  $XFS_IO_PROG -f -c "pwrite -S 0xff 0 64K" $SCRATCH_MNT/hello | _filter_xfs_io
  ln $SCRATCH_MNT/hello $SCRATCH_MNT/mydir/hello_2

  # Add some subdirectories and new files and links to them. This is to verify
  # that after fsyncing our top level directory 'mydir', all the subdirectories
  # and their files/links are registered in the fsync log and exist after the
  # fsync log is replayed.
  mkdir -p $SCRATCH_MNT/mydir/x/y/z
  ln $SCRATCH_MNT/foo $SCRATCH_MNT/mydir/x/y/foo_y_link
  ln $SCRATCH_MNT/foo $SCRATCH_MNT/mydir/x/y/z/foo_z_link
  touch $SCRATCH_MNT/mydir/x/y/z/qwerty

  # Now fsync only our top directory.
  $XFS_IO_PROG -c "fsync" $SCRATCH_MNT/mydir

  # And fsync now our new file named 'hello', just to verify later that it has
  # the expected content and that the previous fsync on the directory 'mydir' had
  # no bad influence on this fsync.
  $XFS_IO_PROG -c "fsync" $SCRATCH_MNT/hello

  # Simulate a crash/power loss.
  _load_flakey_table $FLAKEY_DROP_WRITES
  _unmount_flakey

  _load_flakey_table $FLAKEY_ALLOW_WRITES
  _mount_flakey

  # Verify the content of our file 'foo' remains the same as before, 8192 bytes,
  # all with the value 0xaa.
  echo "File 'foo' content after log replay:"
  od -t x1 $SCRATCH_MNT/foo

  # Remove the first name of our inode. Because of the directory fsync bug, the
  # inode's link count was 1 instead of 5, so removing the 'foo' name ended up
  # deleting the inode and the other names became stale directory entries (still
  # visible to applications). Attempting to remove or access the remaining
  # dentries pointing to that inode resulted in stale file handle errors and
  # made it impossible to remove the parent directories since it was impossible
  # for them to become empty.
  echo "file 'foo' link count after log replay: $(stat -c %h $SCRATCH_MNT/foo)"
  rm -f $SCRATCH_MNT/foo

  # Now verify that all files, links and directories created before fsyncing our
  # directory exist after the fsync log was replayed.
  [ -f $SCRATCH_MNT/mydir/foo_2 ] || echo "Link mydir/foo_2 is missing"
  [ -f $SCRATCH_MNT/mydir/foo_3 ] || echo "Link mydir/foo_3 is missing"
  [ -f $SCRATCH_MNT/hello ] || echo "File hello is missing"
  [ -f $SCRATCH_MNT/mydir/hello_2 ] || echo "Link mydir/hello_2 is missing"
  [ -f $SCRATCH_MNT/mydir/x/y/foo_y_link ] || \
      echo "Link mydir/x/y/foo_y_link is missing"
  [ -f $SCRATCH_MNT/mydir/x/y/z/foo_z_link ] || \
      echo "Link mydir/x/y/z/foo_z_link is missing"
  [ -f $SCRATCH_MNT/mydir/x/y/z/qwerty ] || \
      echo "File mydir/x/y/z/qwerty is missing"

  # We expect our file here to have a size of 64Kb and all the bytes having the
  # value 0xff.
  echo "file 'hello' content after log replay:"
  od -t x1 $SCRATCH_MNT/hello

  # Now remove all files/links, under our test directory 'mydir', and verify we
  # can remove all the directories.
  rm -f $SCRATCH_MNT/mydir/x/y/z/*
  rmdir $SCRATCH_MNT/mydir/x/y/z
  rm -f $SCRATCH_MNT/mydir/x/y/*
  rmdir $SCRATCH_MNT/mydir/x/y
  rmdir $SCRATCH_MNT/mydir/x
  rm -f $SCRATCH_MNT/mydir/*
  rmdir $SCRATCH_MNT/mydir

  # An fsck, run by the fstests framework everytime a test finishes, also detected
  # the inconsistency and printed the following error message:
  #
  # root 5 inode 257 errors 2001, no inode item, link count wrong
  #    unresolved ref dir 258 index 2 namelen 5 name foo_2 filetype 1 errors 4, no inode ref
  #    unresolved ref dir 258 index 3 namelen 5 name foo_3 filetype 1 errors 4, no inode ref

  status=0
  exit

The expected golden output for the test is:

  wrote 8192/8192 bytes at offset 0
  XXX Bytes, X ops; XX:XX:XX.X (XXX YYY/sec and XXX ops/sec)
  wrote 65536/65536 bytes at offset 0
  XXX Bytes, X ops; XX:XX:XX.X (XXX YYY/sec and XXX ops/sec)
  File 'foo' content after log replay:
  0000000 aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa
  *
  0020000
  file 'foo' link count after log replay: 5
  file 'hello' content after log replay:
  0000000 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
  *
  0200000

Which is the output after this patch and when running the test against
ext3/4, xfs, f2fs, reiserfs or nilfs2. Without this patch, the test's
output is:

  wrote 8192/8192 bytes at offset 0
  XXX Bytes, X ops; XX:XX:XX.X (XXX YYY/sec and XXX ops/sec)
  wrote 65536/65536 bytes at offset 0
  XXX Bytes, X ops; XX:XX:XX.X (XXX YYY/sec and XXX ops/sec)
  File 'foo' content after log replay:
  0000000 aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa
  *
  0020000
  file 'foo' link count after log replay: 1
  Link mydir/foo_2 is missing
  Link mydir/foo_3 is missing
  Link mydir/x/y/foo_y_link is missing
  Link mydir/x/y/z/foo_z_link is missing
  File mydir/x/y/z/qwerty is missing
  file 'hello' content after log replay:
  0000000 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
  *
  0200000
  rmdir: failed to remove '/home/fdmanana/btrfs-tests/scratch_1/mydir/x/y/z': No such file or directory
  rmdir: failed to remove '/home/fdmanana/btrfs-tests/scratch_1/mydir/x/y': No such file or directory
  rmdir: failed to remove '/home/fdmanana/btrfs-tests/scratch_1/mydir/x': No such file or directory
  rm: cannot remove '/home/fdmanana/btrfs-tests/scratch_1/mydir/foo_2': Stale file handle
  rm: cannot remove '/home/fdmanana/btrfs-tests/scratch_1/mydir/foo_3': Stale file handle
  rmdir: failed to remove '/home/fdmanana/btrfs-tests/scratch_1/mydir': Directory not empty

Fsck, without this fix, also complains about the wrong link count:

  root 5 inode 257 errors 2001, no inode item, link count wrong
      unresolved ref dir 258 index 2 namelen 5 name foo_2 filetype 1 errors 4, no inode ref
      unresolved ref dir 258 index 3 namelen 5 name foo_3 filetype 1 errors 4, no inode ref

So fix this by logging the inodes that the dentries point to when
fsyncing a directory.

A test case for xfstests follows.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-03-26 17:56:23 -07:00
Filipe Manana
8407f55326 Btrfs: fix data corruption after fast fsync and writeback error
When we do a fast fsync, we start all ordered operations and then while
they're running in parallel we visit the list of modified extent maps
and construct their matching file extent items and write them to the
log btree. After that, in btrfs_sync_log() we wait for all the ordered
operations to finish (via btrfs_wait_logged_extents).

The problem with this is that we were completely ignoring errors that
can happen in the extent write path, such as -ENOSPC, a temporary -ENOMEM
or -EIO errors for example. When such error happens, it means we have parts
of the on disk extent that weren't written to, and so we end up logging
file extent items that point to these extents that contain garbage/random
data - so after a crash/reboot plus log replay, we get our inode's metadata
pointing to those extents.

This worked in contrast with the full (non-fast) fsync path, where we
start all ordered operations, wait for them to finish and then write
to the log btree. In this path, after each ordered operation completes
we check if it's flagged with an error (BTRFS_ORDERED_IOERR) and return
-EIO if so (via btrfs_wait_ordered_range).

So if an error happens with any ordered operation, just return a -EIO
error to userspace, so that it knows that not all of its previous writes
were durably persisted and the application can take proper action (like
redo the writes for e.g.) - and definitely not leave any file extent items
in the log refer to non fully written extents.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2014-09-19 06:57:51 -07:00
Filipe Manana
49dae1bc1c Btrfs: fix fsync data loss after a ranged fsync
While we're doing a full fsync (when the inode has the flag
BTRFS_INODE_NEEDS_FULL_SYNC set) that is ranged too (covers only a
portion of the file), we might have ordered operations that are started
before or while we're logging the inode and that fall outside the fsync
range.

Therefore when a full ranged fsync finishes don't remove every extent
map from the list of modified extent maps - as for some of them, that
fall outside our fsync range, their respective ordered operation hasn't
finished yet, meaning the corresponding file extent item wasn't inserted
into the fs/subvol tree yet and therefore we didn't log it, and we must
let the next fast fsync (one that checks only the modified list) see this
extent map and log a matching file extent item to the log btree and wait
for its ordered operation to finish (if it's still ongoing).

A test case for xfstests follows.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2014-09-08 13:56:43 -07:00
Miao Xie
995946dd29 Btrfs: use helpers for last_trans_log_full_commit instead of opencode
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
2014-06-09 17:20:45 -07:00
Miao Xie
d1433debe7 Btrfs: just wait or commit our own log sub-transaction
We might commit the log sub-transaction which didn't contain the metadata we
logged. It was because we didn't record the log transid and just select
the current log sub-transaction to commit, but the right one might be
committed by the other task already. Actually, we needn't do anything
and it is safe that we go back directly in this case.

This patch improves the log sync by the above idea. We record the transid
of the log sub-transaction in which we log the metadata, and the transid
of the log sub-transaction we have committed. If the committed transid
is >= the transid we record when logging the metadata, we just go back.

Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
2014-03-10 15:16:43 -04:00
Miao Xie
8b050d350c Btrfs: fix skipped error handle when log sync failed
It is possible that many tasks sync the log tree at the same time, but
only one task can do the sync work, the others will wait for it. But those
wait tasks didn't get the result of the log sync, and returned 0 when they
ended the wait. It caused those tasks skipped the error handle, and the
serious problem was they told the users the file sync succeeded but in
fact they failed.

This patch fixes this problem by introducing a log context structure,
we insert it into the a global list. When the sync fails, we will set
the error number of every log context in the list, then the waiting tasks
get the error number of the log context and handle the error if need.

Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
2014-03-10 15:16:43 -04:00
Eric Sandeen
48a3b6366f btrfs: make static code static & remove dead code
Big patch, but all it does is add statics to functions which
are in fact static, then remove the associated dead-code fallout.

removed functions:

btrfs_iref_to_path()
__btrfs_lookup_delayed_deletion_item()
__btrfs_search_delayed_insertion_item()
__btrfs_search_delayed_deletion_item()
find_eb_for_page()
btrfs_find_block_group()
range_straddles_pages()
extent_range_uptodate()
btrfs_file_extent_length()
btrfs_scrub_cancel_devid()
btrfs_start_transaction_lflush()

btrfs_print_tree() is left because it is used for debugging.
btrfs_start_transaction_lflush() and btrfs_reada_detach() are
left for symmetry.

ulist.c functions are left, another patch will take care of those.

Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
2013-05-06 15:55:23 -04:00
Jeff Mahoney
143bede527 btrfs: return void in functions without error conditions
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
2012-03-22 01:45:34 +01:00
David Sterba
621496f4fd btrfs: remove unused function prototypes
function prototypes without a body

Signed-off-by: David Sterba <dsterba@suse.cz>
2011-05-04 14:01:26 +02:00
Yan, Zheng
4a500fd178 Btrfs: Metadata ENOSPC handling for tree log
Previous patches make the allocater return -ENOSPC if there is no
unreserved free metadata space. This patch updates tree log code
and various other places to propagate/handle the ENOSPC error.

Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2010-05-25 10:34:53 -04:00
Chris Mason
257c62e1bc Btrfs: avoid tree log commit when there are no changes
rpm has a habit of running fdatasync when the file hasn't
changed.  We already detect if a file hasn't been changed
in the current transaction but it might have been sent to
the tree-log in this transaction and not changed since
the last call to fsync.

In this case, we want to avoid a tree log sync, which includes
a number of synchronous writes and barriers.  This commit
extends the existing tracking of the last transaction to change
a file to also track the last sub-transaction.

The end result is that rpm -ivh and -Uvh are roughly twice as fast,
and on par with ext3.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-10-13 13:35:12 -04:00
Chris Mason
12fcfd22fe Btrfs: tree logging unlink/rename fixes
The tree logging code allows individual files or directories to be logged
without including operations on other files and directories in the FS.
It tries to commit the minimal set of changes to disk in order to
fsync the single file or directory that was sent to fsync or O_SYNC.

The tree logging code was allowing files and directories to be unlinked
if they were part of a rename operation where only one directory
in the rename was in the fsync log.  This patch adds a few new rules
to the tree logging.

1) on rename or unlink, if the inode being unlinked isn't in the fsync
log, we must force a full commit before doing an fsync of the directory
where the unlink was done.  The commit isn't done during the unlink,
but it is forced the next time we try to log the parent directory.

Solution: record transid of last unlink/rename per directory when the
directory wasn't already logged.  For renames this is only done when
renaming to a different directory.

mkdir foo/some_dir
normal commit
rename foo/some_dir foo2/some_dir
mkdir foo/some_dir
fsync foo/some_dir/some_file

The fsync above will unlink the original some_dir without recording
it in its new location (foo2).  After a crash, some_dir will be gone
unless the fsync of some_file forces a full commit

2) we must log any new names for any file or dir that is in the fsync
log.  This way we make sure not to lose files that are unlinked during
the same transaction.

2a) we must log any new names for any file or dir during rename
when the directory they are being removed from was logged.

2a is actually the more important variant.  Without the extra logging
a crash might unlink the old name without recreating the new one

3) after a crash, we must go through any directories with a link count
of zero and redo the rm -rf

mkdir f1/foo
normal commit
rm -rf f1/foo
fsync(f1)

The directory f1 was fully removed from the FS, but fsync was never
called on f1, only its parent dir.  After a crash the rm -rf must
be replayed.  This must be able to recurse down the entire
directory tree.  The inode link count fixup code takes care of the
ugly details.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-03-24 16:14:52 -04:00
Chris Mason
e02119d5a7 Btrfs: Add a write ahead tree log to optimize synchronous operations
File syncs and directory syncs are optimized by copying their
items into a special (copy-on-write) log tree.  There is one log tree per
subvolume and the btrfs super block points to a tree of log tree roots.

After a crash, items are copied out of the log tree and back into the
subvolume.  See tree-log.c for all the details.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-09-25 11:04:07 -04:00