I happened to pass swap partition as root partition in cmdline,
then kernel panic and tell me about "Cannot open root device".
It is not correct, in fact it is a fs type mismatch instead of 'no device'.
Eventually I found btrfs mounting failed with -EIO, it should be -EINVAL.
The logic in init/do_mounts.c:
for (p = fs_names; *p; p += strlen(p)+1) {
int err = do_mount_root(name, p, flags, root_mount_data);
switch (err) {
case 0:
goto out;
case -EACCES:
flags |= MS_RDONLY;
goto retry;
case -EINVAL:
continue;
}
print "Cannot open root device"
panic
}
SO fs type after btrfs will have no chance to mount
Here fix the return value as -EINVAL
Signed-off-by: Dave Young <hidave.darkstar@gmail.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Lzo is a much faster compression algorithm than gzib, so would allow
more users to enable transparent compression, and some users can
choose from compression ratio and speed for different applications
Usage:
# mount -t btrfs -o compress[=<zlib,lzo>] dev /mnt
or
# mount -t btrfs -o compress-force[=<zlib,lzo>] dev /mnt
"-o compress" without argument is still allowed for compatability.
Compatibility:
If we mount a filesystem with lzo compression, it will not be able be
mounted in old kernels. One reason is, otherwise btrfs will directly
dump compressed data, which sits in inline extent, to user.
Performance:
The test copied a linux source tarball (~400M) from an ext4 partition
to the btrfs partition, and then extracted it.
(time in second)
lzo zlib nocompress
copy: 10.6 21.7 14.9
extract: 70.1 94.4 66.6
(data size in MB)
lzo zlib nocompress
copy: 185.87 108.69 394.49
extract: 193.80 132.36 381.21
Changelog:
v1 -> v2:
- Select LZO_COMPRESS and LZO_DECOMPRESS in btrfs Kconfig.
- Add incompability flag.
- Fix error handling in compress code.
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
* git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable:
Btrfs: prevent RAID level downgrades when space is low
Btrfs: account for missing devices in RAID allocation profiles
Btrfs: EIO when we fail to read tree roots
Btrfs: fix compiler warnings
Btrfs: Make async snapshot ioctl more generic
Btrfs: pwrite blocked when writing from the mmaped buffer of the same page
Btrfs: Fix a crash when mounting a subvolume
Btrfs: fix sync subvol/snapshot creation
Btrfs: Fix page leak in compressed writeback path
Btrfs: do not BUG if we fail to remove the orphan item for dead snapshots
Btrfs: fixup return code for btrfs_del_orphan_item
Btrfs: do not do fast caching if we are allocating blocks for tree_root
Btrfs: deal with space cache errors better
Btrfs: fix use after free in O_DIRECT
If we just get a plain IO error when we read tree roots, the code
wasn't properly sending that error up the chain. This allowed mounts to
continue when they should failed, and allowed operations
on partially setup root structs. The end result was usually oopsen
on spinlocks that hadn't been spun up correctly.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
... regarding an unused function when !MIGRATION, and regarding a
printk() format string vs argument mismatch.
Signed-off-by: Jan Beulich <jbeulich@novell.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
* git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable: (24 commits)
Btrfs: don't use migrate page without CONFIG_MIGRATION
Btrfs: deal with DIO bios that span more than one ordered extent
Btrfs: setup blank root and fs_info for mount time
Btrfs: fix fiemap
Btrfs - fix race between btrfs_get_sb() and umount
Btrfs: update inode ctime when using links
Btrfs: make sure new inode size is ok in fallocate
Btrfs: fix typo in fallocate to make it honor actual size
Btrfs: avoid NULL pointer deref in try_release_extent_buffer
Btrfs: make btrfs_add_nondir take parent inode as an argument
Btrfs: hold i_mutex when calling btrfs_log_dentry_safe
Btrfs: use dget_parent where we can UPDATED
Btrfs: fix more ESTALE problems with NFS
Btrfs: handle NFS lookups properly
btrfs: make 1-bit signed fileds unsigned
btrfs: Show device attr correctly for symlinks
btrfs: Set file size correctly in file clone
btrfs: Check if dest_offset is block-size aligned before cloning file
Btrfs: handle the space_cache option properly
btrfs: Fix early enospc because 'unused' calculated with wrong sign.
...
There is a problem with how we use sget, it searches through the list of supers
attached to the fs_type looking for a super with the same fs_devices as what
we're trying to mount. This depends on sb->s_fs_info being filled, but we don't
fill that in until we get to btrfs_fill_super, so we could hit supers on the
fs_type super list that have a null s_fs_info. In order to fix that we need to
go ahead and setup a blank root with a blank fs_info to hold fs_devices, that
way our test will work out right and then we can set s_fs_info in
btrfs_set_super, and then open_ctree will simply use our pre-allocated root and
fs_info when setting everything up. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Migrate page will directly call the btrfs btree writepage function,
which isn't actually allowed.
Our writepage assumes that you have locked the extent_buffer and
flagged the block as written. Without doing these steps, we can
corrupt metadata blocks.
A later commit will remove the btree writepage function since
it is really only safely used internally by btrfs. We
use writepages for everything else.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable: (39 commits)
Btrfs: deal with errors from updating the tree log
Btrfs: allow subvol deletion by unprivileged user with -o user_subvol_rm_allowed
Btrfs: make SNAP_DESTROY async
Btrfs: add SNAP_CREATE_ASYNC ioctl
Btrfs: add START_SYNC, WAIT_SYNC ioctls
Btrfs: async transaction commit
Btrfs: fix deadlock in btrfs_commit_transaction
Btrfs: fix lockdep warning on clone ioctl
Btrfs: fix clone ioctl where range is adjacent to extent
Btrfs: fix delalloc checks in clone ioctl
Btrfs: drop unused variable in block_alloc_rsv
Btrfs: cleanup warnings from gcc 4.6 (nonbugs)
Btrfs: Fix variables set but not read (bugs found by gcc 4.6)
Btrfs: Use ERR_CAST helpers
Btrfs: use memdup_user helpers
Btrfs: fix raid code for removing missing drives
Btrfs: Switch the extent buffer rbtree into a radix tree
Btrfs: restructure try_release_extent_buffer()
Btrfs: use the flusher threads for delalloc throttling
Btrfs: tune the chunk allocation to 5% of the FS as metadata
...
Fix up trivial conflicts in fs/btrfs/super.c and fs/fs-writeback.c, and
remove use of INIT_RCU_HEAD in fs/btrfs/extent_io.c (that init macro was
useless and removed in commit 5e8067adfd: "rcu head remove init")
Add support for an async transaction commit that is ordered such that any
subsequent operations will join the following transaction, but does not
wait until the current commit is fully on disk. This avoids much of the
latency associated with the btrfs_commit_transaction for callers concerned
with serialization and not safety.
The wait_for_unblock flag controls whether we wait for the 'middle' portion
of commit_transaction to complete, which is necessary if the caller expects
some of the modifications contained in the commit to be available (this is
the case for subvol/snapshot creation).
Signed-off-by: Sage Weil <sage@newdream.net>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
These are all the cases where a variable is set, but not read which are
not bugs as far as I can see, but simply leftovers.
Still needs more review.
Found by gcc 4.6's new warnings
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Cc: Chris Mason <chris.mason@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This is a simple bit, just dump the free space cache out to our preallocated
inode when we're writing out dirty block groups. There are a bunch of changes
in inode.c in order to account for special cases. Mostly when we're doing the
writeout we're holding trans_mutex, so we need to use the nolock transacation
functions. Also we can't do asynchronous completions since the async thread
could be blocked on already completed IO waiting for the transaction lock. This
has been tested with xfstests and btrfs filesystem balance, as well as my ENOSPC
tests. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
In order to save free space cache, we need an inode to hold the data, and we
need a special item to point at the right inode for the right block group. So
first, create a special item that will point to the right inode, and the number
of extent entries we will have and the number of bitmaps we will have. We
truncate and pre-allocate space everytime to make sure it's uptodate.
This feature will be turned on as soon as you mount with -o space_cache, however
it is safe to boot into old kernels, they will just generate the cache the old
fashion way. When you boot back into a newer kernel we will notice that we
modified and not the cache and automatically discard the cache.
Signed-off-by: Josef Bacik <josef@redhat.com>
Switch to the WRITE_FLUSH_FUA flag for log writes, remove the EOPNOTSUPP
detection for barriers and stop setting the barrier flag for discards.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Chris Mason <chris.mason@oracle.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
Remove the current bio flags and reuse the request flags for the bio, too.
This allows to more easily trace the type of I/O from the filesystem
down to the block driver. There were two flags in the bio that were
missing in the requests: BIO_RW_UNPLUG and BIO_RW_AHEAD. Also I've
renamed two request flags that had a superflous RW in them.
Note that the flags are in bio.h despite having the REQ_ name - as
blkdev.h includes bio.h that is the only way to go for now.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
btrfs_read_fs_root_no_name() returns ERR_PTRs on error so I added a
check for that. It's not clear to me if it can also return NULL
pointers or not so I left the original NULL pointer check as is.
Signed-off-by: Dan Carpenter <error27@gmail.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Unwind and return -ENOMEM if the allocation fails here.
Signed-off-by: Dan Carpenter <error27@gmail.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
The async helper threads offload crc work onto all the
CPUs, and make streaming writes much faster. This
changes the O_DIRECT write code to use them. The only
small complication was that we need to pass in the
logical offset in the file for each bio, because we can't
find it in the bio's pages.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Previous patches make the allocater return -ENOSPC if there is no
unreserved free metadata space. This patch updates tree log code
and various other places to propagate/handle the ENOSPC error.
Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Reserve metadata space for extent tree, checksum tree and root tree
Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Besides simplify the code, this change makes sure all metadata
reservation for normal metadata operations are released after
committing transaction.
Changes since V1:
Add code that check if unlink and rmdir will free space.
Add ENOSPC handling for clone ioctl.
Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Introducing metadata reseravtion contexts has two major advantages.
First, it makes metadata reseravtion more traceable. Second, it can
reclaim freed space and re-add them to the itself after transaction
committed.
Besides add btrfs_block_rsv structure and related helper functions,
This patch contains following changes:
Move code that decides if freed tree block should be pinned into
btrfs_free_tree_block().
Make space accounting more accurate, mainly for handling read only
block groups.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Shrink delayed allocation space in a synchronized manner is more
controllable than flushing all delay allocated space in an async
thread.
Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
* git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable:
Btrfs: add check for changed leaves in setup_leaf_for_split
Btrfs: create snapshot references in same commit as snapshot
Btrfs: fix small race with delalloc flushing waitqueue's
Btrfs: use add_to_page_cache_lru, use __page_cache_alloc
Btrfs: fix chunk allocate size calculation
Btrfs: kill max_extent mount option
Btrfs: fail to mount if we have problems reading the block groups
Btrfs: check btrfs_get_extent return for IS_ERR()
Btrfs: handle kmalloc() failure in inode lookup ioctl
Btrfs: dereferencing freed memory
Btrfs: Simplify num_stripes's calculation logical for __btrfs_alloc_chunk()
Btrfs: Add error handle for btrfs_search_slot() in btrfs_read_chunk_tree()
Btrfs: Remove unnecessary finish_wait() in wait_current_trans()
Btrfs: add NULL check for do_walk_down()
Btrfs: remove duplicate include in ioctl.c
Fix trivial conflict in fs/btrfs/compression.c due to slab.h include
cleanups.
As Yan pointed out, theres not much reason for all this complicated math to
account for file extents being split up into max_extent chunks, since they are
likely to all end up in the same leaf anyway. Since there isn't much reason to
use max_extent, just remove the option altogether so we have one less thing we
need to test.
Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
We don't actually check the return value of btrfs_read_block_groups, so we can
possibly succeed to mount, but then fail to say read the superblock xattr for
selinux which will cause the vfs code to deactivate the super.
This is a problem because in find_free_extent we just assume that we
will find the right space_info for the allocation we want. But if we
failed to read the block groups, we won't have setup any space_info's,
and we'll hit a NULL pointer deref in find_free_extent.
This patch fixes that problem by checking the return value of
btrfs_read_block_groups, and failing out properly. I've also added a
check in find_free_extent so if for some reason we don't find an
appropriate space_info, we just return -ENOSPC.
Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
This patch just goes through and fixes everybody that does
lock_extent()
blah
unlock_extent()
to use
lock_extent_bits()
blah
unlock_extent_cached()
and pass around a extent_state so we only have to do the searches once per
function. This gives me about a 3 mb/s boots on my random write test. I have
not converted some things, like the relocation and ioctl's, since they aren't
heavily used and the relocation stuff is in the middle of being re-written. I
also changed the clear_extent_bit() to only unset the cached state if we are
clearing EXTENT_LOCKED and related stuff, so we can do things like this
lock_extent_bits()
clear delalloc bits
unlock_extent_cached()
without losing our cached state. I tested this thoroughly and turned on
LEAK_DEBUG to make sure we weren't leaking extent states, everything worked out
fine.
Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
btrfs inialize rb trees in quite a number of places by settin rb_node =
NULL; The problem with this is that 17d9ddc72f in the
linux-next tree adds a new field to that struct which needs to be NULL for
the new rbtree library code to work properly. This patch uses RB_ROOT as
the intializer so all of the relevant fields will be NULL'd. Without the
patch I get a panic.
Signed-off-by: Eric Paris <eparis@redhat.com>
Acked-by: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Mounting a bad filesystem caused a BUG_ON(). The following is steps to
reproduce it.
# mkfs.btrfs /dev/sda2
# mount /dev/sda2 /mnt
# mkfs.btrfs /dev/sda1 /dev/sda2
(the program says that /dev/sda2 was mounted, and then exits. )
# umount /mnt
# mount /dev/sda1 /mnt
At the third step, mkfs.btrfs exited in the way of make filesystem. So the
initialization of the filesystem didn't finish. So the filesystem was bad, and
it caused BUG_ON() when mounting it. But BUG_ON() should be called by the wrong
code, not user's operation, so I think it is a bug of btrfs.
This patch fixes it.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This patch revert's commit
6c090a11e1
Since it introduces this problem where we can run orphan cleanup on a
volume that can have orphan entries re-added. Instead of my original
fix, Yan Zheng pointed out that we can just revert my original fix and
then run the orphan cleanup in open_ctree after we look up the fs_root.
I have tested this with all the tests that gave me problems and this
patch fixes both problems. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
iput() can trigger new transactions if we are dropping the
final reference, so calling it in btrfs_commit_transaction
may end up deadlock. This patch adds delayed iput to avoid
the issue.
Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
We do log replay in a single transaction, so it's not good to do unbound
operations. This patch cleans up orphan inodes cleanup after replaying
the log. It also avoids doing other unbound operations such as truncating
a file during replaying log. These unbound operations are postponed to
the orphan inode cleanup stage.
Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
We allow two log transactions at a time, but use same flag
to mark dirty tree-log btree blocks. So we may flush dirty
blocks belonging to newer log transaction when committing a
log transaction. This patch fixes the issue by using two
flags to mark dirty tree-log btree blocks.
Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
* 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable:
Btrfs: always pin metadata in discard mode
Btrfs: enable discard support
Btrfs: add -o discard option
Btrfs: properly wait log writers during log sync
Btrfs: fix possible ENOSPC problems with truncate
Btrfs: fix btrfs acl #ifdef checks
Btrfs: streamline tree-log btree block writeout
Btrfs: avoid tree log commit when there are no changes
Btrfs: only write one super copy during fsync
rpm has a habit of running fdatasync when the file hasn't
changed. We already detect if a file hasn't been changed
in the current transaction but it might have been sent to
the tree-log in this transaction and not changed since
the last call to fsync.
In this case, we want to avoid a tree log sync, which includes
a number of synchronous writes and barriers. This commit
extends the existing tracking of the last transaction to change
a file to also track the last sub-transaction.
The end result is that rpm -ivh and -Uvh are roughly twice as fast,
and on par with ext3.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
* git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable:
Btrfs: fix file clone ioctl for bookend extents
Btrfs: fix uninit compiler warning in cow_file_range_nocow
Btrfs: constify dentry_operations
Btrfs: optimize back reference update during btrfs_drop_snapshot
Btrfs: remove negative dentry when deleting subvolumne
Btrfs: optimize fsync for the single writer case
Btrfs: async delalloc flushing under space pressure
Btrfs: release delalloc reservations on extent item insertion
Btrfs: delay clearing EXTENT_DELALLOC for compressed extents
Btrfs: cleanup extent_clear_unlock_delalloc flags
Btrfs: fix possible softlockup in the allocator
Btrfs: fix deadlock on async thread startup
This patch moves the delalloc flushing that occurs when we are under space
pressure off to a async thread pool. This helps since we only free up
metadata space when we actually insert the extent item, which means it takes
quite a while for space to be free'ed up if we wait on all ordered extents.
However, if space is freed up due to inline extents being inserted, we can
wake people who are waiting up early, and they can finish their work.
Signed-off-by: Josef Bacik <jbacik@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
The btrfs async worker threads are used for a wide variety of things,
including processing bio end_io functions. This means that when
the endio threads aren't running, the rest of the FS isn't
able to do the final processing required to clear PageWriteback.
The endio threads also try to exit as they become idle and
start more as the work piles up. The problem is that starting more
threads means kthreadd may need to allocate ram, and that allocation
may wait until the global number of writeback pages on the system is
below a certain limit.
The result of that throttling is that end IO threads wait on
kthreadd, who is waiting on IO to end, which will never happen.
This commit fixes the deadlock by handing off thread startup to a
dedicated thread. It also fixes a bug where the on-demand thread
creation was creating far too many threads because it didn't take into
account threads being started by other procs.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Use filemap_fdatawrite_range and filemap_fdatawait_range instead of
local copies of the functions. For filemap_fdatawait_range that
also means replacing the awkward old wait_on_page_writeback_range
calling convention with the regular filemap byte offsets.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
wait_on_page_writeback_range/btrfs_wait_on_page_writeback_range takes
a pagecache offset, not a byte offset into the file. Shift the arguments
around to wait for the correct range
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
At the start of a transaction we do a btrfs_reserve_metadata_space() and
specify how many items we plan on modifying. Then once we've done our
modifications and such, just call btrfs_unreserve_metadata_space() for
the same number of items we reserved.
For keeping track of metadata needed for data I've had to add an extent_io op
for when we merge extents. This lets us track space properly when we are doing
sequential writes, so we don't end up reserving way more metadata space than
what we need.
The only place where the metadata space accounting is not done is in the
relocation code. This is because Yan is going to be reworking that code in the
near future, so running btrfs-vol -b could still possibly result in a ENOSPC
related panic. This patch also turns off the metadata_ratio stuff in order to
allow users to more efficiently use their disk space.
This patch makes it so we track how much metadata we need for an inode's
delayed allocation extents by tracking how many extents are currently
waiting for allocation. It introduces two new callbacks for the
extent_io tree's, merge_extent_hook and split_extent_hook. These help
us keep track of when we merge delalloc extents together and split them
up. Reservations are handled prior to any actually dirty'ing occurs,
and then we unreserve after we dirty.
btrfs_unreserve_metadata_for_delalloc() will make the appropriate
unreservations as needed based on the number of reservations we
currently have and the number of extents we currently have. Doing the
reservation outside of doing any of the actual dirty'ing lets us do
things like filemap_flush() the inode to try and force delalloc to
happen, or as a last resort actually start allocation on all delalloc
inodes in the fs. This has survived dbench, fs_mark and an fsx torture
test.
Signed-off-by: Josef Bacik <jbacik@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This patch adds snapshot/subvolume destroy ioctl. A subvolume that isn't being
used and doesn't contains links to other subvolumes can be destroyed.
Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
btrfs allows subvolumes and snapshots anywhere in the directory tree.
If we snapshot a subvolume that contains a link to other subvolume
called subvolA, subvolA can be accessed through both the original
subvolume and the snapshot. This is similar to creating hard link to
directory, and has the very similar problems.
The aim of this patch is enforcing there is only one access point to
each subvolume. Only the first directory entry (the one added when
the subvolume/snapshot was created) is treated as valid access point.
The first directory entry is distinguished by checking root forward
reference. If the corresponding root forward reference is missing,
we know the entry is not the first one.
This patch also adds snapshot/subvolume rename support, the code
allows rename subvolume link across subvolumes.
Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
The new back reference format does not allow reusing objectid of
deleted snapshot/subvol. So we use ++highest_objectid to allocate
objectid for new snapshot/subvol.
Now we use ++highest_objectid to allocate objectid for both new inode
and new snapshot/subvolume, so this patch removes 'find hole' code in
btrfs_find_free_objectid.
Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This patch gets rid of two limitations of async block group caching.
The old code delays handling pinned extents when block group is in
caching. To allocate logged file extents, the old code need wait
until block group is fully cached. To get rid of the limitations,
This patch introduces a data structure to track the progress of
caching. Base on the caching progress, we know which extents should
be added to the free space cache when handling the pinned extents.
The logged file extents are also handled in a similar way.
This patch also changes how pinned extents are tracked. The old
code uses one tree to track pinned extents, and copy the pinned
extents tree at transaction commit time. This patch makes it use
two trees to track pinned extents. One tree for extents that are
pinned in the running transaction, one tree for extents that can
be unpinned. At transaction commit time, we swap the two trees.
Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
We do this automatically in get_sb_bdev() from the set_bdev_super()
callback. Filesystems that have their own private backing_dev_info
must assign that in ->fill_super().
Note that ->s_bdi assignment is required for proper writeback!
Acked-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
There are two main users of the extent_map tree. The
first is regular file inodes, where it is evenly spread
between readers and writers.
The second is the chunk allocation tree, which maps blocks from
logical addresses to phyiscal ones, and it is 99.99% reads.
The mapping tree is a point of lock contention during heavy IO
workloads, so this commit switches things to a rw lock.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
The Btrfs worker threads don't currently die off after they have
been idle for a while, leading to a lot of threads sitting around
doing nothing for each mount.
Also, they are unable to start atomically (from end_io hanlders).
This commit reworks the worker threads so they can be started
from end_io handlers (just setting a flag that asks for a thread
to be added at a later date) and so they can exit if they
have been idle for a long time.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This enables us to track who does what and print info. Its main use
is catching dirty inodes on the default_backing_dev_info, so we can
fix that up.
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
* git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable:
Btrfs: be more polite in the async caching threads
Btrfs: preserve commit_root for async caching
The async block group caching code uses the commit_root pointer
to get a stable version of the extent allocation tree for scanning.
This copy of the tree root isn't going to change and it significantly
reduces the complexity of the scanning code.
During a commit, we have a loop where we update the extent allocation
tree root. We need to loop because updating the root pointer in
the tree of tree roots may allocate blocks which may change the
extent allocation tree.
Right now the commit_root pointer is changed inside this loop. It
is more correct to change the commit_root pointer only after all the
looping is done.
Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
* git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable: (22 commits)
Btrfs: Fix async caching interaction with unmount
Btrfs: change how we unpin extents
Btrfs: Correct redundant test in add_inode_ref
Btrfs: find smallest available device extent during chunk allocation
Btrfs: clear all space_info->full after removing a block group
Btrfs: make flushoncommit mount option correctly wait on ordered_extents
Btrfs: Avoid delayed reference update looping
Btrfs: Fix ordering of key field checks in btrfs_previous_item
Btrfs: find_free_dev_extent doesn't handle holes at the start of the device
Btrfs: Remove code duplication in comp_keys
Btrfs: async block group caching
Btrfs: use hybrid extents+bitmap rb tree for free space
Btrfs: Fix crash on read failures at mount
Btrfs: remove of redundant btrfs_header_level
Btrfs: adjust NULL test
Btrfs: Remove broken sanity check from btrfs_rmap_block()
Btrfs: convert nested spin_lock_irqsave to spin_lock
Btrfs: make sure all dirty blocks are written at commit time
Btrfs: fix locking issue in btrfs_find_next_key
Btrfs: fix double increment of path->slots[0] in btrfs_next_leaf
...
- don't stop the caching thread until btrfs_commit_super return.
- if caching is interrupted by umount, set last to (u64)-1.
otherwise the un-scanned range of block group will be considered
as free extent.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
We are racy with async block caching and unpinning extents. This patch makes
things much less complicated by only unpinning the extent if the block group is
cached. We check the block_group->cached var under the block_group->lock spin
lock. If it is set to BTRFS_CACHE_FINISHED then we update the pinned counters,
and unpin the extent and add the free space back. If it is not set to this, we
start the caching of the block group so the next time we unpin extents we can
unpin the extent. This keeps us from racing with the async caching threads,
lets us kill the fs wide async thread counter, and keeps us from having to set
DELALLOC bits for every extent we hit if there are caching kthreads going.
One thing that needed to be changed was btrfs_free_super_mirror_extents. Now
instead of just looking for LOCKED extents, we also look for DIRTY extents,
since we could have left some extents pinned in the previous transaction that
will never get freed now that we are unmounting, which would cause us to leak
memory. So btrfs_free_super_mirror_extents has been changed to
btrfs_free_pinned_extents, and it will clear the extents locked for the super
mirror, and any remaining pinned extents that may be present. Thank you,
Signed-off-by: Josef Bacik <jbacik@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This patch moves the caching of the block group off to a kthread in order to
allow people to allocate sooner. Instead of blocking up behind the caching
mutex, we instead kick of the caching kthread, and then attempt to make an
allocation. If we cannot, we wait on the block groups caching waitqueue, which
the caching kthread will wake the waiting threads up everytime it finds 2 meg
worth of space, and then again when its finished caching. This is how I tested
the speedup from this
mkfs the disk
mount the disk
fill the disk up with fs_mark
unmount the disk
mount the disk
time touch /mnt/foo
Without my changes this took 11 seconds on my box, with these changes it now
takes 1 second.
Another change thats been put in place is we lock the super mirror's in the
pinned extent map in order to keep us from adding that stuff as free space when
caching the block group. This doesn't really change anything else as far as the
pinned extent map is concerned, since for actual pinned extents we use
EXTENT_DIRTY, but it does mean that when we unmount we have to go in and unlock
those extents to keep from leaking memory.
I've also added a check where when we are reading block groups from disk, if the
amount of space used == the size of the block group, we go ahead and mark the
block group as cached. This drastically reduces the amount of time it takes to
cache the block groups. Using the same test as above, except doing a dd to a
file and then unmounting, it used to take 33 seconds to umount, now it takes 3
seconds.
This version uses the commit_root in the caching kthread, and then keeps track
of how many async caching threads are running at any given time so if one of the
async threads is still running as we cross transactions we can wait until its
finished before handling the pinned extents. Thank you,
Signed-off-by: Josef Bacik <jbacik@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
If the tree roots hit read errors during mount, btrfs is not properly
erroring out. We need to check the uptodate bits after
reading in the tree root node.
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
btrfs assigns this bdi to all inodes on that file system, so make
sure it's registered. This isn't really important now, but will be
when we put dirty inodes there. Even now, we miss the stats when the
bdi isn't visible.
Also fixes failure to check bdi_init() return value, and bad inherit of
->capabilities flags from the default bdi.
Acked-by: Chris Mason <chris.mason@oracle.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
write_dev_supers is called in sequence. First is it called with wait == 0,
which starts IO on all of the super blocks for a given device. Then it is
called with wait == 1 to make sure they all reach the disk.
It doesn't currently pin the buffers between the two calls, and it also
assumes the buffers won't go away between the two calls, leading to
an oops if the VM manages to free the buffers in the middle of the sync.
This fixes that assumption and updates the code to return an error if things
are not up to date when the wait == 1 run is done.
Signed-off-by: Hisashi Hifumi <hifumi.hisashi@oss.ntt.co.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
On multi-device filesystems, btrfs writes supers to all of the devices
before considering a sync complete. There wasn't any additional
locking between super writeout and the device list management code
because device management was done inside a transaction and
super writeout only happened with no transation writers running.
With the btrfs fsync log and other async transaction updates, this
has been racey for some time. This adds a mutex to protect
the device list. The existing volume mutex could not be reused due to
transaction lock ordering requirements.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
There's no need to preserve this abstraction; it used to let us use
hardware crc32c support directly, but libcrc32c is already doing that for us
through the crypto API -- so we're already using the Intel crc32c
acceleration where appropriate.
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
During mount, btrfs will check the queue nonrot flag
for all the devices found in the FS. If they are all
non-rotating, SSD mode is enabled by default.
If the FS was mounted with -o nossd, the non-rotating
flag is ignored.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Once a metadata block has been written, it must be recowed, so the
btrfs dirty balancing call has a check to make sure a fair amount of metadata
was actually dirty before it started writing it back to disk.
A previous commit had changed the dirty tracking for metadata without
updating the btrfs dirty balancing checks. This commit switches it
to use the correct counter.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This commit introduces a new kind of back reference for btrfs metadata.
Once a filesystem has been mounted with this commit, IT WILL NO LONGER
BE MOUNTABLE BY OLDER KERNELS.
When a tree block in subvolume tree is cow'd, the reference counts of all
extents it points to are increased by one. At transaction commit time,
the old root of the subvolume is recorded in a "dead root" data structure,
and the btree it points to is later walked, dropping reference counts
and freeing any blocks where the reference count goes to 0.
The increments done during cow and decrements done after commit cancel out,
and the walk is a very expensive way to go about freeing the blocks that
are no longer referenced by the new btree root. This commit reduces the
transaction overhead by avoiding the need for dead root records.
When a non-shared tree block is cow'd, we free the old block at once, and the
new block inherits old block's references. When a tree block with reference
count > 1 is cow'd, we increase the reference counts of all extents
the new block points to by one, and decrease the old block's reference count by
one.
This dead tree avoidance code removes the need to modify the reference
counts of lower level extents when a non-shared tree block is cow'd.
But we still need to update back ref for all pointers in the block.
This is because the location of the block is recorded in the back ref
item.
We can solve this by introducing a new type of back ref. The new
back ref provides information about pointer's key, level and in which
tree the pointer lives. This information allow us to find the pointer
by searching the tree. The shortcoming of the new back ref is that it
only works for pointers in tree blocks referenced by their owner trees.
This is mostly a problem for snapshots, where resolving one of these
fuzzy back references would be O(number_of_snapshots) and quite slow.
The solution used here is to use the fuzzy back references in the common
case where a given tree block is only referenced by one root,
and use the full back references when multiple roots have a reference
on a given block.
This commit adds per subvolume red-black tree to keep trace of cached
inodes. The red-black tree helps the balancing code to find cached
inodes whose inode numbers within a given range.
This commit improves the balancing code by introducing several data
structures to keep the state of balancing. The most important one
is the back ref cache. It caches how the upper level tree blocks are
referenced. This greatly reduce the overhead of checking back ref.
The improved balancing code scales significantly better with a large
number of snapshots.
This is a very large commit and was written in a number of
pieces. But, they depend heavily on the disk format change and were
squashed together to make sure git bisect didn't end up in a
bad state wrt space balancing or the format change.
Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
These debugging WARN_ONs make too much console noise during regular
IO failures. An IO failure will still generate a number of messages
as we verify checksums etc, but these two are not needed.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Just happened to notice a bunch of %llu vs u64 warnings. Here's a patch
to cast them all.
Signed-off-by: Joel Becker <joel.becker@oracle.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Btrfs has printks for various IO errors, including bad checksums and
mismatches between what we expect the block headers to contain and what
we actually find on the disk.
Longer term we need a real reporting mechanism for this, but for now
printk is going to have to do.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This patch makes the chunk allocator keep a good ratio of metadata vs data
block groups. By default for every 8 data block groups, we'll allocate 1
metadata chunk, or about 12% of the disk will be allocated for metadata. This
can be changed by specifying the metadata_ratio mount option.
This is simply the number of data block groups that have to be allocated to
force a metadata chunk allocation. By making sure we allocate metadata chunks
more often, we are less likely to get into situations where the whole disk
has been allocated as data block groups.
Signed-off-by: Josef Bacik <jbacik@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Btrfs is using WRITE_SYNC_PLUG to send down synchronous IOs with a
higher priority. But, the checksumming helper threads prevent it
from being fully effective.
There are two problems. First, a big queue of pending checksumming
will delay the synchronous IO behind other lower priority writes. Second,
the checksumming uses an ordered async work queue. The ordering makes sure
that IOs are sent to the block layer in the same order they are sent
to the checksumming threads. Usually this gives us less seeky IO.
But, when we start mixing IO priorities, the lower priority IO can delay
the higher priority IO.
This patch solves both problems by adding a high priority list to the async
helper threads, and a new btrfs_set_work_high_prio(), which is used
to make put a new async work item onto the higher priority list.
The ordering is still done on high priority IO, but all of the high
priority bios are ordered separately from the low priority bios. This
ordering is purely an IO optimization, it is not involved in data
or metadata integrity.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Part of reducing fsync/O_SYNC/O_DIRECT latencies is using WRITE_SYNC for
writes we plan on waiting on in the near future. This patch
mirrors recent changes in other filesystems and the generic code to
use WRITE_SYNC when WB_SYNC_ALL is passed and to use WRITE_SYNC for
other latency critical writes.
Btrfs uses async worker threads for checksumming before the write is done,
and then again to actually submit the bios. The bio submission code just
runs a per-device list of bios that need to be sent down the pipe.
This list is split into low priority and high priority lists so the
WRITE_SYNC IO happens first.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
* git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable:
Btrfs: BUG to BUG_ON changes
Btrfs: remove dead code
Btrfs: remove dead code
Btrfs: fix typos in comments
Btrfs: remove unused ftrace include
Btrfs: fix __ucmpdi2 compile bug on 32 bit builds
Btrfs: free inode struct when btrfs_new_inode fails
Btrfs: fix race in worker_loop
Btrfs: add flushoncommit mount option
Btrfs: notreelog mount option
Btrfs: introduce btrfs_show_options
Btrfs: rework allocation clustering
Btrfs: Optimize locking in btrfs_next_leaf()
Btrfs: break up btrfs_search_slot into smaller pieces
Btrfs: kill the pinned_mutex
Btrfs: kill the block group alloc mutex
Btrfs: clean up find_free_extent
Btrfs: free space cache cleanups
Btrfs: unplug in the async bio submission threads
Btrfs: keep processing bios for a given bdev if our proc is batching
Remove an unneeded return statement and conditional
Signed-off-by: Dan Carpenter <error27@gmail.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Because btrfs is copy-on-write, we end up picking new locations for
blocks very often. This makes it fairly difficult to maintain perfect
read patterns over time, but we can at least do some optimizations
for writes.
This is done today by remembering the last place we allocated and
trying to find a free space hole big enough to hold more than just one
allocation. The end result is that we tend to write sequentially to
the drive.
This happens all the time for metadata and it happens for data
when mounted -o ssd. But, the way we record it is fairly racey
and it tends to fragment the free space over time because we are trying
to allocate fairly large areas at once.
This commit gets rid of the races by adding a free space cluster object
with dedicated locking to make sure that only one process at a time
is out replacing the cluster.
The free space fragmentation is somewhat solved by allowing a cluster
to be comprised of smaller free space extents. This part definitely
adds some CPU time to the cluster allocations, but it allows the allocator
to consume the small holes left behind by cow.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This patch removes the pinned_mutex. The extent io map has an internal tree
lock that protects the tree itself, and since we only copy the extent io map
when we are committing the transaction we don't need it there. We also don't
need it when caching the block group since searching through the tree is also
protected by the internal map spin lock.
Signed-off-by: Josef Bacik <jbacik@redhat.com>
* git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable:
Btrfs: try to free metadata pages when we free btree blocks
Btrfs: add extra flushing for renames and truncates
Btrfs: make sure btrfs_update_delayed_ref doesn't increase ref_mod
Btrfs: optimize fsyncs on old files
Btrfs: tree logging unlink/rename fixes
Btrfs: Make sure i_nlink doesn't hit zero too soon during log replay
Btrfs: limit balancing work while flushing delayed refs
Btrfs: readahead checksums during btrfs_finish_ordered_io
Btrfs: leave btree locks spinning more often
Btrfs: Only let very young transactions grow during commit
Btrfs: Check for a blocking lock before taking the spin
Btrfs: reduce stack in cow_file_range
Btrfs: reduce stalls during transaction commit
Btrfs: process the delayed reference queue in clusters
Btrfs: try to cleanup delayed refs while freeing extents
Btrfs: reduce stack usage in some crucial tree balancing functions
Btrfs: do extent allocation and reference count updates in the background
Btrfs: don't preallocate metadata blocks during btrfs_search_slot
Renames and truncates are both common ways to replace old data with new
data. The filesystem can make an effort to make sure the new data is
on disk before actually replacing the old data.
This is especially important for rename, which many application use as
though it were atomic for both the data and the metadata involved. The
current btrfs code will happily replace a file that is fully on disk
with one that was just created and still has pending IO.
If we crash after transaction commit but before the IO is done, we'll end
up replacing a good file with a zero length file. The solution used
here is to create a list of inodes that need special ordering and force
them to disk before the commit is done. This is similar to the
ext3 style data=ordering, except it is only done on selected files.
Btrfs is able to get away with this because it does not wait on commits
very often, even for fsync (which use a sub-commit).
For renames, we order the file when it wasn't already
on disk and when it is replacing an existing file. Larger files
are sent to filemap_flush right away (before the transaction handle is
opened).
For truncates, we order if the file goes from non-zero size down to
zero size. This is a little different, because at the time of the
truncate the file has no dirty bytes to order. But, we flag the inode
so that it is added to the ordered list on close (via release method). We
also immediately add it to the ordered list of the current transaction
so that we can try to flush down any writes the application sneaks in
before commit.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
btrfs_mark_buffer dirty would set dirty bits in the extent_io tree
for the buffers it was dirtying. This may require a kmalloc and it
was not atomic. So, anyone who called btrfs_mark_buffer_dirty had to
set any btree locks they were holding to blocking first.
This commit changes dirty tracking for extent buffers to just use a flag
in the extent buffer. Now that we have one and only one extent buffer
per page, this can be safely done without losing dirty bits along the way.
This also introduces a path->leave_spinning flag that callers of
btrfs_search_slot can use to indicate they will properly deal with a
path returned where all the locks are spinning instead of blocking.
Many of the btree search callers now expect spinning paths,
resulting in better btree concurrency overall.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
The delayed reference queue maintains pending operations that need to
be done to the extent allocation tree. These are processed by
finding records in the tree that are not currently being processed one at
a time.
This is slow because it uses lots of time searching through the rbtree
and because it creates lock contention on the extent allocation tree
when lots of different procs are running delayed refs at the same time.
This commit changes things to grab a cluster of refs for processing,
using a cursor into the rbtree as the starting point of the next search.
This way we walk smoothly through the rbtree.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
The extent allocation tree maintains a reference count and full
back reference information for every extent allocated in the
filesystem. For subvolume and snapshot trees, every time
a block goes through COW, the new copy of the block adds a reference
on every block it points to.
If a btree node points to 150 leaves, then the COW code needs to go
and add backrefs on 150 different extents, which might be spread all
over the extent allocation tree.
These updates currently happen during btrfs_cow_block, and most COWs
happen during btrfs_search_slot. btrfs_search_slot has locks held
on both the parent and the node we are COWing, and so we really want
to avoid IO during the COW if we can.
This commit adds an rbtree of pending reference count updates and extent
allocations. The tree is ordered by byte number of the extent and byte number
of the parent for the back reference. The tree allows us to:
1) Modify back references in something close to disk order, reducing seeks
2) Significantly reduce the number of modifications made as block pointers
are balanced around
3) Do all of the extent insertion and back reference modifications outside
of the performance critical btrfs_search_slot code.
#3 has the added benefit of greatly reducing the btrfs stack footprint.
The extent allocation tree modifications are done without the deep
(and somewhat recursive) call chains used in the past.
These delayed back reference updates must be done before the transaction
commits, and so the rbtree is tied to the transaction. Throttling is
implemented to help keep the queue of backrefs at a reasonable size.
Since there was a similar mechanism in place for the extent tree
extents, that is removed and replaced by the delayed reference tree.
Yan Zheng <yan.zheng@oracle.com> helped review and fixup this code.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
btrfs_tree_locked was being used to make sure a given extent_buffer was
properly locked in a few places. But, it wasn't correct for UP compiled
kernels.
This switches it to using assert_spin_locked instead, and renames it to
btrfs_assert_tree_locked to better reflect how it was really being used.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Btrfs is currently using spin_lock_nested with a nested value based
on the tree depth of the block. But, this doesn't quite work because
the max tree depth is bigger than what spin_lock_nested can deal with,
and because locks are sometimes taken before the level field is filled in.
The solution here is to use lockdep_set_class_and_name instead, and to
set the class before unlocking the pages when the block is read from the
disk and just after init of a freshly allocated tree block.
btrfs_clear_path_blocking is also changed to take the locks in the proper
order, and it also makes sure all the locks currently held are properly
set to blocking before it tries to retake the spinlocks. Otherwise, lockdep
gets upset about bad lock orderin.
The lockdep magic cam from Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Most of the btrfs metadata operations can be protected by a spinlock,
but some operations still need to schedule.
So far, btrfs has been using a mutex along with a trylock loop,
most of the time it is able to avoid going for the full mutex, so
the trylock loop is a big performance gain.
This commit is step one for getting rid of the blocking locks entirely.
btrfs_tree_lock takes a spinlock, and the code explicitly switches
to a blocking lock when it starts an operation that can schedule.
We'll be able get rid of the blocking locks in smaller pieces over time.
Tracing allows us to find the most common cause of blocking, so we
can start with the hot spots first.
The basic idea is:
btrfs_tree_lock() returns with the spin lock held
btrfs_set_lock_blocking() sets the EXTENT_BUFFER_BLOCKING bit in
the extent buffer flags, and then drops the spin lock. The buffer is
still considered locked by all of the btrfs code.
If btrfs_tree_lock gets the spinlock but finds the blocking bit set, it drops
the spin lock and waits on a wait queue for the blocking bit to go away.
Much of the code that needs to set the blocking bit finishes without actually
blocking a good percentage of the time. So, an adaptive spin is still
used against the blocking bit to avoid very high context switch rates.
btrfs_clear_lock_blocking() clears the blocking bit and returns
with the spinlock held again.
btrfs_tree_unlock() can be called on either blocking or spinning locks,
it does the right thing based on the blocking bit.
ctree.c has a helper function to set/clear all the locked buffers in a
path as blocking.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Before metadata is written to disk, it is updated to reflect that writeout
has begun. Once this update is done, the block must be cow'd before it
can be modified again.
This update was originally synchronized by using a per-fs spinlock. Today
the buffers for the metadata blocks are locked before writeout begins,
and everyone that tests the flag has the buffer locked as well.
So, the per-fs spinlock (called hash_lock for no good reason) is no
longer required.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Tracing shows the delay between when an async thread goes to sleep
and when more work is added is often very short. This commit adds
a little bit of delay and extra checking to the code right before
we schedule out.
It allows more work to be added to the worker
without requiring notifications from other procs.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
To improve performance, btrfs_sync_log merges tree log sync
requests. But it wrongly merges sync requests for different
tree logs. If multiple tree logs are synced at the same time,
only one of them actually gets synced.
This patch has following changes to fix the bug:
Move most tree log related fields in btrfs_fs_info to
btrfs_root. This allows merging sync requests separately
for each tree log.
Don't insert root item into the log root tree immediately
after log tree is allocated. Root item for log tree is
inserted when log tree get synced for the first time. This
allows syncing the log root tree without first syncing all
log trees.
At tree-log sync, btrfs_sync_log first sync the log tree;
then updates corresponding root item in the log root tree;
sync the log root tree; then update the super block.
Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
Merge list_for_each* and list_entry to list_for_each_entry*
Signed-off-by: Qinghuang Feng <qhfeng.kernel@gmail.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
kthread_run() returns the kthread or ERR_PTR(-ENOMEM), not NULL.
Signed-off-by: Qinghuang Feng <qhfeng.kernel@gmail.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
The data in fs_info->super_for_commit are zeros before the
first transaction commit. If tree log sync and system crash
both occur before the first transaction commit, super block
will get corrupted.
This fixes it by properly filling in the super_for_commit field at
open time.
Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
bio_end_io for reads without checksumming on and btree writes were
happening without using async thread pools. This means the extent_io.c
code had to use spin_lock_irq and friends on the rb tree locks for
extent state.
There were some irq safe vs unsafe lock inversions between the delallock
lock and the extent state locks. This patch gets rid of them by moving
all end_io code into the thread pools.
To avoid contention and deadlocks between the data end_io processing and the
metadata end_io processing yet another thread pool is added to finish
off metadata writes.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This patch makes seed device possible to be shared by
multiple mounted file systems. The sharing is achieved
by cloning seed device's btrfs_fs_devices structure.
Thanks you,
Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
This patch implements superblock duplication. Superblocks
are stored at offset 16K, 64M and 256G on every devices.
Spaces used by superblocks are preserved by the allocator,
which uses a reverse mapping function to find the logical
addresses that correspond to superblocks. Thank you,
Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
Btrfs stores checksums for each data block. Until now, they have
been stored in the subvolume trees, indexed by the inode that is
referencing the data block. This means that when we read the inode,
we've probably read in at least some checksums as well.
But, this has a few problems:
* The checksums are indexed by logical offset in the file. When
compression is on, this means we have to do the expensive checksumming
on the uncompressed data. It would be faster if we could checksum
the compressed data instead.
* If we implement encryption, we'll be checksumming the plain text and
storing that on disk. This is significantly less secure.
* For either compression or encryption, we have to get the plain text
back before we can verify the checksum as correct. This makes the raid
layer balancing and extent moving much more expensive.
* It makes the front end caching code more complex, as we have touch
the subvolume and inodes as we cache extents.
* There is potentitally one copy of the checksum in each subvolume
referencing an extent.
The solution used here is to store the extent checksums in a dedicated
tree. This allows us to index the checksums by phyiscal extent
start and length. It means:
* The checksum is against the data stored on disk, after any compression
or encryption is done.
* The checksum is stored in a central location, and can be verified without
following back references, or reading inodes.
This makes compression significantly faster by reducing the amount of
data that needs to be checksummed. It will also allow much faster
raid management code in general.
The checksums are indexed by a key with a fixed objectid (a magic value
in ctree.h) and offset set to the starting byte of the extent. This
allows us to copy the checksum items into the fsync log tree directly (or
any other tree), without having to invent a second format for them.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This patch gives us the space we will need in order to have different csum
algorithims at some point in the future. We save the csum algorithim type
in the superblock, and use those instead of define's.
Signed-off-by: Josef Bacik <jbacik@redhat.com>
This needs to be applied on top of my previous patches, but is needed for more
than just my new stuff. We're going to the wrong label when we have an error,
we try to stop the workers, but they are started below all of this code. This
fixes it so we go to the right error label and not panic when we fail one of
these cases.
Signed-off-by: Josef Bacik <jbacik@redhat.com>
This adds the necessary disk format for handling compatibility flags
in the future to handle disk format changes. We have a compat_flags,
compat_ro_flags and incompat_flags set for the super block. Compat
flags will be to hold the features that are compatible with older
versions of btrfs, compat_ro flags have features that are compatible
with older versions of btrfs if the fs is mounted read only, and
incompat_flags has features that are incompatible with older versions
of btrfs. This also axes the compat_flags field for the inode and
just makes the flags field a 64bit field, and changes the root item
flags field to 64bit.
Signed-off-by: Josef Bacik <jbacik@redhat.com>
Shut up various sparse warnings about symbols that should be either
static or have their declarations in scope.
Signed-off-by: Christoph Hellwig <hch@lst.de>
The log replay produces dirty roots. These dirty roots
should be dropped immediately if the fs is mounted as
ro. Otherwise they can be added to the dirty root list
again when remounting the fs as rw. Thank you,
Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
The btrfs git kernel trees is used to build a standalone tree for
compiling against older kernels. This commit makes the standalone tree
work with 2.6.27
Signed-off-by: Chris Mason <chris.mason@oracle.com>
fsync log replay can change the filesystem, so it cannot be delayed until
mount -o rw,remount, and it can't be forgotten entirely. So, this patch
changes btrfs to do with reiserfs, ext3 and xfs do, which is to do the
log replay even when mounted readonly.
On a readonly device if log replay is required, the mount is aborted.
Getting all of this right had required fixing up some of the error
handling in open_ctree.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
While building large bios in writepages, btrfs may end up waiting
for other page writeback to finish if WB_SYNC_ALL is used.
While it is waiting, the bio it is building has a number of pages with the
writeback bit set and they aren't getting to the disk any time soon. This
lowers the latencies of writeback in general by sending down the bio being
built before waiting for other pages.
The bio submission code tries to limit the total number of async bios in
flight by waiting when we're over a certain number of async bios. But,
the waits are happening while writepages is building bios, and this can easily
lead to stalls and other problems for people calling wait_on_page_writeback.
The current fix is to let the congestion tests take care of waiting.
sync() and others make sure to drain the current async requests to make
sure that everything that was pending when the sync was started really get
to disk. The code would drain pending requests both before and after
submitting a new request.
But, if one of the requests is waiting for page writeback to finish,
the draining waits might block that page writeback. This changes the
draining code to only wait after submitting the bio being processed.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
For larger multi-device filesystems, there was logic to limit the
number of devices unplugged to just the page that was sent to our sync_page
function.
But, the code wasn't always unplugging the right device. Since this was
just an optimization, disable it for now.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
For a directory tree:
/mnt/subvolA/subvolB
btrfsctl -s /mnt/subvolA/subvolB /mnt
Will create a directory loop with subvolA under subvolB. This
commit uses the forward refs for each subvol and snapshot to error out
before creating the loop.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Each subvolume has its own private inode number space, and so we need
to fill in different device numbers for each subvolume to avoid confusing
applications.
This commit puts a struct super_block into struct btrfs_root so it can
call set_anon_super() and get a different device number generated for
each root.
btrfs_rename is changed to prevent renames across subvols.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Before, all snapshots and subvolumes lived in a single flat directory. This
was awkward and confusing because the single flat directory was only writable
with the ioctls.
This commit changes the ioctls to create subvols and snapshots at any
point in the directory tree. This requires making separate ioctls for
snapshot and subvol creation instead of a combining them into one.
The subvol ioctl does:
btrfsctl -S subvol_name parent_dir
After the ioctl is done subvol_name lives inside parent_dir.
The snapshot ioctl does:
btrfsctl -s path_for_snapshot root_to_snapshot
path_for_snapshot can be an absolute or relative path. btrfsctl breaks it up
into directory and basename components.
root_to_snapshot can be any file or directory in the FS. The snapshot
is taken of the entire root where that file lives.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Seed device is a special btrfs with SEEDING super flag
set and can only be mounted in read-only mode. Seed
devices allow people to create new btrfs on top of it.
The new FS contains the same contents as the seed device,
but it can be mounted in read-write mode.
This patch does the following:
1) split code in btrfs_alloc_chunk into two parts. The first part does makes
the newly allocated chunk usable, but does not do any operation that modifies
the chunk tree. The second part does the the chunk tree modifications. This
division is for the bootstrap step of adding storage to the seed device.
2) Update device management code to handle seed device.
The basic idea is: For an FS grown from seed devices, its
seed devices are put into a list. Seed devices are
opened on demand at mounting time. If any seed device is
missing or has been changed, btrfs kernel module will
refuse to mount the FS.
3) make btrfs_find_block_group not return NULL when all
block groups are read-only.
Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
This patch adds mount ro and remount support. The main
changes in patch are: adding btrfs_remount and related
helper function; splitting the transaction related code
out of close_ctree into btrfs_commit_super; updating
allocator to properly handle read only block group.
Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
This fixes latency problems on metadata reads by making sure they
don't go through the async submit queue, and by tuning down the amount
of readahead done during btree searches.
Also, the btrfs bdi congestion function is tuned to ignore the
number of pending async bios and checksums pending. There is additional
code that throttles new async bios now and the congestion function
doesn't need to worry about it anymore.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
When btrfs unplugs, it tries to find the correct device to unplug
via search through the extent_map tree. This avoids unplugging
a device that doesn't need it, but is a waste of time for filesystems
with a small number of devices.
This patch checks the total number of devices before doing the
search.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
When reading compressed extents, try to put pages into the page cache
for any pages covered by the compressed extent that readpages didn't already
preload.
Add an async work queue to handle transformations at delayed allocation processing
time. Right now this is just compression. The workflow is:
1) Find offsets in the file marked for delayed allocation
2) Lock the pages
3) Lock the state bits
4) Call the async delalloc code
The async delalloc code clears the state lock bits and delalloc bits. It is
important this happens before the range goes into the work queue because
otherwise it might deadlock with other work queue items that try to lock
those extent bits.
The file pages are compressed, and if the compression doesn't work the
pages are written back directly.
An ordered work queue is used to make sure the inodes are written in the same
order that pdflush or writepages sent them down.
This changes extent_write_cache_pages to let the writepage function
update the wbc nr_written count.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Btrfs uses kernel threads to create async work queues for cpu intensive
operations such as checksumming and decompression. These work well,
but they make it difficult to keep IO order intact.
A single writepages call from pdflush or fsync will turn into a number
of bios, and each bio is checksummed in parallel. Once the checksum is
computed, the bio is sent down to the disk, and since we don't control
the order in which the parallel operations happen, they might go down to
the disk in almost any order.
The code deals with this somewhat by having deep work queues for a single
kernel thread, making it very likely that a single thread will process all
the bios for a single inode.
This patch introduces an explicitly ordered work queue. As work structs
are placed into the queue they are put onto the tail of a list. They have
three callbacks:
->func (cpu intensive processing here)
->ordered_func (order sensitive processing here)
->ordered_free (free the work struct, all processing is done)
The work struct has three callbacks. The func callback does the cpu intensive
work, and when it completes the work struct is marked as done.
Every time a work struct completes, the list is checked to see if the head
is marked as done. If so the ordered_func callback is used to do the
order sensitive processing and the ordered_free callback is used to do
any cleanup. Then we loop back and check the head of the list again.
This patch also changes the checksumming code to use the ordered workqueues.
One a 4 drive array, it increases streaming writes from 280MB/s to 350MB/s.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This patch adds transaction IDs to root tree pointers.
Transaction IDs in tree pointers are compared with the
generation numbers in block headers when reading root
blocks of trees. This can detect some types of IO errors.
Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
This patch removes the giant fs_info->alloc_mutex and replaces it with a bunch
of little locks.
There is now a pinned_mutex, which is used when messing with the pinned_extents
extent io tree, and the extent_ins_mutex which is used with the pending_del and
extent_ins extent io trees.
The locking for the extent tree stuff was inspired by a patch that Yan Zheng
wrote to fix a race condition, I cleaned it up some and changed the locking
around a little bit, but the idea remains the same. Basically instead of
holding the extent_ins_mutex throughout the processing of an extent on the
extent_ins or pending_del trees, we just hold it while we're searching and when
we clear the bits on those trees, and lock the extent for the duration of the
operations on the extent.
Also to keep from getting hung up waiting to lock an extent, I've added a
try_lock_extent so if we cannot lock the extent, move on to the next one in the
tree and we'll come back to that one. I have tested this heavily and it does
not appear to break anything. This has to be applied on top of my
find_free_extent redo patch.
I tested this patch on top of Yan's space reblancing code and it worked fine.
The only thing that has changed since the last version is I pulled out all my
debugging stuff, apparently I forgot to run guilt refresh before I sent the
last patch out. Thank you,
Signed-off-by: Josef Bacik <jbacik@redhat.com>
This patch improves the space balancing code to keep more sharing
of tree blocks. The only case that breaks sharing of tree blocks is
data extents get fragmented during balancing. The main changes in
this patch are:
Add a 'drop sub-tree' function. This solves the problem in old code
that BTRFS_HEADER_FLAG_WRITTEN check breaks sharing of tree block.
Remove relocation mapping tree. Relocation mappings are stored in
struct btrfs_ref_path and updated dynamically during walking up/down
the reference path. This reduces CPU usage and simplifies code.
This patch also fixes a bug. Root items for reloc trees should be
updated in btrfs_free_reloc_root.
Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
This is a large change for adding compression on reading and writing,
both for inline and regular extents. It does some fairly large
surgery to the writeback paths.
Compression is off by default and enabled by mount -o compress. Even
when the -o compress mount option is not used, it is possible to read
compressed extents off the disk.
If compression for a given set of pages fails to make them smaller, the
file is flagged to avoid future compression attempts later.
* While finding delalloc extents, the pages are locked before being sent down
to the delalloc handler. This allows the delalloc handler to do complex things
such as cleaning the pages, marking them writeback and starting IO on their
behalf.
* Inline extents are inserted at delalloc time now. This allows us to compress
the data before inserting the inline extent, and it allows us to insert
an inline extent that spans multiple pages.
* All of the in-memory extent representations (extent_map.c, ordered-data.c etc)
are changed to record both an in-memory size and an on disk size, as well
as a flag for compression.
From a disk format point of view, the extent pointers in the file are changed
to record the on disk size of a given extent and some encoding flags.
Space in the disk format is allocated for compression encoding, as well
as encryption and a generic 'other' field. Neither the encryption or the
'other' field are currently used.
In order to limit the amount of data read for a single random read in the
file, the size of a compressed extent is limited to 128k. This is a
software only limit, the disk format supports u64 sized compressed extents.
In order to limit the ram consumed while processing extents, the uncompressed
size of a compressed extent is limited to 256k. This is a software only limit
and will be subject to tuning later.
Checksumming is still done on compressed extents, and it is done on the
uncompressed version of the data. This way additional encodings can be
layered on without having to figure out which encoding to checksum.
Compression happens at delalloc time, which is basically singled threaded because
it is usually done by a single pdflush thread. This makes it tricky to
spread the compression load across all the cpus on the box. We'll have to
look at parallel pdflush walks of dirty inodes at a later time.
Decompression is hooked into readpages and it does spread across CPUs nicely.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This improves the comments at the top of many functions. It didn't
dive into the guts of functions because I was trying to
avoid merging problems with the new allocator and back reference work.
extent-tree.c and volumes.c were both skipped, and there is definitely
more work todo in cleaning and commenting the code.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
btrfs-vol -a /dev/xxx will zero the first and last two MB of the device.
The kernel code needs to wait for this IO to finish before it adds
the device.
btrfs metadata IO does not happen through the block device inode. A
separate address space is used, allowing the zero filled buffer heads in
the block device inode to be written to disk after FS metadata starts
going down to the disk via the btrfs metadata inode.
The end result is zero filled metadata blocks after adding new devices
into the filesystem.
The fix is a simple filemap_write_and_wait on the block device inode
before actually inserting it into the pool of available devices.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This patch updates the space balancing code to utilize the new
backref format. Before, btrfs-vol -b would break any COW links
on data blocks or metadata. This was slow and caused the amount
of space used to explode if a large number of snapshots were present.
The new code can keeps the sharing of all data extents and
most of the tree blocks.
To maintain the sharing of data extents, the space balance code uses
a seperate inode hold data extent pointers, then updates the references
to point to the new location.
To maintain the sharing of tree blocks, the space balance code uses
reloc trees to relocate tree blocks in reference counted roots.
There is one reloc tree for each subvol, and all reloc trees share
same root key objectid. Reloc trees are snapshots of the latest
committed roots of subvols (root->commit_root).
To relocate a tree block referenced by a subvol, there are two steps.
COW the block through subvol's reloc tree, then update block pointer in
the subvol to point to the new block. Since all reloc trees share
same root key objectid, doing special handing for tree blocks
owned by them is easy. Once a tree block has been COWed in one
reloc tree, we can use the resulting new block directly when the
same block is required to COW again through other reloc trees.
In this way, relocated tree blocks are shared between reloc trees,
so they are also shared between subvols.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Btrfs has a cache of reference counts in leaves, allowing it to
avoid reading tree leaves while deleting snapshots. To reduce
contention with multiple subvolumes, this cache is private to each
subvolume.
This patch adds shared reference cache support. The new space
balancing code plays with multiple subvols at the same time, So
the old per-subvol reference cache is not well suited.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Btrfs metadata writeback is fairly expensive. Once a tree block is written
it must be cowed before it can be changed again. The btree writepages
code has a threshold based on a count of dirty btree bytes which is
updated as IO is sent out.
This changes btree_writepages to skip the writeout if there are less
than 32MB of dirty bytes from the btrees, improving performance
across many workloads.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Btrfs had compatibility code for kernels back to 2.6.18. These have
been removed, and will be maintained in a separate backport
git tree from now on.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This patch makes the back reference system to explicit record the
location of parent node for all types of extents. The location of
parent node is placed into the offset field of backref key. Every
time a tree block is balanced, the back references for the affected
lower level extents are updated.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Tree blocks were using async bio submission, but the sum was still
being done directly during writepage. This moves the checksumming
into the worker thread.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
1) replace the per fs_info extent_io_tree that tracked free space with two
rb-trees per block group to track free space areas via offset and size. The
reason to do this is because most allocations come with a hint byte where to
start, so we can usually find a chunk of free space at that hint byte to satisfy
the allocation and get good space packing. If we cannot find free space at or
after the given offset we fall back on looking for a chunk of the given size as
close to that given offset as possible. When we fall back on the size search we
also try to find a slot as close to the size we want as possible, to avoid
breaking small chunks off of huge areas if possible.
2) remove the extent_io_tree that tracked the block group cache from fs_info and
replaced it with an rb-tree thats tracks block group cache via offset. also
added a per space_info list that tracks the block group cache for the particular
space so we can lookup related block groups easily.
3) cleaned up the allocation code to make it a little easier to read and a
little less complicated. Basically there are 3 steps, first look from our
provided hint. If we couldn't find from that given hint, start back at our
original search start and look for space from there. If that fails try to
allocate space if we can and start looking again. If not we're screwed and need
to start over again.
4) small fixes. there were some issues in volumes.c where we wouldn't allocate
the rest of the disk. fixed cow_file_range to actually pass the alloc_hint,
which has helped a good bit in making the fs_mark test I run have semi-normal
results as we run out of space. Generally with data allocations we don't track
where we last allocated from, so everytime we did a data allocation we'd search
through every block group that we have looking for free space. Now searching a
block group with no free space isn't terribly time consuming, it was causing a
slight degradation as we got more data block groups. The alloc_hint has fixed
this slight degredation and made things semi-normal.
There is still one nagging problem I'm working on where we will get ENOSPC when
there is definitely plenty of space. This only happens with metadata
allocations, and only when we are almost full. So you generally hit the 85%
mark first, but sometimes you'll hit the BUG before you hit the 85% wall. I'm
still tracking it down, but until then this seems to be pretty stable and make a
significant performance gain.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This is the same way the transaction code makes sure that all the
other tree blocks are safely on disk. There's an extent_io tree
for each root, and any blocks allocated to the tree logs are
recorded in that tree.
At tree-log sync, the extent_io tree is walked to flush down the
dirty pages and wait for them.
The main benefit is less time spent walking the tree log and skipping
clean pages, and getting sequential IO down to the drive.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Since tree log blocks get freed every transaction, they never really
need to be written to disk. This skips the step where we update
metadata to record they were allocated.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
* Pin down data blocks to prevent them from being reallocated like so:
trans 1: allocate file extent
trans 2: free file extent
trans 3: free file extent during old snapshot deletion
trans 3: allocate file extent to new file
trans 3: fsync new file
Before the tree logging code, this was legal because the fsync
would commit the transation that did the final data extent free
and the transaction that allocated the extent to the new file
at the same time.
With the tree logging code, the tree log subtransaction can commit
before the transaction that freed the extent. If we crash,
we're left with two different files using the extent.
* Don't wait in start_transaction if log replay is going on. This
avoids deadlocks from iput while we're cleaning up link counts in the
replay code.
* Don't deadlock in replay_one_name by trying to read an inode off
the disk while holding paths for the directory
* Hold the buffer lock while we mark a buffer as written. This
closes a race where someone is changing a buffer while we write it.
They are supposed to mark it dirty again after they change it, but
this violates the cow rules.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
File syncs and directory syncs are optimized by copying their
items into a special (copy-on-write) log tree. There is one log tree per
subvolume and the btrfs super block points to a tree of log tree roots.
After a crash, items are copied out of the log tree and back into the
subvolume. See tree-log.c for all the details.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
The current code waits for the count of async bio submits to get below
a given threshold if it is too high right after adding the latest bio
to the work queue. This isn't optimal because the caller may have
sequential adjacent bios pending they are waiting to send down the pipe.
This changeset requires the caller to wait on the async bio count,
and changes the async checksumming submits to wait for async bios any
time they self throttle.
The end result is much higher sequential throughput.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Before, the btrfs bdi congestion function was used to test for too many
async bios. This keeps that check to throttle pdflush, but also
adds a check while queuing bios.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Before this change, btrfs would use a bdi congestion function to make
sure there weren't too many pending async checksum work items.
This change makes the process creating async work items wait instead,
leading to fewer congestion returns from the bdi. This improves
pdflush background_writeout scanning.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
After writing out all the remaining btree blocks in the transaction,
the commit code would use filemap_fdatawait to make sure it was all
on disk. This means it would wait for blocks written by other procs
as well.
The new code walks the list of blocks for this transaction again
and waits only for those required by this transaction.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
* Make walk_down_tree wake up throttled tasks more often
* Make walk_down_tree call cond_resched during long loops
* As the size of the ref cache grows, wait longer in throttle
* Get rid of the reada code in walk_down_tree, the leaves don't get
read anymore, thanks to the ref cache.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Large streaming reads make for large bios, which means each entry on the
list async work queues represents a large amount of data. IO
congestion throttling on the device was kicking in before the async
worker threads decided a single thread was busy and needed some help.
The end result was that a streaming read would result in a single CPU
running at 100% instead of balancing the work off to other CPUs.
This patch also changes the pre-IO checksum lookup done by reads to
work on a per-bio basis instead of a per-page. This results in many
extra btree lookups on large streaming reads. Doing the checksum lookup
right before bio submit allows us to reuse searches while processing
adjacent offsets.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
The memory reclaiming issue happens when snapshot exists. In that
case, some cache entries may not be used during old snapshot dropping,
so they will remain in the cache until umount.
The patch adds a field to struct btrfs_leaf_ref to record create time. Besides,
the patch makes all dead roots of a given snapshot linked together in order of
create time. After a old snapshot was completely dropped, we check the dead
root list and remove all cache entries created before the oldest dead root in
the list.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
It was incorrectly clearing the up to date flag on the buffer even
when the buffer properly verified.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
A large reference cache is directly related to a lot of work pending
for the cleaner thread. This throttles back new operations based on
the size of the reference cache so the cleaner thread will be able to keep
up.
Overall, this actually makes the FS faster because the cleaner thread will
be more likely to find things in cache.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This changes the reference cache to make a single cache per root
instead of one cache per transaction, and to key by the byte number
of the disk block instead of the keys inside.
This makes it much less likely to have cache misses if a snapshot
or something has an extra reference on a higher node or a leaf while
the first transaction that added the leaf into the cache is dropping.
Some throttling is added to functions that free blocks heavily so they
wait for old transactions to drop.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Much of the IO done while dropping snapshots is done looking up
leaves in the filesystem trees to see if they point to any extents and
to drop the references on any extents found.
This creates a cache so that IO isn't required.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Before setting an extent to delalloc, the code needs to wait for
pending ordered extents.
Also, the relocation code needs to wait for ordered IO before scanning
the block group again. This is because the extents are not removed
until the IO for the new extents is finished
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Checksum items are not inserted into the tree until all of the io from a
given extent is complete. This means one dirty page from an extent may
be written, freed, and then read again before the entire extent is on disk
and the checksum item is inserted.
The checksums themselves are stored in the ordered extent so they can
be inserted in bulk when IO is complete. On read, if a checksum item isn't
found, the ordered extents were being searched for a checksum record.
This all worked most of the time, but the checksum insertion code tries
to reduce the number of tree operations by pre-inserting checksum items
based on i_size and a few other factors. This means the read code might
find a checksum item that hasn't yet really been filled in.
This commit changes things to check the ordered extents first and only
dive into the btree if nothing was found. This removes the need for
extra locking and is more reliable.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Before, extent buffers were a temporary object, meant to map a number of pages
at once and collect operations on them.
But, a few extra fields have crept in, and they are also the best place to
store a per-tree block lock field as well. This commit puts the extent
buffers into an rbtree, and ensures a single extent buffer for each
tree block.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
btrfs_commit_transaction has to loop waiting for any writers in the
transaction to finish before it can proceed. btrfs_start_transaction
should be polite and not join a transaction that is in the process
of being finished off.
There are a few places that can't wait, basically the ones doing IO that
might be needed to finish the transaction. For them, btrfs_join_transaction
is added.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Higher layers sometimes call set_page_dirty without asking the filesystem
to help. This causes many problems for the data=ordered and cow code.
This commit detects pages that haven't been properly setup for IO and
kicks off an async helper to deal with them.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
The old data=ordered code would force commit to wait until
all the data extents from the transaction were fully on disk. This
introduced large latencies into the commit and stalled new writers
in the transaction for a long time.
The new code changes the way data allocations and extents work:
* When delayed allocation is filled, data extents are reserved, and
the extent bit EXTENT_ORDERED is set on the entire range of the extent.
A struct btrfs_ordered_extent is allocated an inserted into a per-inode
rbtree to track the pending extents.
* As each page is written EXTENT_ORDERED is cleared on the bytes corresponding
to that page.
* When all of the bytes corresponding to a single struct btrfs_ordered_extent
are written, The previously reserved extent is inserted into the FS
btree and into the extent allocation trees. The checksums for the file
data are also updated.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
The btree defragger wasn't making forward progress because the new key wasn't
being saved by the btrfs_search_forward function.
This also disables the automatic btree defrag, it wasn't scaling well to
huge filesystems. The auto-defrag needs to be done differently.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This creates one kthread for commits and one kthread for
deleting old snapshots. All the work queues are removed.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
The existing throttle mechanism was often not sufficient to prevent
new writers from coming in and making a given transaction run forever.
This adds an explicit wait at the end of most operations so they will
allow the current transaction to close.
There is no wait inside file_write, inode updates, or cow filling, all which
have different deadlock possibilities.
This is a temporary measure until better asynchronous commit support is
added. This code leads to stalls as it waits for data=ordered
writeback, and it really needs to be fixed.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
One lock per btree block can make for significant congestion if everyone
has to wait for IO at the high levels of the btree. This drops
locks held by a path when doing reads during a tree search.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Extent alloctions are still protected by a large alloc_mutex.
Objectid allocations are covered by a objectid mutex
Other btree operations are protected by a lock on individual btree nodes
Signed-off-by: Chris Mason <chris.mason@oracle.com>
The allocation trees and the chunk trees are serialized via their own
dedicated mutexes. This means allocation location is still not very
fine grained.
The main FS btree is protected by locks on each block in the btree. Locks
are taken top / down, and as processing finishes on a given level of the
tree, the lock is released after locking the lower level.
The end result of a search is now a path where only the lowest level
is locked. Releasing or freeing the path drops any locks held.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
If a bio submission is after a lock holder waiting for the bio
on the work queue, it is possible to deadlock. Move the bios
into their own pool.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
mount -o thread_pool_size changes the default, which is
min(num_cpus + 2, 8). Larger thread pools would make more sense on
very large disk arrays.
This mount option controls the max size of each thread pool. There
are multiple thread pools, so the total worker count will be larger
than the mount option.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Btrfs has been using workqueues to spread the checksumming load across
other CPUs in the system. But, workqueues only schedule work on the
same CPU that queued the work, giving them a limited benefit for systems with
higher CPU counts.
This code adds a generic facility to schedule work with pools of kthreads,
and changes the bio submission code to queue bios up. The queueing is
important to make sure large numbers of procs on the system don't
turn streaming workloads into random workloads by sending IO down
concurrently.
The end result of all of this is much higher performance (and CPU usage) when
doing checksumming on large machines. Two worker pools are created,
one for writes and one for endio processing. The two could deadlock if
we tried to service both from a single pool.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Also adds lots of comments to describe what's going on here.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This avoids IO stalls and poorly ordered IO from inline writers mixing in
with the async submission queue
Signed-off-by: Chris Mason <chris.mason@oracle.com>
The async submit workqueue was absorbing too many requests, leading to long
stalls where the async submitters were stalling.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Devices can change after the scan ioctls are done, and btrfs_open_devices
needs to be able to verify them as they are opened and used by the FS.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
When duplicate copies exist, writes are allowed to fail to one of those
copies. This changeset includes a few changes that allow the FS to
continue even when some IOs fail.
It also adds verification of the parent generation number for btree blocks.
This generation is stored in the pointer to a block, and it ensures
that missed writes to are detected.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This required a few structural changes to the code that manages bdev pointers:
The VFS super block now gets an anon-bdev instead of a pointer to the
lowest bdev. This allows us to avoid swapping the super block bdev pointer
around at run time.
The code to read in the super block no longer goes through the extent
buffer interface. Things got ugly keeping the mapping constant.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2.6.18 seems to get caught in an infinite loop when
cancel_rearming_delayed_workqueue is called more than once, so this switches
to cancel_delayed_work, which is arguably more correct.
Also, balance_dirty_pages can run into problems with 2.6.18 based kernels
because it doesn't have the per-bdi dirty limits. This avoids calling
balance_dirty_pages on the btree inode unless there is actually something
to balance, which is a good optimization in general.
Finally there's a compile fix for ordered-data.h
Signed-off-by: Chris Mason <chris.mason@oracle.com>