2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-09 14:14:00 +08:00
Commit Graph

89 Commits

Author SHA1 Message Date
Roman Gushchin
1bc5975613 bpf: Eliminate rlimit-based memory accounting for arraymap maps
Do not use rlimit-based memory accounting for arraymap maps.
It has been replaced with the memcg-based memory accounting.

Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20201201215900.3569844-19-guro@fb.com
2020-12-02 18:32:46 -08:00
Roman Gushchin
6d192c7938 bpf: Refine memcg-based memory accounting for arraymap maps
Include percpu arrays and auxiliary data into the memcg-based memory
accounting.

Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20201201215900.3569844-9-guro@fb.com
2020-12-02 18:32:45 -08:00
Daniel Borkmann
4a8f87e60f bpf: Allow for map-in-map with dynamic inner array map entries
Recent work in f4d0525921 ("bpf: Add map_meta_equal map ops") and 134fede4ee
("bpf: Relax max_entries check for most of the inner map types") added support
for dynamic inner max elements for most map-in-map types. Exceptions were maps
like array or prog array where the map_gen_lookup() callback uses the maps'
max_entries field as a constant when emitting instructions.

We recently implemented Maglev consistent hashing into Cilium's load balancer
which uses map-in-map with an outer map being hash and inner being array holding
the Maglev backend table for each service. This has been designed this way in
order to reduce overall memory consumption given the outer hash map allows to
avoid preallocating a large, flat memory area for all services. Also, the
number of service mappings is not always known a-priori.

The use case for dynamic inner array map entries is to further reduce memory
overhead, for example, some services might just have a small number of back
ends while others could have a large number. Right now the Maglev backend table
for small and large number of backends would need to have the same inner array
map entries which adds a lot of unneeded overhead.

Dynamic inner array map entries can be realized by avoiding the inlined code
generation for their lookup. The lookup will still be efficient since it will
be calling into array_map_lookup_elem() directly and thus avoiding retpoline.
The patch adds a BPF_F_INNER_MAP flag to map creation which therefore skips
inline code generation and relaxes array_map_meta_equal() check to ignore both
maps' max_entries. This also still allows to have faster lookups for map-in-map
when BPF_F_INNER_MAP is not specified and hence dynamic max_entries not needed.

Example code generation where inner map is dynamic sized array:

  # bpftool p d x i 125
  int handle__sys_enter(void * ctx):
  ; int handle__sys_enter(void *ctx)
     0: (b4) w1 = 0
  ; int key = 0;
     1: (63) *(u32 *)(r10 -4) = r1
     2: (bf) r2 = r10
  ;
     3: (07) r2 += -4
  ; inner_map = bpf_map_lookup_elem(&outer_arr_dyn, &key);
     4: (18) r1 = map[id:468]
     6: (07) r1 += 272
     7: (61) r0 = *(u32 *)(r2 +0)
     8: (35) if r0 >= 0x3 goto pc+5
     9: (67) r0 <<= 3
    10: (0f) r0 += r1
    11: (79) r0 = *(u64 *)(r0 +0)
    12: (15) if r0 == 0x0 goto pc+1
    13: (05) goto pc+1
    14: (b7) r0 = 0
    15: (b4) w6 = -1
  ; if (!inner_map)
    16: (15) if r0 == 0x0 goto pc+6
    17: (bf) r2 = r10
  ;
    18: (07) r2 += -4
  ; val = bpf_map_lookup_elem(inner_map, &key);
    19: (bf) r1 = r0                               | No inlining but instead
    20: (85) call array_map_lookup_elem#149280     | call to array_map_lookup_elem()
  ; return val ? *val : -1;                        | for inner array lookup.
    21: (15) if r0 == 0x0 goto pc+1
  ; return val ? *val : -1;
    22: (61) r6 = *(u32 *)(r0 +0)
  ; }
    23: (bc) w0 = w6
    24: (95) exit

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20201010234006.7075-4-daniel@iogearbox.net
2020-10-11 10:21:04 -07:00
Song Liu
792caccc45 bpf: Introduce BPF_F_PRESERVE_ELEMS for perf event array
Currently, perf event in perf event array is removed from the array when
the map fd used to add the event is closed. This behavior makes it
difficult to the share perf events with perf event array.

Introduce perf event map that keeps the perf event open with a new flag
BPF_F_PRESERVE_ELEMS. With this flag set, perf events in the array are not
removed when the original map fd is closed. Instead, the perf event will
stay in the map until 1) it is explicitly removed from the array; or 2)
the array is freed.

Signed-off-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200930224927.1936644-2-songliubraving@fb.com
2020-09-30 23:18:12 -07:00
Maciej Fijalkowski
ebf7d1f508 bpf, x64: rework pro/epilogue and tailcall handling in JIT
This commit serves two things:
1) it optimizes BPF prologue/epilogue generation
2) it makes possible to have tailcalls within BPF subprogram

Both points are related to each other since without 1), 2) could not be
achieved.

In [1], Alexei says:
"The prologue will look like:
nop5
xor eax,eax  // two new bytes if bpf_tail_call() is used in this
             // function
push rbp
mov rbp, rsp
sub rsp, rounded_stack_depth
push rax // zero init tail_call counter
variable number of push rbx,r13,r14,r15

Then bpf_tail_call will pop variable number rbx,..
and final 'pop rax'
Then 'add rsp, size_of_current_stack_frame'
jmp to next function and skip over 'nop5; xor eax,eax; push rpb; mov
rbp, rsp'

This way new function will set its own stack size and will init tail
call
counter with whatever value the parent had.

If next function doesn't use bpf_tail_call it won't have 'xor eax,eax'.
Instead it would need to have 'nop2' in there."

Implement that suggestion.

Since the layout of stack is changed, tail call counter handling can not
rely anymore on popping it to rbx just like it have been handled for
constant prologue case and later overwrite of rbx with actual value of
rbx pushed to stack. Therefore, let's use one of the register (%rcx) that
is considered to be volatile/caller-saved and pop the value of tail call
counter in there in the epilogue.

Drop the BUILD_BUG_ON in emit_prologue and in
emit_bpf_tail_call_indirect where instruction layout is not constant
anymore.

Introduce new poke target, 'tailcall_bypass' to poke descriptor that is
dedicated for skipping the register pops and stack unwind that are
generated right before the actual jump to target program.
For case when the target program is not present, BPF program will skip
the pop instructions and nop5 dedicated for jmpq $target. An example of
such state when only R6 of callee saved registers is used by program:

ffffffffc0513aa1:       e9 0e 00 00 00          jmpq   0xffffffffc0513ab4
ffffffffc0513aa6:       5b                      pop    %rbx
ffffffffc0513aa7:       58                      pop    %rax
ffffffffc0513aa8:       48 81 c4 00 00 00 00    add    $0x0,%rsp
ffffffffc0513aaf:       0f 1f 44 00 00          nopl   0x0(%rax,%rax,1)
ffffffffc0513ab4:       48 89 df                mov    %rbx,%rdi

When target program is inserted, the jump that was there to skip
pops/nop5 will become the nop5, so CPU will go over pops and do the
actual tailcall.

One might ask why there simply can not be pushes after the nop5?
In the following example snippet:

ffffffffc037030c:       48 89 fb                mov    %rdi,%rbx
(...)
ffffffffc0370332:       5b                      pop    %rbx
ffffffffc0370333:       58                      pop    %rax
ffffffffc0370334:       48 81 c4 00 00 00 00    add    $0x0,%rsp
ffffffffc037033b:       0f 1f 44 00 00          nopl   0x0(%rax,%rax,1)
ffffffffc0370340:       48 81 ec 00 00 00 00    sub    $0x0,%rsp
ffffffffc0370347:       50                      push   %rax
ffffffffc0370348:       53                      push   %rbx
ffffffffc0370349:       48 89 df                mov    %rbx,%rdi
ffffffffc037034c:       e8 f7 21 00 00          callq  0xffffffffc0372548

There is the bpf2bpf call (at ffffffffc037034c) right after the tailcall
and jump target is not present. ctx is in %rbx register and BPF
subprogram that we will call into on ffffffffc037034c is relying on it,
e.g. it will pick ctx from there. Such code layout is therefore broken
as we would overwrite the content of %rbx with the value that was pushed
on the prologue. That is the reason for the 'bypass' approach.

Special care needs to be taken during the install/update/remove of
tailcall target. In case when target program is not present, the CPU
must not execute the pop instructions that precede the tailcall.

To address that, the following states can be defined:
A nop, unwind, nop
B nop, unwind, tail
C skip, unwind, nop
D skip, unwind, tail

A is forbidden (lead to incorrectness). The state transitions between
tailcall install/update/remove will work as follows:

First install tail call f: C->D->B(f)
 * poke the tailcall, after that get rid of the skip
Update tail call f to f': B(f)->B(f')
 * poke the tailcall (poke->tailcall_target) and do NOT touch the
   poke->tailcall_bypass
Remove tail call: B(f')->C(f')
 * poke->tailcall_bypass is poked back to jump, then we wait the RCU
   grace period so that other programs will finish its execution and
   after that we are safe to remove the poke->tailcall_target
Install new tail call (f''): C(f')->D(f'')->B(f'').
 * same as first step

This way CPU can never be exposed to "unwind, tail" state.

Last but not least, when tailcalls get mixed with bpf2bpf calls, it
would be possible to encounter the endless loop due to clearing the
tailcall counter if for example we would use the tailcall3-like from BPF
selftests program that would be subprogram-based, meaning the tailcall
would be present within the BPF subprogram.

This test, broken down to particular steps, would do:
entry -> set tailcall counter to 0, bump it by 1, tailcall to func0
func0 -> call subprog_tail
(we are NOT skipping the first 11 bytes of prologue and this subprogram
has a tailcall, therefore we clear the counter...)
subprog -> do the same thing as entry

and then loop forever.

To address this, the idea is to go through the call chain of bpf2bpf progs
and look for a tailcall presence throughout whole chain. If we saw a single
tail call then each node in this call chain needs to be marked as a subprog
that can reach the tailcall. We would later feed the JIT with this info
and:
- set eax to 0 only when tailcall is reachable and this is the entry prog
- if tailcall is reachable but there's no tailcall in insns of currently
  JITed prog then push rax anyway, so that it will be possible to
  propagate further down the call chain
- finally if tailcall is reachable, then we need to precede the 'call'
  insn with mov rax, [rbp - (stack_depth + 8)]

Tail call related cases from test_verifier kselftest are also working
fine. Sample BPF programs that utilize tail calls (sockex3, tracex5)
work properly as well.

[1]: https://lore.kernel.org/bpf/20200517043227.2gpq22ifoq37ogst@ast-mbp.dhcp.thefacebook.com/

Suggested-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Maciej Fijalkowski <maciej.fijalkowski@intel.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2020-09-17 19:55:30 -07:00
Maciej Fijalkowski
cf71b174d3 bpf: rename poke descriptor's 'ip' member to 'tailcall_target'
Reflect the actual purpose of poke->ip and rename it to
poke->tailcall_target so that it will not the be confused with another
poke target that will be introduced in next commit.

While at it, do the same thing with poke->ip_stable - rename it to
poke->tailcall_target_stable.

Signed-off-by: Maciej Fijalkowski <maciej.fijalkowski@intel.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2020-09-17 12:59:31 -07:00
Alexei Starovoitov
1e6c62a882 bpf: Introduce sleepable BPF programs
Introduce sleepable BPF programs that can request such property for themselves
via BPF_F_SLEEPABLE flag at program load time. In such case they will be able
to use helpers like bpf_copy_from_user() that might sleep. At present only
fentry/fexit/fmod_ret and lsm programs can request to be sleepable and only
when they are attached to kernel functions that are known to allow sleeping.

The non-sleepable programs are relying on implicit rcu_read_lock() and
migrate_disable() to protect life time of programs, maps that they use and
per-cpu kernel structures used to pass info between bpf programs and the
kernel. The sleepable programs cannot be enclosed into rcu_read_lock().
migrate_disable() maps to preempt_disable() in non-RT kernels, so the progs
should not be enclosed in migrate_disable() as well. Therefore
rcu_read_lock_trace is used to protect the life time of sleepable progs.

There are many networking and tracing program types. In many cases the
'struct bpf_prog *' pointer itself is rcu protected within some other kernel
data structure and the kernel code is using rcu_dereference() to load that
program pointer and call BPF_PROG_RUN() on it. All these cases are not touched.
Instead sleepable bpf programs are allowed with bpf trampoline only. The
program pointers are hard-coded into generated assembly of bpf trampoline and
synchronize_rcu_tasks_trace() is used to protect the life time of the program.
The same trampoline can hold both sleepable and non-sleepable progs.

When rcu_read_lock_trace is held it means that some sleepable bpf program is
running from bpf trampoline. Those programs can use bpf arrays and preallocated
hash/lru maps. These map types are waiting on programs to complete via
synchronize_rcu_tasks_trace();

Updates to trampoline now has to do synchronize_rcu_tasks_trace() and
synchronize_rcu_tasks() to wait for sleepable progs to finish and for
trampoline assembly to finish.

This is the first step of introducing sleepable progs. Eventually dynamically
allocated hash maps can be allowed and networking program types can become
sleepable too.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Acked-by: KP Singh <kpsingh@google.com>
Link: https://lore.kernel.org/bpf/20200827220114.69225-3-alexei.starovoitov@gmail.com
2020-08-28 21:20:33 +02:00
Martin KaFai Lau
134fede4ee bpf: Relax max_entries check for most of the inner map types
Most of the maps do not use max_entries during verification time.
Thus, those map_meta_equal() do not need to enforce max_entries
when it is inserted as an inner map during runtime.  The max_entries
check is removed from the default implementation bpf_map_meta_equal().

The prog_array_map and xsk_map are exception.  Its map_gen_lookup
uses max_entries to generate inline lookup code.  Thus, they will
implement its own map_meta_equal() to enforce max_entries.
Since there are only two cases now, the max_entries check
is not refactored and stays in its own .c file.

Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20200828011813.1970516-1-kafai@fb.com
2020-08-28 15:41:30 +02:00
Martin KaFai Lau
f4d0525921 bpf: Add map_meta_equal map ops
Some properties of the inner map is used in the verification time.
When an inner map is inserted to an outer map at runtime,
bpf_map_meta_equal() is currently used to ensure those properties
of the inserting inner map stays the same as the verification
time.

In particular, the current bpf_map_meta_equal() checks max_entries which
turns out to be too restrictive for most of the maps which do not use
max_entries during the verification time.  It limits the use case that
wants to replace a smaller inner map with a larger inner map.  There are
some maps do use max_entries during verification though.  For example,
the map_gen_lookup in array_map_ops uses the max_entries to generate
the inline lookup code.

To accommodate differences between maps, the map_meta_equal is added
to bpf_map_ops.  Each map-type can decide what to check when its
map is used as an inner map during runtime.

Also, some map types cannot be used as an inner map and they are
currently black listed in bpf_map_meta_alloc() in map_in_map.c.
It is not unusual that the new map types may not aware that such
blacklist exists.  This patch enforces an explicit opt-in
and only allows a map to be used as an inner map if it has
implemented the map_meta_equal ops.  It is based on the
discussion in [1].

All maps that support inner map has its map_meta_equal points
to bpf_map_meta_equal in this patch.  A later patch will
relax the max_entries check for most maps.  bpf_types.h
counts 28 map types.  This patch adds 23 ".map_meta_equal"
by using coccinelle.  -5 for
	BPF_MAP_TYPE_PROG_ARRAY
	BPF_MAP_TYPE_(PERCPU)_CGROUP_STORAGE
	BPF_MAP_TYPE_STRUCT_OPS
	BPF_MAP_TYPE_ARRAY_OF_MAPS
	BPF_MAP_TYPE_HASH_OF_MAPS

The "if (inner_map->inner_map_meta)" check in bpf_map_meta_alloc()
is moved such that the same error is returned.

[1]: https://lore.kernel.org/bpf/20200522022342.899756-1-kafai@fb.com/

Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20200828011806.1970400-1-kafai@fb.com
2020-08-28 15:41:30 +02:00
Yonghong Song
d3cc2ab546 bpf: Implement bpf iterator for array maps
The bpf iterators for array and percpu array
are implemented. Similar to hash maps, for percpu
array map, bpf program will receive values
from all cpus.

Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200723184115.590532-1-yhs@fb.com
2020-07-25 20:16:33 -07:00
Alexei Starovoitov
bba1dc0b55 bpf: Remove redundant synchronize_rcu.
bpf_free_used_maps() or close(map_fd) will trigger map_free callback.
bpf_free_used_maps() is called after bpf prog is no longer executing:
bpf_prog_put->call_rcu->bpf_prog_free->bpf_free_used_maps.
Hence there is no need to call synchronize_rcu() to protect map elements.

Note that hash_of_maps and array_of_maps update/delete inner maps via
sys_bpf() that calls maybe_wait_bpf_programs() and synchronize_rcu().

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Acked-by: Paul E. McKenney <paulmck@kernel.org>
Link: https://lore.kernel.org/bpf/20200630043343.53195-2-alexei.starovoitov@gmail.com
2020-07-01 08:07:13 -07:00
Andrey Ignatov
2872e9ac33 bpf: Set map_btf_{name, id} for all map types
Set map_btf_name and map_btf_id for all map types so that map fields can
be accessed by bpf programs.

Signed-off-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/a825f808f22af52b018dbe82f1c7d29dab5fc978.1592600985.git.rdna@fb.com
2020-06-22 22:22:58 +02:00
Andrey Ignatov
41c48f3a98 bpf: Support access to bpf map fields
There are multiple use-cases when it's convenient to have access to bpf
map fields, both `struct bpf_map` and map type specific struct-s such as
`struct bpf_array`, `struct bpf_htab`, etc.

For example while working with sock arrays it can be necessary to
calculate the key based on map->max_entries (some_hash % max_entries).
Currently this is solved by communicating max_entries via "out-of-band"
channel, e.g. via additional map with known key to get info about target
map. That works, but is not very convenient and error-prone while
working with many maps.

In other cases necessary data is dynamic (i.e. unknown at loading time)
and it's impossible to get it at all. For example while working with a
hash table it can be convenient to know how much capacity is already
used (bpf_htab.count.counter for BPF_F_NO_PREALLOC case).

At the same time kernel knows this info and can provide it to bpf
program.

Fill this gap by adding support to access bpf map fields from bpf
program for both `struct bpf_map` and map type specific fields.

Support is implemented via btf_struct_access() so that a user can define
their own `struct bpf_map` or map type specific struct in their program
with only necessary fields and preserve_access_index attribute, cast a
map to this struct and use a field.

For example:

	struct bpf_map {
		__u32 max_entries;
	} __attribute__((preserve_access_index));

	struct bpf_array {
		struct bpf_map map;
		__u32 elem_size;
	} __attribute__((preserve_access_index));

	struct {
		__uint(type, BPF_MAP_TYPE_ARRAY);
		__uint(max_entries, 4);
		__type(key, __u32);
		__type(value, __u32);
	} m_array SEC(".maps");

	SEC("cgroup_skb/egress")
	int cg_skb(void *ctx)
	{
		struct bpf_array *array = (struct bpf_array *)&m_array;
		struct bpf_map *map = (struct bpf_map *)&m_array;

		/* .. use map->max_entries or array->map.max_entries .. */
	}

Similarly to other btf_struct_access() use-cases (e.g. struct tcp_sock
in net/ipv4/bpf_tcp_ca.c) the patch allows access to any fields of
corresponding struct. Only reading from map fields is supported.

For btf_struct_access() to work there should be a way to know btf id of
a struct that corresponds to a map type. To get btf id there should be a
way to get a stringified name of map-specific struct, such as
"bpf_array", "bpf_htab", etc for a map type. Two new fields are added to
`struct bpf_map_ops` to handle it:
* .map_btf_name keeps a btf name of a struct returned by map_alloc();
* .map_btf_id is used to cache btf id of that struct.

To make btf ids calculation cheaper they're calculated once while
preparing btf_vmlinux and cached same way as it's done for btf_id field
of `struct bpf_func_proto`

While calculating btf ids, struct names are NOT checked for collision.
Collisions will be checked as a part of the work to prepare btf ids used
in verifier in compile time that should land soon. The only known
collision for `struct bpf_htab` (kernel/bpf/hashtab.c vs
net/core/sock_map.c) was fixed earlier.

Both new fields .map_btf_name and .map_btf_id must be set for a map type
for the feature to work. If neither is set for a map type, verifier will
return ENOTSUPP on a try to access map_ptr of corresponding type. If
just one of them set, it's verifier misconfiguration.

Only `struct bpf_array` for BPF_MAP_TYPE_ARRAY and `struct bpf_htab` for
BPF_MAP_TYPE_HASH are supported by this patch. Other map types will be
supported separately.

The feature is available only for CONFIG_DEBUG_INFO_BTF=y and gated by
perfmon_capable() so that unpriv programs won't have access to bpf map
fields.

Signed-off-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/6479686a0cd1e9067993df57b4c3eef0e276fec9.1592600985.git.rdna@fb.com
2020-06-22 22:22:58 +02:00
David S. Miller
da07f52d3c Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
Move the bpf verifier trace check into the new switch statement in
HEAD.

Resolve the overlapping changes in hinic, where bug fixes overlap
the addition of VF support.

Signed-off-by: David S. Miller <davem@davemloft.net>
2020-05-15 13:48:59 -07:00
Alexei Starovoitov
2c78ee898d bpf: Implement CAP_BPF
Implement permissions as stated in uapi/linux/capability.h
In order to do that the verifier allow_ptr_leaks flag is split
into four flags and they are set as:
  env->allow_ptr_leaks = bpf_allow_ptr_leaks();
  env->bypass_spec_v1 = bpf_bypass_spec_v1();
  env->bypass_spec_v4 = bpf_bypass_spec_v4();
  env->bpf_capable = bpf_capable();

The first three currently equivalent to perfmon_capable(), since leaking kernel
pointers and reading kernel memory via side channel attacks is roughly
equivalent to reading kernel memory with cap_perfmon.

'bpf_capable' enables bounded loops, precision tracking, bpf to bpf calls and
other verifier features. 'allow_ptr_leaks' enable ptr leaks, ptr conversions,
subtraction of pointers. 'bypass_spec_v1' disables speculative analysis in the
verifier, run time mitigations in bpf array, and enables indirect variable
access in bpf programs. 'bypass_spec_v4' disables emission of sanitation code
by the verifier.

That means that the networking BPF program loaded with CAP_BPF + CAP_NET_ADMIN
will have speculative checks done by the verifier and other spectre mitigation
applied. Such networking BPF program will not be able to leak kernel pointers
and will not be able to access arbitrary kernel memory.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20200513230355.7858-3-alexei.starovoitov@gmail.com
2020-05-15 17:29:41 +02:00
Andrii Nakryiko
333291ce50 bpf: Fix bug in mmap() implementation for BPF array map
mmap() subsystem allows user-space application to memory-map region with
initial page offset. This wasn't taken into account in initial implementation
of BPF array memory-mapping. This would result in wrong pages, not taking into
account requested page shift, being memory-mmaped into user-space. This patch
fixes this gap and adds a test for such scenario.

Fixes: fc9702273e ("bpf: Add mmap() support for BPF_MAP_TYPE_ARRAY")
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20200512235925.3817805-1-andriin@fb.com
2020-05-14 12:40:04 -07:00
Brian Vazquez
c60f2d2861 bpf: Add lookup and update batch ops to arraymap
This adds the generic batch ops functionality to bpf arraymap, note that
since deletion is not a valid operation for arraymap, only batch and
lookup are added.

Signed-off-by: Brian Vazquez <brianvv@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20200115184308.162644-5-brianvv@google.com
2020-01-15 14:00:35 -08:00
Daniel Borkmann
b553a6ec57 bpf: Simplify __bpf_arch_text_poke poke type handling
Given that we have BPF_MOD_NOP_TO_{CALL,JUMP}, BPF_MOD_{CALL,JUMP}_TO_NOP
and BPF_MOD_{CALL,JUMP}_TO_{CALL,JUMP} poke types and that we also pass in
old_addr as well as new_addr, it's a bit redundant and unnecessarily
complicates __bpf_arch_text_poke() itself since we can derive the same from
the *_addr that were passed in. Hence simplify and use BPF_MOD_{CALL,JUMP}
as types which also allows to clean up call-sites.

In addition to that, __bpf_arch_text_poke() currently verifies that text
matches expected old_insn before we invoke text_poke_bp(). Also add a check
on new_insn and skip rewrite if it already matches. Reason why this is rather
useful is that it avoids making any special casing in prog_array_map_poke_run()
when old and new prog were NULL and has the benefit that also for this case
we perform a check on text whether it really matches our expectations.

Suggested-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/fcb00a2b0b288d6c73de4ef58116a821c8fe8f2f.1574555798.git.daniel@iogearbox.net
2019-11-24 17:12:11 -08:00
Daniel Borkmann
da765a2f59 bpf: Add poke dependency tracking for prog array maps
This work adds program tracking to prog array maps. This is needed such
that upon prog array updates/deletions we can fix up all programs which
make use of this tail call map. We add ops->map_poke_{un,}track()
helpers to maps to maintain the list of programs and ops->map_poke_run()
for triggering the actual update.

bpf_array_aux is extended to contain the list head and poke_mutex in
order to serialize program patching during updates/deletions.
bpf_free_used_maps() will untrack the program shortly before dropping
the reference to the map. For clearing out the prog array once all urefs
are dropped we need to use schedule_work() to have a sleepable context.

The prog_array_map_poke_run() is triggered during updates/deletions and
walks the maintained prog list. It checks in their poke_tabs whether the
map and key is matching and runs the actual bpf_arch_text_poke() for
patching in the nop or new jmp location. Depending on the type of update,
we use one of BPF_MOD_{NOP_TO_JUMP,JUMP_TO_NOP,JUMP_TO_JUMP}.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/1fb364bb3c565b3e415d5ea348f036ff379e779d.1574452833.git.daniel@iogearbox.net
2019-11-24 17:04:11 -08:00
Daniel Borkmann
2beee5f574 bpf: Move owner type, jited info into array auxiliary data
We're going to extend this with further information which is only
relevant for prog array at this point. Given this info is not used
in critical path, move it into its own structure such that the main
array map structure can be kept on diet.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/b9ddccdb0f6f7026489ee955f16c96381e1e7238.1574452833.git.daniel@iogearbox.net
2019-11-24 17:04:11 -08:00
YueHaibing
b2e2f0e6a6 bpf: Make array_map_mmap static
Fix sparse warning:

kernel/bpf/arraymap.c:481:5: warning:
 symbol 'array_map_mmap' was not declared. Should it be static?

Reported-by: Hulk Robot <hulkci@huawei.com>
Signed-off-by: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/20191119142113.15388-1-yuehaibing@huawei.com
2019-11-19 16:57:32 -08:00
Andrii Nakryiko
fc9702273e bpf: Add mmap() support for BPF_MAP_TYPE_ARRAY
Add ability to memory-map contents of BPF array map. This is extremely useful
for working with BPF global data from userspace programs. It allows to avoid
typical bpf_map_{lookup,update}_elem operations, improving both performance
and usability.

There had to be special considerations for map freezing, to avoid having
writable memory view into a frozen map. To solve this issue, map freezing and
mmap-ing is happening under mutex now:
  - if map is already frozen, no writable mapping is allowed;
  - if map has writable memory mappings active (accounted in map->writecnt),
    map freezing will keep failing with -EBUSY;
  - once number of writable memory mappings drops to zero, map freezing can be
    performed again.

Only non-per-CPU plain arrays are supported right now. Maps with spinlocks
can't be memory mapped either.

For BPF_F_MMAPABLE array, memory allocation has to be done through vmalloc()
to be mmap()'able. We also need to make sure that array data memory is
page-sized and page-aligned, so we over-allocate memory in such a way that
struct bpf_array is at the end of a single page of memory with array->value
being aligned with the start of the second page. On deallocation we need to
accomodate this memory arrangement to free vmalloc()'ed memory correctly.

One important consideration regarding how memory-mapping subsystem functions.
Memory-mapping subsystem provides few optional callbacks, among them open()
and close().  close() is called for each memory region that is unmapped, so
that users can decrease their reference counters and free up resources, if
necessary. open() is *almost* symmetrical: it's called for each memory region
that is being mapped, **except** the very first one. So bpf_map_mmap does
initial refcnt bump, while open() will do any extra ones after that. Thus
number of close() calls is equal to number of open() calls plus one more.

Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Song Liu <songliubraving@fb.com>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Link: https://lore.kernel.org/bpf/20191117172806.2195367-4-andriin@fb.com
2019-11-18 11:41:59 +01:00
David S. Miller
13091aa305 Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
Honestly all the conflicts were simple overlapping changes,
nothing really interesting to report.

Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-17 20:20:36 -07:00
Thomas Gleixner
5b497af42f treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 295
Based on 1 normalized pattern(s):

  this program is free software you can redistribute it and or modify
  it under the terms of version 2 of the gnu general public license as
  published by the free software foundation this program is
  distributed in the hope that it will be useful but without any
  warranty without even the implied warranty of merchantability or
  fitness for a particular purpose see the gnu general public license
  for more details

extracted by the scancode license scanner the SPDX license identifier

  GPL-2.0-only

has been chosen to replace the boilerplate/reference in 64 file(s).

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexios Zavras <alexios.zavras@intel.com>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190529141901.894819585@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-06-05 17:36:38 +02:00
Roman Gushchin
c85d69135a bpf: move memory size checks to bpf_map_charge_init()
Most bpf map types doing similar checks and bytes to pages
conversion during memory allocation and charging.

Let's unify these checks by moving them into bpf_map_charge_init().

Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-05-31 16:52:56 -07:00
Roman Gushchin
b936ca643a bpf: rework memlock-based memory accounting for maps
In order to unify the existing memlock charging code with the
memcg-based memory accounting, which will be added later, let's
rework the current scheme.

Currently the following design is used:
  1) .alloc() callback optionally checks if the allocation will likely
     succeed using bpf_map_precharge_memlock()
  2) .alloc() performs actual allocations
  3) .alloc() callback calculates map cost and sets map.memory.pages
  4) map_create() calls bpf_map_init_memlock() which sets map.memory.user
     and performs actual charging; in case of failure the map is
     destroyed
  <map is in use>
  1) bpf_map_free_deferred() calls bpf_map_release_memlock(), which
     performs uncharge and releases the user
  2) .map_free() callback releases the memory

The scheme can be simplified and made more robust:
  1) .alloc() calculates map cost and calls bpf_map_charge_init()
  2) bpf_map_charge_init() sets map.memory.user and performs actual
    charge
  3) .alloc() performs actual allocations
  <map is in use>
  1) .map_free() callback releases the memory
  2) bpf_map_charge_finish() performs uncharge and releases the user

The new scheme also allows to reuse bpf_map_charge_init()/finish()
functions for memcg-based accounting. Because charges are performed
before actual allocations and uncharges after freeing the memory,
no bogus memory pressure can be created.

In cases when the map structure is not available (e.g. it's not
created yet, or is already destroyed), on-stack bpf_map_memory
structure is used. The charge can be transferred with the
bpf_map_charge_move() function.

Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-05-31 16:52:56 -07:00
Roman Gushchin
3539b96e04 bpf: group memory related fields in struct bpf_map_memory
Group "user" and "pages" fields of bpf_map into the bpf_map_memory
structure. Later it can be extended with "memcg" and other related
information.

The main reason for a such change (beside cosmetics) is to pass
bpf_map_memory structure to charging functions before the actual
allocation of bpf_map.

Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-05-31 16:52:56 -07:00
Daniel Borkmann
2824ecb701 bpf: allow for key-less BTF in array map
Given we'll be reusing BPF array maps for global data/bss/rodata
sections, we need a way to associate BTF DataSec type as its map
value type. In usual cases we have this ugly BPF_ANNOTATE_KV_PAIR()
macro hack e.g. via 38d5d3b3d5 ("bpf: Introduce BPF_ANNOTATE_KV_PAIR")
to get initial map to type association going. While more use cases
for it are discouraged, this also won't work for global data since
the use of array map is a BPF loader detail and therefore unknown
at compilation time. For array maps with just a single entry we make
an exception in terms of BTF in that key type is declared optional
if value type is of DataSec type. The latter LLVM is guaranteed to
emit and it also aligns with how we regard global data maps as just
a plain buffer area reusing existing map facilities for allowing
things like introspection with existing tools.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-04-09 17:05:46 -07:00
Daniel Borkmann
591fe9888d bpf: add program side {rd, wr}only support for maps
This work adds two new map creation flags BPF_F_RDONLY_PROG
and BPF_F_WRONLY_PROG in order to allow for read-only or
write-only BPF maps from a BPF program side.

Today we have BPF_F_RDONLY and BPF_F_WRONLY, but this only
applies to system call side, meaning the BPF program has full
read/write access to the map as usual while bpf(2) calls with
map fd can either only read or write into the map depending
on the flags. BPF_F_RDONLY_PROG and BPF_F_WRONLY_PROG allows
for the exact opposite such that verifier is going to reject
program loads if write into a read-only map or a read into a
write-only map is detected. For read-only map case also some
helpers are forbidden for programs that would alter the map
state such as map deletion, update, etc. As opposed to the two
BPF_F_RDONLY / BPF_F_WRONLY flags, BPF_F_RDONLY_PROG as well
as BPF_F_WRONLY_PROG really do correspond to the map lifetime.

We've enabled this generic map extension to various non-special
maps holding normal user data: array, hash, lru, lpm, local
storage, queue and stack. Further generic map types could be
followed up in future depending on use-case. Main use case
here is to forbid writes into .rodata map values from verifier
side.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-04-09 17:05:46 -07:00
Daniel Borkmann
d8eca5bbb2 bpf: implement lookup-free direct value access for maps
This generic extension to BPF maps allows for directly loading
an address residing inside a BPF map value as a single BPF
ldimm64 instruction!

The idea is similar to what BPF_PSEUDO_MAP_FD does today, which
is a special src_reg flag for ldimm64 instruction that indicates
that inside the first part of the double insns's imm field is a
file descriptor which the verifier then replaces as a full 64bit
address of the map into both imm parts. For the newly added
BPF_PSEUDO_MAP_VALUE src_reg flag, the idea is the following:
the first part of the double insns's imm field is again a file
descriptor corresponding to the map, and the second part of the
imm field is an offset into the value. The verifier will then
replace both imm parts with an address that points into the BPF
map value at the given value offset for maps that support this
operation. Currently supported is array map with single entry.
It is possible to support more than just single map element by
reusing both 16bit off fields of the insns as a map index, so
full array map lookup could be expressed that way. It hasn't
been implemented here due to lack of concrete use case, but
could easily be done so in future in a compatible way, since
both off fields right now have to be 0 and would correctly
denote a map index 0.

The BPF_PSEUDO_MAP_VALUE is a distinct flag as otherwise with
BPF_PSEUDO_MAP_FD we could not differ offset 0 between load of
map pointer versus load of map's value at offset 0, and changing
BPF_PSEUDO_MAP_FD's encoding into off by one to differ between
regular map pointer and map value pointer would add unnecessary
complexity and increases barrier for debugability thus less
suitable. Using the second part of the imm field as an offset
into the value does /not/ come with limitations since maximum
possible value size is in u32 universe anyway.

This optimization allows for efficiently retrieving an address
to a map value memory area without having to issue a helper call
which needs to prepare registers according to calling convention,
etc, without needing the extra NULL test, and without having to
add the offset in an additional instruction to the value base
pointer. The verifier then treats the destination register as
PTR_TO_MAP_VALUE with constant reg->off from the user passed
offset from the second imm field, and guarantees that this is
within bounds of the map value. Any subsequent operations are
normally treated as typical map value handling without anything
extra needed from verification side.

The two map operations for direct value access have been added to
array map for now. In future other types could be supported as
well depending on the use case. The main use case for this commit
is to allow for BPF loader support for global variables that
reside in .data/.rodata/.bss sections such that we can directly
load the address of them with minimal additional infrastructure
required. Loader support has been added in subsequent commits for
libbpf library.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-04-09 17:05:46 -07:00
Alexei Starovoitov
96049f3afd bpf: introduce BPF_F_LOCK flag
Introduce BPF_F_LOCK flag for map_lookup and map_update syscall commands
and for map_update() helper function.
In all these cases take a lock of existing element (which was provided
in BTF description) before copying (in or out) the rest of map value.

Implementation details that are part of uapi:

Array:
The array map takes the element lock for lookup/update.

Hash:
hash map also takes the lock for lookup/update and tries to avoid the bucket lock.
If old element exists it takes the element lock and updates the element in place.
If element doesn't exist it allocates new one and inserts into hash table
while holding the bucket lock.
In rare case the hashmap has to take both the bucket lock and the element lock
to update old value in place.

Cgroup local storage:
It is similar to array. update in place and lookup are done with lock taken.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-02-01 20:55:39 +01:00
Alexei Starovoitov
d83525ca62 bpf: introduce bpf_spin_lock
Introduce 'struct bpf_spin_lock' and bpf_spin_lock/unlock() helpers to let
bpf program serialize access to other variables.

Example:
struct hash_elem {
    int cnt;
    struct bpf_spin_lock lock;
};
struct hash_elem * val = bpf_map_lookup_elem(&hash_map, &key);
if (val) {
    bpf_spin_lock(&val->lock);
    val->cnt++;
    bpf_spin_unlock(&val->lock);
}

Restrictions and safety checks:
- bpf_spin_lock is only allowed inside HASH and ARRAY maps.
- BTF description of the map is mandatory for safety analysis.
- bpf program can take one bpf_spin_lock at a time, since two or more can
  cause dead locks.
- only one 'struct bpf_spin_lock' is allowed per map element.
  It drastically simplifies implementation yet allows bpf program to use
  any number of bpf_spin_locks.
- when bpf_spin_lock is taken the calls (either bpf2bpf or helpers) are not allowed.
- bpf program must bpf_spin_unlock() before return.
- bpf program can access 'struct bpf_spin_lock' only via
  bpf_spin_lock()/bpf_spin_unlock() helpers.
- load/store into 'struct bpf_spin_lock lock;' field is not allowed.
- to use bpf_spin_lock() helper the BTF description of map value must be
  a struct and have 'struct bpf_spin_lock anyname;' field at the top level.
  Nested lock inside another struct is not allowed.
- syscall map_lookup doesn't copy bpf_spin_lock field to user space.
- syscall map_update and program map_update do not update bpf_spin_lock field.
- bpf_spin_lock cannot be on the stack or inside networking packet.
  bpf_spin_lock can only be inside HASH or ARRAY map value.
- bpf_spin_lock is available to root only and to all program types.
- bpf_spin_lock is not allowed in inner maps of map-in-map.
- ld_abs is not allowed inside spin_lock-ed region.
- tracing progs and socket filter progs cannot use bpf_spin_lock due to
  insufficient preemption checks

Implementation details:
- cgroup-bpf class of programs can nest with xdp/tc programs.
  Hence bpf_spin_lock is equivalent to spin_lock_irqsave.
  Other solutions to avoid nested bpf_spin_lock are possible.
  Like making sure that all networking progs run with softirq disabled.
  spin_lock_irqsave is the simplest and doesn't add overhead to the
  programs that don't use it.
- arch_spinlock_t is used when its implemented as queued_spin_lock
- archs can force their own arch_spinlock_t
- on architectures where queued_spin_lock is not available and
  sizeof(arch_spinlock_t) != sizeof(__u32) trivial lock is used.
- presence of bpf_spin_lock inside map value could have been indicated via
  extra flag during map_create, but specifying it via BTF is cleaner.
  It provides introspection for map key/value and reduces user mistakes.

Next steps:
- allow bpf_spin_lock in other map types (like cgroup local storage)
- introduce BPF_F_LOCK flag for bpf_map_update() syscall and helper
  to request kernel to grab bpf_spin_lock before rewriting the value.
  That will serialize access to map elements.

Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-02-01 20:55:38 +01:00
Roman Gushchin
1b2b234b13 bpf: pass struct btf pointer to the map_check_btf() callback
If key_type or value_type are of non-trivial data types
(e.g. structure or typedef), it's not possible to check them without
the additional information, which can't be obtained without a pointer
to the btf structure.

So, let's pass btf pointer to the map_check_btf() callbacks.

Signed-off-by: Roman Gushchin <guro@fb.com>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2018-12-12 15:33:33 -08:00
Prashant Bhole
3b4a63f674 bpf: return EOPNOTSUPP when map lookup isn't supported
Return ERR_PTR(-EOPNOTSUPP) from map_lookup_elem() methods of below
map types:
- BPF_MAP_TYPE_PROG_ARRAY
- BPF_MAP_TYPE_STACK_TRACE
- BPF_MAP_TYPE_XSKMAP
- BPF_MAP_TYPE_SOCKMAP/BPF_MAP_TYPE_SOCKHASH

Signed-off-by: Prashant Bhole <bhole_prashant_q7@lab.ntt.co.jp>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2018-10-09 21:52:20 -07:00
Yonghong Song
a7c19db38d bpf: add bpffs pretty print for program array map
Added bpffs pretty print for program array map. For a particular
array index, if the program array points to a valid program,
the "<index>: <prog_id>" will be printed out like
   0: 6
which means bpf program with id "6" is installed at index "0".

Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2018-09-11 14:17:24 -07:00
Yonghong Song
c7b27c37af bpf: add bpffs pretty print for percpu arraymap/hash/lru_hash
Added bpffs pretty print for percpu arraymap, percpu hashmap
and percpu lru hashmap.

For each map <key, value> pair, the format is:
   <key_value>: {
	cpu0: <value_on_cpu0>
	cpu1: <value_on_cpu1>
	...
	cpun: <value_on_cpun>
   }

For example, on my VM, there are 4 cpus, and
for test_btf test in the next patch:
   cat /sys/fs/bpf/pprint_test_percpu_hash

You may get:
   ...
   43602: {
	cpu0: {43602,0,-43602,0x3,0xaa52,0x3,{43602|[82,170,0,0,0,0,0,0]},ENUM_TWO}
	cpu1: {43602,0,-43602,0x3,0xaa52,0x3,{43602|[82,170,0,0,0,0,0,0]},ENUM_TWO}
	cpu2: {43602,0,-43602,0x3,0xaa52,0x3,{43602|[82,170,0,0,0,0,0,0]},ENUM_TWO}
	cpu3: {43602,0,-43602,0x3,0xaa52,0x3,{43602|[82,170,0,0,0,0,0,0]},ENUM_TWO}
   }
   72847: {
	cpu0: {72847,0,-72847,0x3,0x11c8f,0x3,{72847|[143,28,1,0,0,0,0,0]},ENUM_THREE}
	cpu1: {72847,0,-72847,0x3,0x11c8f,0x3,{72847|[143,28,1,0,0,0,0,0]},ENUM_THREE}
	cpu2: {72847,0,-72847,0x3,0x11c8f,0x3,{72847|[143,28,1,0,0,0,0,0]},ENUM_THREE}
	cpu3: {72847,0,-72847,0x3,0x11c8f,0x3,{72847|[143,28,1,0,0,0,0,0]},ENUM_THREE}
   }
   ...

Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-08-30 14:03:53 +02:00
Daniel Borkmann
e8d2bec045 bpf: decouple btf from seq bpf fs dump and enable more maps
Commit a26ca7c982 ("bpf: btf: Add pretty print support to
the basic arraymap") and 699c86d6ec ("bpf: btf: add pretty
print for hash/lru_hash maps") enabled support for BTF and
dumping via BPF fs for array and hash/lru map. However, both
can be decoupled from each other such that regular BPF maps
can be supported for attaching BTF key/value information,
while not all maps necessarily need to dump via map_seq_show_elem()
callback.

The basic sanity check which is a prerequisite for all maps
is that key/value size has to match in any case, and some maps
can have extra checks via map_check_btf() callback, e.g.
probing certain types or indicating no support in general. With
that we can also enable retrieving BTF info for per-cpu map
types and lpm.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
2018-08-13 00:52:45 +02:00
Martin KaFai Lau
5dc4c4b7d4 bpf: Introduce BPF_MAP_TYPE_REUSEPORT_SOCKARRAY
This patch introduces a new map type BPF_MAP_TYPE_REUSEPORT_SOCKARRAY.

To unleash the full potential of a bpf prog, it is essential for the
userspace to be capable of directly setting up a bpf map which can then
be consumed by the bpf prog to make decision.  In this case, decide which
SO_REUSEPORT sk to serve the incoming request.

By adding BPF_MAP_TYPE_REUSEPORT_SOCKARRAY, the userspace has total control
and visibility on where a SO_REUSEPORT sk should be located in a bpf map.
The later patch will introduce BPF_PROG_TYPE_SK_REUSEPORT such that
the bpf prog can directly select a sk from the bpf map.  That will
raise the programmability of the bpf prog attached to a reuseport
group (a group of sk serving the same IP:PORT).

For example, in UDP, the bpf prog can peek into the payload (e.g.
through the "data" pointer introduced in the later patch) to learn
the application level's connection information and then decide which sk
to pick from a bpf map.  The userspace can tightly couple the sk's location
in a bpf map with the application logic in generating the UDP payload's
connection information.  This connection info contact/API stays within the
userspace.

Also, when used with map-in-map, the userspace can switch the
old-server-process's inner map to a new-server-process's inner map
in one call "bpf_map_update_elem(outer_map, &index, &new_reuseport_array)".
The bpf prog will then direct incoming requests to the new process instead
of the old process.  The old process can finish draining the pending
requests (e.g. by "accept()") before closing the old-fds.  [Note that
deleting a fd from a bpf map does not necessary mean the fd is closed]

During map_update_elem(),
Only SO_REUSEPORT sk (i.e. which has already been added
to a reuse->socks[]) can be used.  That means a SO_REUSEPORT sk that is
"bind()" for UDP or "bind()+listen()" for TCP.  These conditions are
ensured in "reuseport_array_update_check()".

A SO_REUSEPORT sk can only be added once to a map (i.e. the
same sk cannot be added twice even to the same map).  SO_REUSEPORT
already allows another sk to be created for the same IP:PORT.
There is no need to re-create a similar usage in the BPF side.

When a SO_REUSEPORT is deleted from the "reuse->socks[]" (e.g. "close()"),
it will notify the bpf map to remove it from the map also.  It is
done through "bpf_sk_reuseport_detach()" and it will only be called
if >=1 of the "reuse->sock[]" has ever been added to a bpf map.

The map_update()/map_delete() has to be in-sync with the
"reuse->socks[]".  Hence, the same "reuseport_lock" used
by "reuse->socks[]" has to be used here also. Care has
been taken to ensure the lock is only acquired when the
adding sk passes some strict tests. and
freeing the map does not require the reuseport_lock.

The reuseport_array will also support lookup from the syscall
side.  It will return a sock_gen_cookie().  The sock_gen_cookie()
is on-demand (i.e. a sk's cookie is not generated until the very
first map_lookup_elem()).

The lookup cookie is 64bits but it goes against the logical userspace
expectation on 32bits sizeof(fd) (and as other fd based bpf maps do also).
It may catch user in surprise if we enforce value_size=8 while
userspace still pass a 32bits fd during update.  Supporting different
value_size between lookup and update seems unintuitive also.

We also need to consider what if other existing fd based maps want
to return 64bits value from syscall's lookup in the future.
Hence, reuseport_array supports both value_size 4 and 8, and
assuming user will usually use value_size=4.  The syscall's lookup
will return ENOSPC on value_size=4.  It will will only
return 64bits value from sock_gen_cookie() when user consciously
choose value_size=8 (as a signal that lookup is desired) which then
requires a 64bits value in both lookup and update.

Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-08-11 01:58:46 +02:00
Martin KaFai Lau
5f300e8004 bpf: btf: Use exact btf value_size match in map_check_btf()
The current map_check_btf() in BPF_MAP_TYPE_ARRAY rejects
'> map->value_size' to ensure map_seq_show_elem() will not
access things beyond an array element.

Yonghong suggested that using '!=' is a more correct
check.  The 8 bytes round_up on value_size is stored
in array->elem_size.  Hence, using '!=' on map->value_size
is a proper check.

This patch also adds new tests to check the btf array
key type and value type.  Two of these new tests verify
the btf's value_size (the change in this patch).

It also fixes two existing tests that wrongly encoded
a btf's type size (pprint_test) and the value_type_id (in one
of the raw_tests[]).  However, that do not affect these two
BTF verification tests before or after this test changes.
These two tests mainly failed at array creation time after
this patch.

Fixes: a26ca7c982 ("bpf: btf: Add pretty print support to the basic arraymap")
Suggested-by: Yonghong Song <yhs@fb.com>
Acked-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-07-27 03:45:49 +02:00
Martin KaFai Lau
9b2cf328b2 bpf: btf: Rename btf_key_id and btf_value_id in bpf_map_info
In "struct bpf_map_info", the name "btf_id", "btf_key_id" and "btf_value_id"
could cause confusion because the "id" of "btf_id" means the BPF obj id
given to the BTF object while
"btf_key_id" and "btf_value_id" means the BTF type id within
that BTF object.

To make it clear, btf_key_id and btf_value_id are
renamed to btf_key_type_id and btf_value_type_id.

Suggested-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-05-23 12:03:32 +02:00
David S. Miller
a9537c937c Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
Merging net into net-next to help the bpf folks avoid
some really ugly merge conflicts.

Signed-off-by: David S. Miller <davem@davemloft.net>
2018-04-25 23:04:22 -04:00
John Fastabend
ba6b8de423 bpf: sockmap, map_release does not hold refcnt for pinned maps
Relying on map_release hook to decrement the reference counts when a
map is removed only works if the map is not being pinned. In the
pinned case the ref is decremented immediately and the BPF programs
released. After this BPF programs may not be in-use which is not
what the user would expect.

This patch moves the release logic into bpf_map_put_uref() and brings
sockmap in-line with how a similar case is handled in prog array maps.

Fixes: 3d9e952697 ("bpf: sockmap, fix leaking maps with attached but not detached progs")
Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-04-24 00:49:45 +02:00
Martin KaFai Lau
a26ca7c982 bpf: btf: Add pretty print support to the basic arraymap
This patch adds pretty print support to the basic arraymap.
Support for other bpf maps can be added later.

This patch adds new attrs to the BPF_MAP_CREATE command to allow
specifying the btf_fd, btf_key_id and btf_value_id.  The
BPF_MAP_CREATE can then associate the btf to the map if
the creating map supports BTF.

A BTF supported map needs to implement two new map ops,
map_seq_show_elem() and map_check_btf().  This patch has
implemented these new map ops for the basic arraymap.

It also adds file_operations, bpffs_map_fops, to the pinned
map such that the pinned map can be opened and read.
After that, the user has an intuitive way to do
"cat bpffs/pathto/a-pinned-map" instead of getting
an error.

bpffs_map_fops should not be extended further to support
other operations.  Other operations (e.g. write/key-lookup...)
should be realized by the userspace tools (e.g. bpftool) through
the BPF_OBJ_GET_INFO_BY_FD, map's lookup/update interface...etc.
Follow up patches will allow the userspace to obtain
the BTF from a map-fd.

Here is a sample output when reading a pinned arraymap
with the following map's value:

struct map_value {
	int count_a;
	int count_b;
};

cat /sys/fs/bpf/pinned_array_map:

0: {1,2}
1: {3,4}
2: {5,6}
...

Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Alexei Starovoitov <ast@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-04-19 21:46:25 +02:00
Eric Dumazet
32fff239de bpf: add schedule points in percpu arrays management
syszbot managed to trigger RCU detected stalls in
bpf_array_free_percpu()

It takes time to allocate a huge percpu map, but even more time to free
it.

Since we run in process context, use cond_resched() to yield cpu if
needed.

Fixes: a10423b87a ("bpf: introduce BPF_MAP_TYPE_PERCPU_ARRAY map")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reported-by: syzbot <syzkaller@googlegroups.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-02-22 21:27:06 +01:00
Daniel Borkmann
9c2d63b843 bpf: fix mlock precharge on arraymaps
syzkaller recently triggered OOM during percpu map allocation;
while there is work in progress by Dennis Zhou to add __GFP_NORETRY
semantics for percpu allocator under pressure, there seems also a
missing bpf_map_precharge_memlock() check in array map allocation.

Given today the actual bpf_map_charge_memlock() happens after the
find_and_alloc_map() in syscall path, the bpf_map_precharge_memlock()
is there to bail out early before we go and do the map setup work
when we find that we hit the limits anyway. Therefore add this for
array map as well.

Fixes: 6c90598174 ("bpf: pre-allocate hash map elements")
Fixes: a10423b87a ("bpf: introduce BPF_MAP_TYPE_PERCPU_ARRAY map")
Reported-by: syzbot+adb03f3f0bb57ce3acda@syzkaller.appspotmail.com
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Cc: Dennis Zhou <dennisszhou@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2018-02-15 21:34:33 -08:00
Jakub Kicinski
32852649ba bpf: arraymap: use bpf_map_init_from_attr()
Arraymap was not converted to use bpf_map_init_from_attr()
to avoid merge conflicts with emergency fixes.  Do it now.

Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-01-18 22:54:25 +01:00
Jakub Kicinski
ad46061fca bpf: arraymap: move checks out of alloc function
Use the new callback to perform allocation checks for array maps.
The fd maps don't need a special allocation callback, they only
need a special check callback.

Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reviewed-by: Quentin Monnet <quentin.monnet@netronome.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-01-18 22:54:25 +01:00
Daniel Borkmann
bbeb6e4323 bpf, array: fix overflow in max_entries and undefined behavior in index_mask
syzkaller tried to alloc a map with 0xfffffffd entries out of a userns,
and thus unprivileged. With the recently added logic in b2157399cc
("bpf: prevent out-of-bounds speculation") we round this up to the next
power of two value for max_entries for unprivileged such that we can
apply proper masking into potentially zeroed out map slots.

However, this will generate an index_mask of 0xffffffff, and therefore
a + 1 will let this overflow into new max_entries of 0. This will pass
allocation, etc, and later on map access we still enforce on the original
attr->max_entries value which was 0xfffffffd, therefore triggering GPF
all over the place. Thus bail out on overflow in such case.

Moreover, on 32 bit archs roundup_pow_of_two() can also not be used,
since fls_long(max_entries - 1) can result in 32 and 1UL << 32 in 32 bit
space is undefined. Therefore, do this by hand in a 64 bit variable.

This fixes all the issues triggered by syzkaller's reproducers.

Fixes: b2157399cc ("bpf: prevent out-of-bounds speculation")
Reported-by: syzbot+b0efb8e572d01bce1ae0@syzkaller.appspotmail.com
Reported-by: syzbot+6c15e9744f75f2364773@syzkaller.appspotmail.com
Reported-by: syzbot+d2f5524fb46fd3b312ee@syzkaller.appspotmail.com
Reported-by: syzbot+61d23c95395cc90dbc2b@syzkaller.appspotmail.com
Reported-by: syzbot+0d363c942452cca68c01@syzkaller.appspotmail.com
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2018-01-10 14:46:39 -08:00
Alexei Starovoitov
b2157399cc bpf: prevent out-of-bounds speculation
Under speculation, CPUs may mis-predict branches in bounds checks. Thus,
memory accesses under a bounds check may be speculated even if the
bounds check fails, providing a primitive for building a side channel.

To avoid leaking kernel data round up array-based maps and mask the index
after bounds check, so speculated load with out of bounds index will load
either valid value from the array or zero from the padded area.

Unconditionally mask index for all array types even when max_entries
are not rounded to power of 2 for root user.
When map is created by unpriv user generate a sequence of bpf insns
that includes AND operation to make sure that JITed code includes
the same 'index & index_mask' operation.

If prog_array map is created by unpriv user replace
  bpf_tail_call(ctx, map, index);
with
  if (index >= max_entries) {
    index &= map->index_mask;
    bpf_tail_call(ctx, map, index);
  }
(along with roundup to power 2) to prevent out-of-bounds speculation.
There is secondary redundant 'if (index >= max_entries)' in the interpreter
and in all JITs, but they can be optimized later if necessary.

Other array-like maps (cpumap, devmap, sockmap, perf_event_array, cgroup_array)
cannot be used by unpriv, so no changes there.

That fixes bpf side of "Variant 1: bounds check bypass (CVE-2017-5753)" on
all architectures with and without JIT.

v2->v3:
Daniel noticed that attack potentially can be crafted via syscall commands
without loading the program, so add masking to those paths as well.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-01-09 00:53:49 +01:00
David S. Miller
f8ddadc4db Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
There were quite a few overlapping sets of changes here.

Daniel's bug fix for off-by-ones in the new BPF branch instructions,
along with the added allowances for "data_end > ptr + x" forms
collided with the metadata additions.

Along with those three changes came veritifer test cases, which in
their final form I tried to group together properly.  If I had just
trimmed GIT's conflict tags as-is, this would have split up the
meta tests unnecessarily.

In the socketmap code, a set of preemption disabling changes
overlapped with the rename of bpf_compute_data_end() to
bpf_compute_data_pointers().

Changes were made to the mv88e6060.c driver set addr method
which got removed in net-next.

The hyperv transport socket layer had a locking change in 'net'
which overlapped with a change of socket state macro usage
in 'net-next'.

Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-22 13:39:14 +01:00