2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-23 04:54:01 +08:00
Commit Graph

132 Commits

Author SHA1 Message Date
KAMEZAWA Hiroyuki
52d4b9ac0b memcg: allocate all page_cgroup at boot
Allocate all page_cgroup at boot and remove page_cgroup poitner from
struct page.  This patch adds an interface as

 struct page_cgroup *lookup_page_cgroup(struct page*)

All FLATMEM/DISCONTIGMEM/SPARSEMEM  and MEMORY_HOTPLUG is supported.

Remove page_cgroup pointer reduces the amount of memory by
 - 4 bytes per PAGE_SIZE.
 - 8 bytes per PAGE_SIZE
if memory controller is disabled. (even if configured.)

On usual 8GB x86-32 server, this saves 8MB of NORMAL_ZONE memory.
On my x86-64 server with 48GB of memory, this saves 96MB of memory.
I think this reduction makes sense.

By pre-allocation, kmalloc/kfree in charge/uncharge are removed.
This means
  - we're not necessary to be afraid of kmalloc faiulre.
    (this can happen because of gfp_mask type.)
  - we can avoid calling kmalloc/kfree.
  - we can avoid allocating tons of small objects which can be fragmented.
  - we can know what amount of memory will be used for this extra-lru handling.

I added printk message as

	"allocated %ld bytes of page_cgroup"
        "please try cgroup_disable=memory option if you don't want"

maybe enough informative for users.

Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-20 08:52:39 -07:00
Nick Piggin
5344b7e648 vmstat: mlocked pages statistics
Add NR_MLOCK zone page state, which provides a (conservative) count of
mlocked pages (actually, the number of mlocked pages moved off the LRU).

Reworked by lts to fit in with the modified mlock page support in the
Reclaim Scalability series.

[kosaki.motohiro@jp.fujitsu.com: fix incorrect Mlocked field of /proc/meminfo]
[lee.schermerhorn@hp.com: mlocked-pages: add event counting with statistics]
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-20 08:52:31 -07:00
Lee Schermerhorn
894bc31041 Unevictable LRU Infrastructure
When the system contains lots of mlocked or otherwise unevictable pages,
the pageout code (kswapd) can spend lots of time scanning over these
pages.  Worse still, the presence of lots of unevictable pages can confuse
kswapd into thinking that more aggressive pageout modes are required,
resulting in all kinds of bad behaviour.

Infrastructure to manage pages excluded from reclaim--i.e., hidden from
vmscan.  Based on a patch by Larry Woodman of Red Hat.  Reworked to
maintain "unevictable" pages on a separate per-zone LRU list, to "hide"
them from vmscan.

Kosaki Motohiro added the support for the memory controller unevictable
lru list.

Pages on the unevictable list have both PG_unevictable and PG_lru set.
Thus, PG_unevictable is analogous to and mutually exclusive with
PG_active--it specifies which LRU list the page is on.

The unevictable infrastructure is enabled by a new mm Kconfig option
[CONFIG_]UNEVICTABLE_LRU.

A new function 'page_evictable(page, vma)' in vmscan.c tests whether or
not a page may be evictable.  Subsequent patches will add the various
!evictable tests.  We'll want to keep these tests light-weight for use in
shrink_active_list() and, possibly, the fault path.

To avoid races between tasks putting pages [back] onto an LRU list and
tasks that might be moving the page from non-evictable to evictable state,
the new function 'putback_lru_page()' -- inverse to 'isolate_lru_page()'
-- tests the "evictability" of a page after placing it on the LRU, before
dropping the reference.  If the page has become unevictable,
putback_lru_page() will redo the 'putback', thus moving the page to the
unevictable list.  This way, we avoid "stranding" evictable pages on the
unevictable list.

[akpm@linux-foundation.org: fix fallout from out-of-order merge]
[riel@redhat.com: fix UNEVICTABLE_LRU and !PROC_PAGE_MONITOR build]
[nishimura@mxp.nes.nec.co.jp: remove redundant mapping check]
[kosaki.motohiro@jp.fujitsu.com: unevictable-lru-infrastructure: putback_lru_page()/unevictable page handling rework]
[kosaki.motohiro@jp.fujitsu.com: kill unnecessary lock_page() in vmscan.c]
[kosaki.motohiro@jp.fujitsu.com: revert migration change of unevictable lru infrastructure]
[kosaki.motohiro@jp.fujitsu.com: revert to unevictable-lru-infrastructure-kconfig-fix.patch]
[kosaki.motohiro@jp.fujitsu.com: restore patch failure of vmstat-unevictable-and-mlocked-pages-vm-events.patch]
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Debugged-by: Benjamin Kidwell <benjkidwell@yahoo.com>
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-20 08:50:26 -07:00
Rik van Riel
556adecba1 vmscan: second chance replacement for anonymous pages
We avoid evicting and scanning anonymous pages for the most part, but
under some workloads we can end up with most of memory filled with
anonymous pages.  At that point, we suddenly need to clear the referenced
bits on all of memory, which can take ages on very large memory systems.

We can reduce the maximum number of pages that need to be scanned by not
taking the referenced state into account when deactivating an anonymous
page.  After all, every anonymous page starts out referenced, so why
check?

If an anonymous page gets referenced again before it reaches the end of
the inactive list, we move it back to the active list.

To keep the maximum amount of necessary work reasonable, we scale the
active to inactive ratio with the size of memory, using the formula
active:inactive ratio = sqrt(memory in GB * 10).

Kswapd CPU use now seems to scale by the amount of pageout bandwidth,
instead of by the amount of memory present in the system.

[kamezawa.hiroyu@jp.fujitsu.com: fix OOM with memcg]
[kamezawa.hiroyu@jp.fujitsu.com: memcg: lru scan fix]
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-20 08:50:25 -07:00
Rik van Riel
4f98a2fee8 vmscan: split LRU lists into anon & file sets
Split the LRU lists in two, one set for pages that are backed by real file
systems ("file") and one for pages that are backed by memory and swap
("anon").  The latter includes tmpfs.

The advantage of doing this is that the VM will not have to scan over lots
of anonymous pages (which we generally do not want to swap out), just to
find the page cache pages that it should evict.

This patch has the infrastructure and a basic policy to balance how much
we scan the anon lists and how much we scan the file lists.  The big
policy changes are in separate patches.

[lee.schermerhorn@hp.com: collect lru meminfo statistics from correct offset]
[kosaki.motohiro@jp.fujitsu.com: prevent incorrect oom under split_lru]
[kosaki.motohiro@jp.fujitsu.com: fix pagevec_move_tail() doesn't treat unevictable page]
[hugh@veritas.com: memcg swapbacked pages active]
[hugh@veritas.com: splitlru: BDI_CAP_SWAP_BACKED]
[akpm@linux-foundation.org: fix /proc/vmstat units]
[nishimura@mxp.nes.nec.co.jp: memcg: fix handling of shmem migration]
[kosaki.motohiro@jp.fujitsu.com: adjust Quicklists field of /proc/meminfo]
[kosaki.motohiro@jp.fujitsu.com: fix style issue of get_scan_ratio()]
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-20 08:50:25 -07:00
Christoph Lameter
b69408e88b vmscan: Use an indexed array for LRU variables
Currently we are defining explicit variables for the inactive and active
list.  An indexed array can be more generic and avoid repeating similar
code in several places in the reclaim code.

We are saving a few bytes in terms of code size:

Before:

   text    data     bss     dec     hex filename
4097753  573120 4092484 8763357  85b7dd vmlinux

After:

   text    data     bss     dec     hex filename
4097729  573120 4092484 8763333  85b7c5 vmlinux

Having an easy way to add new lru lists may ease future work on the
reclaim code.

Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Signed-off-by: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-20 08:50:25 -07:00
Mel Gorman
5bead2a068 mm: mark the correct zone as full when scanning zonelists
The iterator for_each_zone_zonelist() uses a struct zoneref *z cursor when
scanning zonelists to keep track of where in the zonelist it is.  The
zoneref that is returned corresponds to the the next zone that is to be
scanned, not the current one.  It was intended to be treated as an opaque
list.

When the page allocator is scanning a zonelist, it marks elements in the
zonelist corresponding to zones that are temporarily full.  As the
zonelist is being updated, it uses the cursor here;

  if (NUMA_BUILD)
        zlc_mark_zone_full(zonelist, z);

This is intended to prevent rescanning in the near future but the zoneref
cursor does not correspond to the zone that has been found to be full.
This is an easy misunderstanding to make so this patch corrects the
problem by changing zoneref cursor to be the current zone being scanned
instead of the next one.

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: <stable@kernel.org>		[2.6.26.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-09-13 14:41:52 -07:00
Fernando Luis Vazquez Cao
12d15f0d51 for_each_online_pgdat(): kerneldoc fix
for_each_pgdat() was renamed to for_each_online_pgdat() and kerneldoc
comments should be updated accordingly.

Signed-off-by: Fernando Luis Vazquez Cao <fernando@oss.ntt.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-05-24 09:56:13 -07:00
Robert P. J. Day
735643ee6c Remove "#ifdef __KERNEL__" checks from unexported headers
Remove the "#ifdef __KERNEL__" tests from unexported header files in
linux/include whose entire contents are wrapped in that preprocessor
test.

Signed-off-by: Robert P. J. Day <rpjday@crashcourse.ca>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Sam Ravnborg <sam@ravnborg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-30 08:29:54 -07:00
Miklos Szeredi
fc3ba692a4 mm: Add NR_WRITEBACK_TEMP counter
Fuse will use temporary buffers to write back dirty data from memory mappings
(normal writes are done synchronously).  This is needed, because there cannot
be any guarantee about the time in which a write will complete.

By using temporary buffers, from the MM's point if view the page is written
back immediately.  If the writeout was due to memory pressure, this
effectively migrates data from a full zone to a less full zone.

This patch adds a new counter (NR_WRITEBACK_TEMP) for the number of pages used
as temporary buffers.

[Lee.Schermerhorn@hp.com: add vmstat_text for NR_WRITEBACK_TEMP]
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Cc: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-30 08:29:50 -07:00
Yasunori Goto
0475327876 memory hotplug: register section/node id to free
This patch set is to free pages which is allocated by bootmem for
memory-hotremove.  Some structures of memory management are allocated by
bootmem.  ex) memmap, etc.

To remove memory physically, some of them must be freed according to
circumstance.  This patch set makes basis to free those pages, and free
memmaps.

Basic my idea is using remain members of struct page to remember information
of users of bootmem (section number or node id).  When the section is
removing, kernel can confirm it.  By this information, some issues can be
solved.

  1) When the memmap of removing section is allocated on other
     section by bootmem, it should/can be free.
  2) When the memmap of removing section is allocated on the
     same section, it shouldn't be freed. Because the section has to be
     logical memory offlined already and all pages must be isolated against
     page allocater. If it is freed, page allocator may use it which will
     be removed physically soon.
  3) When removing section has other section's memmap,
     kernel will be able to show easily which section should be removed
     before it for user. (Not implemented yet)
  4) When the above case 2), the page isolation will be able to check and skip
     memmap's page when logical memory offline (offline_pages()).
     Current page isolation code fails in this case because this page is
     just reserved page and it can't distinguish this pages can be
     removed or not. But, it will be able to do by this patch.
     (Not implemented yet.)
  5) The node information like pgdat has similar issues. But, this
     will be able to be solved too by this.
     (Not implemented yet, but, remembering node id in the pages.)

Fortunately, current bootmem allocator just keeps PageReserved flags,
and doesn't use any other members of page struct. The users of
bootmem doesn't use them too.

This patch:

This is to register information which is node or section's id.  Kernel can
distinguish which node/section uses the pages allcated by bootmem.  This is
basis for hot-remove sections or nodes.

Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com>
Cc: Badari Pulavarty <pbadari@us.ibm.com>
Cc: Yinghai Lu <yhlu.kernel@gmail.com>
Cc: Yasunori Goto <y-goto@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 08:58:25 -07:00
Christoph Lameter
97965478a6 mm: Get rid of __ZONE_COUNT
It was used to compensate because MAX_NR_ZONES was not available to the
#ifdefs.  Export MAX_NR_ZONES via the new mechanism and get rid of
__ZONE_COUNT.

Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 08:58:22 -07:00
Christoph Lameter
9223b4190f pageflags: get rid of FLAGS_RESERVED
NR_PAGEFLAGS specifies the number of page flags we are using.  From that we
can calculate the number of bits leftover that can be used for zone, node (and
maybe the sections id).  There is no need anymore for FLAGS_RESERVED if we use
NR_PAGEFLAGS.

Use the new methods to make NR_PAGEFLAGS available via the preprocessor.
NR_PAGEFLAGS is used to calculate field boundaries in the page flags fields.
These field widths have to be available to the preprocessor.

Signed-off-by: Christoph Lameter <clameter@sgi.com>
Cc: David Miller <davem@davemloft.net>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Jeremy Fitzhardinge <jeremy@goop.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 08:58:21 -07:00
Andrew Morton
b454456841 mm: make early_pfn_to_nid() a C function
Fix this (sparc64)

mm/sparse-vmemmap.c: In function `vmemmap_verify':
mm/sparse-vmemmap.c:64: warning: unused variable `pfn'

by switching to a C function which touches its arg.

(reason 3,555 why macros are bad)

Also, the `nid' arg was misnamed.

Reviewed-by: Christoph Lameter <clameter@sgi.com>
Acked-by: Andy Whitcroft <apw@shadowen.org>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Andi Kleen <ak@suse.de>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 08:58:20 -07:00
Mel Gorman
19770b3260 mm: filter based on a nodemask as well as a gfp_mask
The MPOL_BIND policy creates a zonelist that is used for allocations
controlled by that mempolicy.  As the per-node zonelist is already being
filtered based on a zone id, this patch adds a version of __alloc_pages() that
takes a nodemask for further filtering.  This eliminates the need for
MPOL_BIND to create a custom zonelist.

A positive benefit of this is that allocations using MPOL_BIND now use the
local node's distance-ordered zonelist instead of a custom node-id-ordered
zonelist.  I.e., pages will be allocated from the closest allowed node with
available memory.

[Lee.Schermerhorn@hp.com: Mempolicy: update stale documentation and comments]
[Lee.Schermerhorn@hp.com: Mempolicy: make dequeue_huge_page_vma() obey MPOL_BIND nodemask]
[Lee.Schermerhorn@hp.com: Mempolicy: make dequeue_huge_page_vma() obey MPOL_BIND nodemask rework]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 08:58:19 -07:00
Mel Gorman
dd1a239f6f mm: have zonelist contains structs with both a zone pointer and zone_idx
Filtering zonelists requires very frequent use of zone_idx().  This is costly
as it involves a lookup of another structure and a substraction operation.  As
the zone_idx is often required, it should be quickly accessible.  The node idx
could also be stored here if it was found that accessing zone->node is
significant which may be the case on workloads where nodemasks are heavily
used.

This patch introduces a struct zoneref to store a zone pointer and a zone
index.  The zonelist then consists of an array of these struct zonerefs which
are looked up as necessary.  Helpers are given for accessing the zone index as
well as the node index.

[kamezawa.hiroyu@jp.fujitsu.com: Suggested struct zoneref instead of embedding information in pointers]
[hugh@veritas.com: mm-have-zonelist: fix memcg ooms]
[hugh@veritas.com: just return do_try_to_free_pages]
[hugh@veritas.com: do_try_to_free_pages gfp_mask redundant]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Christoph Lameter <clameter@sgi.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Christoph Lameter <clameter@sgi.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 08:58:18 -07:00
Mel Gorman
54a6eb5c47 mm: use two zonelist that are filtered by GFP mask
Currently a node has two sets of zonelists, one for each zone type in the
system and a second set for GFP_THISNODE allocations.  Based on the zones
allowed by a gfp mask, one of these zonelists is selected.  All of these
zonelists consume memory and occupy cache lines.

This patch replaces the multiple zonelists per-node with two zonelists.  The
first contains all populated zones in the system, ordered by distance, for
fallback allocations when the target/preferred node has no free pages.  The
second contains all populated zones in the node suitable for GFP_THISNODE
allocations.

An iterator macro is introduced called for_each_zone_zonelist() that interates
through each zone allowed by the GFP flags in the selected zonelist.

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Christoph Lameter <clameter@sgi.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 08:58:18 -07:00
Harvey Harrison
ddc81ed2c5 remove sparse warning for mmzone.h
include/linux/mmzone.h:640:22: warning: potentially expensive pointer subtraction

Calculate the offset into the node_zones array rather than the index
using casts to (char *) and comparing against the index * sizeof(struct zone).

On X86_32 this saves a sar, but code size increases by one byte per
is_highmem() use due to 32-bit cmps rather than 16 bit cmps.

Before:
 207:   2b 80 8c 07 00 00       sub    0x78c(%eax),%eax
 20d:   c1 f8 0b                sar    $0xb,%eax
 210:   83 f8 02                cmp    $0x2,%eax
 213:   74 16                   je     22b <kmap_atomic_prot+0x144>
 215:   83 f8 03                cmp    $0x3,%eax
 218:   0f 85 8f 00 00 00       jne    2ad <kmap_atomic_prot+0x1c6>
 21e:   83 3d 00 00 00 00 02    cmpl   $0x2,0x0
 225:   0f 85 82 00 00 00       jne    2ad <kmap_atomic_prot+0x1c6>
 22b:   64 a1 00 00 00 00       mov    %fs:0x0,%eax

After:
 207:   2b 80 8c 07 00 00       sub    0x78c(%eax),%eax
 20d:   3d 00 10 00 00          cmp    $0x1000,%eax
 212:   74 18                   je     22c <kmap_atomic_prot+0x145>
 214:   3d 00 18 00 00          cmp    $0x1800,%eax
 219:   0f 85 8f 00 00 00       jne    2ae <kmap_atomic_prot+0x1c7>
 21f:   83 3d 00 00 00 00 02    cmpl   $0x2,0x0
 226:   0f 85 82 00 00 00       jne    2ae <kmap_atomic_prot+0x1c7>
 22c:   64 a1 00 00 00 00       mov    %fs:0x0,%eax

[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Harvey Harrison <harvey.harrison@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 08:58:17 -07:00
Johannes Weiner
218ff137bc Remove unused MAX_NODES_SHIFT
MAX_NODES_SHIFT is not referenced anywhere in the tree, so dump it.

Signed-off-by: Johannes Weiner <hannes@saeurebad.de>
Signed-off-by: Jesper Juhl <jesper.juhl@gmail.com>
2008-04-21 22:35:29 +00:00
Christoph Lameter
3dfa5721f1 Page allocator: get rid of the list of cold pages
We have repeatedly discussed if the cold pages still have a point. There is
one way to join the two lists: Use a single list and put the cold pages at the
end and the hot pages at the beginning. That way a single list can serve for
both types of allocations.

The discussion of the RFC for this and Mel's measurements indicate that
there may not be too much of a point left to having separate lists for
hot and cold pages (see http://marc.info/?t=119492914200001&r=1&w=2).

Signed-off-by: Christoph Lameter <clameter@sgi.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Martin Bligh <mbligh@mbligh.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 09:44:18 -08:00
David Rientjes
d773ed6b85 mm: test and set zone reclaim lock before starting reclaim
Introduces new zone flag interface for testing and setting flags:

	int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag)

Instead of setting and clearing ZONE_RECLAIM_LOCKED each time shrink_zone() is
called, this flag is test and set before starting zone reclaim.  Zone reclaim
starts in __alloc_pages() when a zone's watermark fails and the system is in
zone_reclaim_mode.  If it's already in reclaim, there's no need to start again
so it is simply considered full for that allocation attempt.

There is a change of behavior with regard to concurrent zone shrinking.  It is
now possible for try_to_free_pages() or kswapd to already be shrinking a
particular zone when __alloc_pages() starts zone reclaim.  In this case, it is
possible for two concurrent threads to invoke shrink_zone() for a single zone.

This change forbids a zone to be in zone reclaim twice, which was always the
behavior, but allows for concurrent try_to_free_pages() or kswapd shrinking
when starting zone reclaim.

Cc: Andrea Arcangeli <andrea@suse.de>
Cc: Christoph Lameter <clameter@sgi.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-17 08:42:46 -07:00
David Rientjes
098d7f128a oom: add per-zone locking
OOM killer synchronization should be done with zone granularity so that memory
policy and cpuset allocations may have their corresponding zones locked and
allow parallel kills for other OOM conditions that may exist elsewhere in the
system.  DMA allocations can be targeted at the zone level, which would not be
possible if locking was done in nodes or globally.

Synchronization shall be done with a variation of "trylocks." The goal is to
put the current task to sleep and restart the failed allocation attempt later
if the trylock fails.  Otherwise, the OOM killer is invoked.

Each zone in the zonelist that __alloc_pages() was called with is checked for
the newly-introduced ZONE_OOM_LOCKED flag.  If any zone has this flag present,
the "trylock" to serialize the OOM killer fails and returns zero.  Otherwise,
all the zones have ZONE_OOM_LOCKED set and the try_set_zone_oom() function
returns non-zero.

Cc: Andrea Arcangeli <andrea@suse.de>
Cc: Christoph Lameter <clameter@sgi.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-17 08:42:45 -07:00
David Rientjes
e815af95f9 oom: change all_unreclaimable zone member to flags
Convert the int all_unreclaimable member of struct zone to unsigned long
flags.  This can now be used to specify several different zone flags such as
all_unreclaimable and reclaim_in_progress, which can now be removed and
converted to a per-zone flag.

Flags are set and cleared as follows:

	zone_set_flag(struct zone *zone, zone_flags_t flag)
	zone_clear_flag(struct zone *zone, zone_flags_t flag)

Defines the first zone flags, ZONE_ALL_UNRECLAIMABLE and ZONE_RECLAIM_LOCKED,
which have the same semantics as the old zone->all_unreclaimable and
zone->reclaim_in_progress, respectively.  Also converts all current users that
set or clear either flag to use the new interface.

Helper functions are defined to test the flags:

	int zone_is_all_unreclaimable(const struct zone *zone)
	int zone_is_reclaim_locked(const struct zone *zone)

All flag operators are of the atomic variety because there are currently
readers that are implemented that do not take zone->lock.

[akpm@linux-foundation.org: add needed include]
Cc: Andrea Arcangeli <andrea@suse.de>
Acked-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-17 08:42:45 -07:00
KAMEZAWA Hiroyuki
a5d76b54a3 memory unplug: page isolation
Implement generic chunk-of-pages isolation method by using page grouping ops.

This patch add MIGRATE_ISOLATE to MIGRATE_TYPES. By this
 - MIGRATE_TYPES increases.
 - bitmap for migratetype is enlarged.

pages of MIGRATE_ISOLATE migratetype will not be allocated even if it is free.
By this, you can isolated *freed* pages from users. How-to-free pages is not
a purpose of this patch. You may use reclaim and migrate codes to free pages.

If start_isolate_page_range(start,end) is called,
 - migratetype of the range turns to be MIGRATE_ISOLATE  if
   its type is MIGRATE_MOVABLE. (*) this check can be updated if other
   memory reclaiming works make progress.
 - MIGRATE_ISOLATE is not on migratetype fallback list.
 - All free pages and will-be-freed pages are isolated.
To check all pages in the range are isolated or not,  use test_pages_isolated(),
To cancel isolation, use undo_isolate_page_range().

Changes V6 -> V7
 - removed unnecessary #ifdef

There are HOLES_IN_ZONE handling codes...I'm glad if we can remove them..

Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:43:02 -07:00
Mel Gorman
467c996c1e Print out statistics in relation to fragmentation avoidance to /proc/pagetypeinfo
This patch provides fragmentation avoidance statistics via /proc/pagetypeinfo.
 The information is collected only on request so there is no runtime overhead.
 The statistics are in three parts:

The first part prints information on the size of blocks that pages are
being grouped on and looks like

Page block order: 10
Pages per block:  1024

The second part is a more detailed version of /proc/buddyinfo and looks like

Free pages count per migrate type at order       0      1      2      3      4      5      6      7      8      9     10
Node    0, zone      DMA, type    Unmovable      0      0      0      0      0      0      0      0      0      0      0
Node    0, zone      DMA, type  Reclaimable      1      0      0      0      0      0      0      0      0      0      0
Node    0, zone      DMA, type      Movable      0      0      0      0      0      0      0      0      0      0      0
Node    0, zone      DMA, type      Reserve      0      4      4      0      0      0      0      1      0      1      0
Node    0, zone   Normal, type    Unmovable    111      8      4      4      2      3      1      0      0      0      0
Node    0, zone   Normal, type  Reclaimable    293     89      8      0      0      0      0      0      0      0      0
Node    0, zone   Normal, type      Movable      1      6     13      9      7      6      3      0      0      0      0
Node    0, zone   Normal, type      Reserve      0      0      0      0      0      0      0      0      0      0      4

The third part looks like

Number of blocks type     Unmovable  Reclaimable      Movable      Reserve
Node 0, zone      DMA            0            1            2            1
Node 0, zone   Normal            3           17           94            4

To walk the zones within a node with interrupts disabled, walk_zones_in_node()
is introduced and shared between /proc/buddyinfo, /proc/zoneinfo and
/proc/pagetypeinfo to reduce code duplication.  It seems specific to what
vmstat.c requires but could be broken out as a general utility function in
mmzone.c if there were other other potential users.

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Andy Whitcroft <apw@shadowen.org>
Acked-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:43:00 -07:00
Mel Gorman
d9c2340052 Do not depend on MAX_ORDER when grouping pages by mobility
Currently mobility grouping works at the MAX_ORDER_NR_PAGES level.  This makes
sense for the majority of users where this is also the huge page size.
However, on platforms like ia64 where the huge page size is runtime
configurable it is desirable to group at a lower order.  On x86_64 and
occasionally on x86, the hugepage size may not always be MAX_ORDER_NR_PAGES.

This patch groups pages together based on the value of HUGETLB_PAGE_ORDER.  It
uses a compile-time constant if possible and a variable where the huge page
size is runtime configurable.

It is assumed that grouping should be done at the lowest sensible order and
that the user would not want to override this.  If this is not true,
page_block order could be forced to a variable initialised via a boot-time
kernel parameter.

One potential issue with this patch is that IA64 now parses hugepagesz with
early_param() instead of __setup().  __setup() is called after the memory
allocator has been initialised and the pageblock bitmaps already setup.  In
tests on one IA64 there did not seem to be any problem with using
early_param() and in fact may be more correct as it guarantees the parameter
is handled before the parsing of hugepages=.

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Andy Whitcroft <apw@shadowen.org>
Acked-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:43:00 -07:00
Mel Gorman
64c5e135bf don't group high order atomic allocations
Grouping high-order atomic allocations together was intended to allow
bursty users of atomic allocations to work such as e1000 in situations
where their preallocated buffers were depleted.  This did not work in at
least one case with a wireless network adapter needing order-1 allocations
frequently.  To resolve that, the free pages used for min_free_kbytes were
moved to separate contiguous blocks with the patch
bias-the-location-of-pages-freed-for-min_free_kbytes-in-the-same-max_order_nr_pages-blocks.

It is felt that keeping the free pages in the same contiguous blocks should
be sufficient for bursty short-lived high-order atomic allocations to
succeed, maybe even with the e1000.  Even if there is a failure, increasing
the value of min_free_kbytes will free pages as contiguous bloks in
contrast to the standard buddy allocator which makes no attempt to keep the
minimum number of free pages contiguous.

This patch backs out grouping high order atomic allocations together to
determine if it is really needed or not.  If a new report comes in about
high-order atomic allocations failing, the feature can be reintroduced to
determine if it fixes the problem or not.  As a side-effect, this patch
reduces by 1 the number of bits required to track the mobility type of
pages within a MAX_ORDER_NR_PAGES block.

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Andy Whitcroft <apw@shadowen.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:43:00 -07:00
Mel Gorman
ac0e5b7a6b remove PAGE_GROUP_BY_MOBILITY
Grouping pages by mobility can be disabled at compile-time. This was
considered undesirable by a number of people. However, in the current stack of
patches, it is not a simple case of just dropping the configurable patch as it
would cause merge conflicts.  This patch backs out the configuration option.

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Andy Whitcroft <apw@shadowen.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:43:00 -07:00
Mel Gorman
56fd56b868 Bias the location of pages freed for min_free_kbytes in the same MAX_ORDER_NR_PAGES blocks
The standard buddy allocator always favours the smallest block of pages.
The effect of this is that the pages free to satisfy min_free_kbytes tends
to be preserved since boot time at the same location of memory ffor a very
long time and as a contiguous block.  When an administrator sets the
reserve at 16384 at boot time, it tends to be the same MAX_ORDER blocks
that remain free.  This allows the occasional high atomic allocation to
succeed up until the point the blocks are split.  In practice, it is
difficult to split these blocks but when they do split, the benefit of
having min_free_kbytes for contiguous blocks disappears.  Additionally,
increasing min_free_kbytes once the system has been running for some time
has no guarantee of creating contiguous blocks.

On the other hand, CONFIG_PAGE_GROUP_BY_MOBILITY favours splitting large
blocks when there are no free pages of the appropriate type available.  A
side-effect of this is that all blocks in memory tends to be used up and
the contiguous free blocks from boot time are not preserved like in the
vanilla allocator.  This can cause a problem if a new caller is unwilling
to reclaim or does not reclaim for long enough.

A failure scenario was found for a wireless network device allocating
order-1 atomic allocations but the allocations were not intense or frequent
enough for a whole block of pages to be preserved for MIGRATE_HIGHALLOC.
This was reproduced on a desktop by booting with mem=256mb, forcing the
driver to allocate at order-1, running a bittorrent client (downloading a
debian ISO) and building a kernel with -j2.

This patch addresses the problem on the desktop machine booted with
mem=256mb.  It works by setting aside a reserve of MAX_ORDER_NR_PAGES
blocks, the number of which depends on the value of min_free_kbytes.  These
blocks are only fallen back to when there is no other free pages.  Then the
smallest possible page is used just like the normal buddy allocator instead
of the largest possible page to preserve contiguous pages The pages in free
lists in the reserve blocks are never taken for another migrate type.  The
results is that even if min_free_kbytes is set to a low value, contiguous
blocks will be preserved in the MIGRATE_RESERVE blocks.

This works better than the vanilla allocator because if min_free_kbytes is
increased, a new reserve block will be chosen based on the location of
reclaimable pages and the block will free up as contiguous pages.  In the
vanilla allocator, no effort is made to target a block of pages to free as
contiguous pages and min_free_kbytes pages are scattered randomly.

This effect has been observed on the test machine.  min_free_kbytes was set
initially low but it was kept as a contiguous free block within
MIGRATE_RESERVE.  min_free_kbytes was then set to a higher value and over a
period of time, the free blocks were within the reserve and coalescing.
How long it takes to free up depends on how quickly LRU is rotating.
Amusingly, this means that more activity will free the blocks faster.

This mechanism potentially replaces MIGRATE_HIGHALLOC as it may be more
effective than grouping contiguous free pages together.  It all depends on
whether the number of active atomic high allocations exceeds
min_free_kbytes or not.  If the number of active allocations exceeds
min_free_kbytes, it's worth it but maybe in that situation, min_free_kbytes
should be set higher.  Once there are no more reports of allocation
failures, a patch will be submitted that backs out MIGRATE_HIGHALLOC and
see if the reports stay missing.

Credit to Mariusz Kozlowski for discovering the problem, describing the
failure scenario and testing patches and scenarios.

[akpm@linux-foundation.org: cleanups]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Andy Whitcroft <apw@shadowen.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:43:00 -07:00
Mel Gorman
5c0e306647 Fix corruption of memmap on IA64 SPARSEMEM when mem_section is not a power of 2
There are problems in the use of SPARSEMEM and pageblock flags that causes
problems on ia64.

The first part of the problem is that units are incorrect in
SECTION_BLOCKFLAGS_BITS computation.  This results in a map_section's
section_mem_map being treated as part of a bitmap which isn't good.  This
was evident with an invalid virtual address when mem_init attempted to free
bootmem pages while relinquishing control from the bootmem allocator.

The second part of the problem occurs because the pageblock flags bitmap is
be located with the mem_section.  The SECTIONS_PER_ROOT computation using
sizeof (mem_section) may not be a power of 2 depending on the size of the
bitmap.  This renders masks and other such things not power of 2 base.
This issue was seen with SPARSEMEM_EXTREME on ia64.  This patch moves the
bitmap outside of mem_section and uses a pointer instead in the
mem_section.  The bitmaps are allocated when the section is being
initialised.

Note that sparse_early_usemap_alloc() does not use alloc_remap() like
sparse_early_mem_map_alloc().  The allocation required for the bitmap on
x86, the only architecture that uses alloc_remap is typically smaller than
a cache line.  alloc_remap() pads out allocations to the cache size which
would be a needless waste.

Credit to Bob Picco for identifying the original problem and effecting a
fix for the SECTION_BLOCKFLAGS_BITS calculation.  Credit to Andy Whitcroft
for devising the best way of allocating the bitmaps only when required for
the section.

[wli@holomorphy.com: warning fix]
Signed-off-by: Bob Picco <bob.picco@hp.com>
Signed-off-by: Andy Whitcroft <apw@shadowen.org>
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Cc: "Luck, Tony" <tony.luck@intel.com>
Signed-off-by: William Irwin <bill.irwin@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:43:00 -07:00
Mel Gorman
e010487dbe Group high-order atomic allocations
In rare cases, the kernel needs to allocate a high-order block of pages
without sleeping.  For example, this is the case with e1000 cards configured
to use jumbo frames.  Migrating or reclaiming pages in this situation is not
an option.

This patch groups these allocations together as much as possible by adding a
new MIGRATE_TYPE.  The MIGRATE_HIGHATOMIC type are exactly what they sound
like.  Care is taken that pages of other migrate types do not use the same
blocks as high-order atomic allocations.

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:43:00 -07:00
Mel Gorman
e12ba74d8f Group short-lived and reclaimable kernel allocations
This patch marks a number of allocations that are either short-lived such as
network buffers or are reclaimable such as inode allocations.  When something
like updatedb is called, long-lived and unmovable kernel allocations tend to
be spread throughout the address space which increases fragmentation.

This patch groups these allocations together as much as possible by adding a
new MIGRATE_TYPE.  The MIGRATE_RECLAIMABLE type is for allocations that can be
reclaimed on demand, but not moved.  i.e.  they can be migrated by deleting
them and re-reading the information from elsewhere.

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:43:00 -07:00
Mel Gorman
b92a6edd4b Add a configure option to group pages by mobility
The grouping mechanism has some memory overhead and a more complex allocation
path.  This patch allows the strategy to be disabled for small memory systems
or if it is known the workload is suffering because of the strategy.  It also
acts to show where the page groupings strategy interacts with the standard
buddy allocator.

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Joel Schopp <jschopp@austin.ibm.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:42:59 -07:00
Mel Gorman
b2a0ac8875 Split the free lists for movable and unmovable allocations
This patch adds the core of the fragmentation reduction strategy.  It works by
grouping pages together based on their ability to migrate or be reclaimed.
Basically, it works by breaking the list in zone->free_area list into
MIGRATE_TYPES number of lists.

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:42:59 -07:00
Mel Gorman
835c134ec4 Add a bitmap that is used to track flags affecting a block of pages
Here is the latest revision of the anti-fragmentation patches.  Of particular
note in this version is special treatment of high-order atomic allocations.
Care is taken to group them together and avoid grouping pages of other types
near them.  Artifical tests imply that it works.  I'm trying to get the
hardware together that would allow setting up of a "real" test.  If anyone
already has a setup and test that can trigger the atomic-allocation problem,
I'd appreciate a test of these patches and a report.  The second major change
is that these patches will apply cleanly with patches that implement
anti-fragmentation through zones.

kernbench shows effectively no performance difference varying between -0.2%
and +2% on a variety of test machines.  Success rates for huge page allocation
are dramatically increased.  For example, on a ppc64 machine, the vanilla
kernel was only able to allocate 1% of memory as a hugepage and this was due
to a single hugepage reserved as min_free_kbytes.  With these patches applied,
17% was allocatable as superpages.  With reclaim-related fixes from Andy
Whitcroft, it was 40% and further reclaim-related improvements should increase
this further.

Changelog Since V28
o Group high-order atomic allocations together
o It is no longer required to set min_free_kbytes to 10% of memory. A value
  of 16384 in most cases will be sufficient
o Now applied with zone-based anti-fragmentation
o Fix incorrect VM_BUG_ON within buffered_rmqueue()
o Reorder the stack so later patches do not back out work from earlier patches
o Fix bug were journal pages were being treated as movable
o Bias placement of non-movable pages to lower PFNs
o More agressive clustering of reclaimable pages in reactions to workloads
  like updatedb that flood the size of inode caches

Changelog Since V27

o Renamed anti-fragmentation to Page Clustering. Anti-fragmentation was giving
  the mistaken impression that it was the 100% solution for high order
  allocations. Instead, it greatly increases the chances high-order
  allocations will succeed and lays the foundation for defragmentation and
  memory hot-remove to work properly
o Redefine page groupings based on ability to migrate or reclaim instead of
  basing on reclaimability alone
o Get rid of spurious inits
o Per-cpu lists are no longer split up per-type. Instead the per-cpu list is
  searched for a page of the appropriate type
o Added more explanation commentary
o Fix up bug in pageblock code where bitmap was used before being initalised

Changelog Since V26
o Fix double init of lists in setup_pageset

Changelog Since V25
o Fix loop order of for_each_rclmtype_order so that order of loop matches args
o gfpflags_to_rclmtype uses gfp_t instead of unsigned long
o Rename get_pageblock_type() to get_page_rclmtype()
o Fix alignment problem in move_freepages()
o Add mechanism for assigning flags to blocks of pages instead of page->flags
o On fallback, do not examine the preferred list of free pages a second time

The purpose of these patches is to reduce external fragmentation by grouping
pages of related types together.  When pages are migrated (or reclaimed under
memory pressure), large contiguous pages will be freed.

This patch works by categorising allocations by their ability to migrate;

Movable - The pages may be moved with the page migration mechanism. These are
	generally userspace pages.

Reclaimable - These are allocations for some kernel caches that are
	reclaimable or allocations that are known to be very short-lived.

Unmovable - These are pages that are allocated by the kernel that
	are not trivially reclaimed. For example, the memory allocated for a
	loaded module would be in this category. By default, allocations are
	considered to be of this type

HighAtomic - These are high-order allocations belonging to callers that
	cannot sleep or perform any IO. In practice, this is restricted to
	jumbo frame allocation for network receive. It is assumed that the
	allocations are short-lived

Instead of having one MAX_ORDER-sized array of free lists in struct free_area,
there is one for each type of reclaimability.  Once a 2^MAX_ORDER block of
pages is split for a type of allocation, it is added to the free-lists for
that type, in effect reserving it.  Hence, over time, pages of the different
types can be clustered together.

When the preferred freelists are expired, the largest possible block is taken
from an alternative list.  Buddies that are split from that large block are
placed on the preferred allocation-type freelists to mitigate fragmentation.

This implementation gives best-effort for low fragmentation in all zones.
Ideally, min_free_kbytes needs to be set to a value equal to 4 * (1 <<
(MAX_ORDER-1)) pages in most cases.  This would be 16384 on x86 and x86_64 for
example.

Our tests show that about 60-70% of physical memory can be allocated on a
desktop after a few days uptime.  In benchmarks and stress tests, we are
finding that 80% of memory is available as contiguous blocks at the end of the
test.  To compare, a standard kernel was getting < 1% of memory as large pages
on a desktop and about 8-12% of memory as large pages at the end of stress
tests.

Following this email are 12 patches that implement thie page grouping feature.
 The first patch introduces a mechanism for storing flags related to a whole
block of pages.  Then allocations are split between movable and all other
allocations.  Following that are patches to deal with per-cpu pages and make
the mechanism configurable.  The next patch moves free pages between lists
when partially allocated blocks are used for pages of another migrate type.
The second last patch groups reclaimable kernel allocations such as inode
caches together.  The final patch related to groupings keeps high-order atomic
allocations.

The last two patches are more concerned with control of fragmentation.  The
second last patch biases placement of non-movable allocations towards the
start of memory.  This is with a view of supporting memory hot-remove of DIMMs
with higher PFNs in the future.  The biasing could be enforced a lot heavier
but it would cost.  The last patch agressively clusters reclaimable pages like
inode caches together.

The fragmentation reduction strategy needs to track if pages within a block
can be moved or reclaimed so that pages are freed to the appropriate list.
This patch adds a bitmap for flags affecting a whole a MAX_ORDER block of
pages.

In non-SPARSEMEM configurations, the bitmap is stored in the struct zone and
allocated during initialisation.  SPARSEMEM statically allocates the bitmap in
a struct mem_section so that bitmaps do not have to be resized during memory
hotadd.  This wastes a small amount of memory per unused section (usually
sizeof(unsigned long)) but the complexity of dynamically allocating the memory
is quite high.

Additional credit to Andy Whitcroft who reviewed up an earlier implementation
of the mechanism an suggested how to make it a *lot* cleaner.

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Cc: Andy Whitcroft <apw@shadowen.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:42:59 -07:00
Christoph Lameter
523b945855 Memoryless nodes: Fix GFP_THISNODE behavior
GFP_THISNODE checks that the zone selected is within the pgdat (node) of the
first zone of a nodelist.  That only works if the node has memory.  A
memoryless node will have its first node on another pgdat (node).

GFP_THISNODE currently will return simply memory on the first pgdat.  Thus it
is returning memory on other nodes.  GFP_THISNODE should fail if there is no
local memory on a node.

Add a new set of zonelists for each node that only contain the nodes that
belong to the zones itself so that no fallback is possible.

Then modify gfp_type to pickup the right zone based on the presence of
__GFP_THISNODE.

Drop the existing GFP_THISNODE checks from the page_allocators hot path.

Signed-off-by: Christoph Lameter <clameter@sgi.com>
Acked-by: Nishanth Aravamudan <nacc@us.ibm.com>
Tested-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Acked-by: Bob Picco <bob.picco@hp.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@skynet.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:42:59 -07:00
Andy Whitcroft
540557b943 sparsemem: record when a section has a valid mem_map
We have flags to indicate whether a section actually has a valid mem_map
associated with it.  This is never set and we rely solely on the present bit
to indicate a section is valid.  By definition a section is not valid if it
has no mem_map and there is a window during init where the present bit is set
but there is no mem_map, during which pfn_valid() will return true
incorrectly.

Use the existing SECTION_HAS_MEM_MAP flag to indicate the presence of a valid
mem_map.  Switch valid_section{,_nr} and pfn_valid() to this bit.  Add a new
present_section{,_nr} and pfn_present() interfaces for those users who care to
know that a section is going to be valid.

[akpm@linux-foundation.org: coding-syle fixes]
Signed-off-by: Andy Whitcroft <apw@shadowen.org>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Cc: Christoph Lameter <clameter@sgi.com>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: Andi Kleen <ak@suse.de>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:42:51 -07:00
Mel Gorman
b377fd3982 Apply memory policies to top two highest zones when highest zone is ZONE_MOVABLE
The NUMA layer only supports NUMA policies for the highest zone.  When
ZONE_MOVABLE is configured with kernelcore=, the the highest zone becomes
ZONE_MOVABLE.  The result is that policies are only applied to allocations
like anonymous pages and page cache allocated from ZONE_MOVABLE when the
zone is used.

This patch applies policies to the two highest zones when the highest zone
is ZONE_MOVABLE.  As ZONE_MOVABLE consists of pages from the highest "real"
zone, it's always functionally equivalent.

The patch has been tested on a variety of machines both NUMA and non-NUMA
covering x86, x86_64 and ppc64.  No abnormal results were seen in
kernbench, tbench, dbench or hackbench.  It passes regression tests from
the numactl package with and without kernelcore= once numactl tests are
patched to wait for vmstat counters to update.

akpm: this is the nasty hack to fix NUMA mempolicies in the presence of
ZONE_MOVABLE and kernelcore= in 2.6.23.  Christoph says "For .24 either merge
the mobility or get the other solution that Mel is working on.  That solution
would only use a single zonelist per node and filter on the fly.  That may
help performance and also help to make memory policies work better."

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by:  Lee Schermerhorn <lee.schermerhorn@hp.com>
Tested-by:  Lee Schermerhorn <lee.schermerhorn@hp.com>
Acked-by: Christoph Lameter <clameter@sgi.com>
Cc: Andi Kleen <ak@suse.de>
Cc: Paul Mundt <lethal@linux-sh.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-08-22 19:52:47 -07:00
Adrian Bunk
99eb8a550d Remove the arm26 port
The arm26 port has been in a state where it was far from even compiling
for quite some time.

Ian Molton agreed with the removal.

Signed-off-by: Adrian Bunk <bunk@stusta.de>
Cc: Ian Molton <spyro@f2s.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-31 15:39:39 -07:00
Andy Whitcroft
5ad333eb66 Lumpy Reclaim V4
When we are out of memory of a suitable size we enter reclaim.  The current
reclaim algorithm targets pages in LRU order, which is great for fairness at
order-0 but highly unsuitable if you desire pages at higher orders.  To get
pages of higher order we must shoot down a very high proportion of memory;
>95% in a lot of cases.

This patch set adds a lumpy reclaim algorithm to the allocator.  It targets
groups of pages at the specified order anchored at the end of the active and
inactive lists.  This encourages groups of pages at the requested orders to
move from active to inactive, and active to free lists.  This behaviour is
only triggered out of direct reclaim when higher order pages have been
requested.

This patch set is particularly effective when utilised with an
anti-fragmentation scheme which groups pages of similar reclaimability
together.

This patch set is based on Peter Zijlstra's lumpy reclaim V2 patch which forms
the foundation.  Credit to Mel Gorman for sanitity checking.

Mel said:

  The patches have an application with hugepage pool resizing.

  When lumpy-reclaim is used used with ZONE_MOVABLE, the hugepages pool can
  be resized with greater reliability.  Testing on a desktop machine with 2GB
  of RAM showed that growing the hugepage pool with ZONE_MOVABLE on it's own
  was very slow as the success rate was quite low.  Without lumpy-reclaim,
  each attempt to grow the pool by 100 pages would yield 1 or 2 hugepages.
  With lumpy-reclaim, getting 40 to 70 hugepages on each attempt was typical.

[akpm@osdl.org: ia64 pfn_to_nid fixes and loop cleanup]
[bunk@stusta.de: static declarations for internal functions]
[a.p.zijlstra@chello.nl: initial lumpy V2 implementation]
Signed-off-by: Andy Whitcroft <apw@shadowen.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Cc: Bob Picco <bob.picco@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-17 10:22:59 -07:00
Mel Gorman
2a1e274acf Create the ZONE_MOVABLE zone
The following 8 patches against 2.6.20-mm2 create a zone called ZONE_MOVABLE
that is only usable by allocations that specify both __GFP_HIGHMEM and
__GFP_MOVABLE.  This has the effect of keeping all non-movable pages within a
single memory partition while allowing movable allocations to be satisfied
from either partition.  The patches may be applied with the list-based
anti-fragmentation patches that groups pages together based on mobility.

The size of the zone is determined by a kernelcore= parameter specified at
boot-time.  This specifies how much memory is usable by non-movable
allocations and the remainder is used for ZONE_MOVABLE.  Any range of pages
within ZONE_MOVABLE can be released by migrating the pages or by reclaiming.

When selecting a zone to take pages from for ZONE_MOVABLE, there are two
things to consider.  First, only memory from the highest populated zone is
used for ZONE_MOVABLE.  On the x86, this is probably going to be ZONE_HIGHMEM
but it would be ZONE_DMA on ppc64 or possibly ZONE_DMA32 on x86_64.  Second,
the amount of memory usable by the kernel will be spread evenly throughout
NUMA nodes where possible.  If the nodes are not of equal size, the amount of
memory usable by the kernel on some nodes may be greater than others.

By default, the zone is not as useful for hugetlb allocations because they are
pinned and non-migratable (currently at least).  A sysctl is provided that
allows huge pages to be allocated from that zone.  This means that the huge
page pool can be resized to the size of ZONE_MOVABLE during the lifetime of
the system assuming that pages are not mlocked.  Despite huge pages being
non-movable, we do not introduce additional external fragmentation of note as
huge pages are always the largest contiguous block we care about.

Credit goes to Andy Whitcroft for catching a large variety of problems during
review of the patches.

This patch creates an additional zone, ZONE_MOVABLE.  This zone is only usable
by allocations which specify both __GFP_HIGHMEM and __GFP_MOVABLE.  Hot-added
memory continues to be placed in their existing destination as there is no
mechanism to redirect them to a specific zone.

[y-goto@jp.fujitsu.com: Fix section mismatch of memory hotplug related code]
[akpm@linux-foundation.org: various fixes]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Cc: Andy Whitcroft <apw@shadowen.org>
Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com>
Cc: William Lee Irwin III <wli@holomorphy.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-17 10:22:59 -07:00
KAMEZAWA Hiroyuki
f0c0b2b808 change zonelist order: zonelist order selection logic
Make zonelist creation policy selectable from sysctl/boot option v6.

This patch makes NUMA's zonelist (of pgdat) order selectable.
Available order are Default(automatic)/ Node-based / Zone-based.

[Default Order]
The kernel selects Node-based or Zone-based order automatically.

[Node-based Order]
This policy treats the locality of memory as the most important parameter.
Zonelist order is created by each zone's locality. This means lower zones
(ex. ZONE_DMA) can be used before higher zone (ex. ZONE_NORMAL) exhausion.
IOW. ZONE_DMA will be in the middle of zonelist.
current 2.6.21 kernel uses this.

Pros.
 * A user can expect local memory as much as possible.
Cons.
 * lower zone will be exhansted before higher zone. This may cause OOM_KILL.

Maybe suitable if ZONE_DMA is relatively big and you never see OOM_KILL
because of ZONE_DMA exhaution and you need the best locality.

(example)
assume 2 node NUMA. node(0) has ZONE_DMA/ZONE_NORMAL, node(1) has ZONE_NORMAL.

*node(0)'s memory allocation order:

 node(0)'s NORMAL -> node(0)'s DMA -> node(1)'s NORMAL.

*node(1)'s memory allocation order:

 node(1)'s NORMAL -> node(0)'s NORMAL -> node(0)'s DMA.

[Zone-based order]
This policy treats the zone type as the most important parameter.
Zonelist order is created by zone-type order. This means lower zone
never be used bofere higher zone exhaustion.
IOW. ZONE_DMA will be always at the tail of zonelist.

Pros.
 * OOM_KILL(bacause of lower zone) occurs only if the whole zones are exhausted.
Cons.
 * memory locality may not be best.

(example)
assume 2 node NUMA. node(0) has ZONE_DMA/ZONE_NORMAL, node(1) has ZONE_NORMAL.

*node(0)'s memory allocation order:

 node(0)'s NORMAL -> node(1)'s NORMAL -> node(0)'s DMA.

*node(1)'s memory allocation order:

 node(1)'s NORMAL -> node(0)'s NORMAL -> node(0)'s DMA.

bootoption "numa_zonelist_order=" and proc/sysctl is supporetd.

command:
%echo N > /proc/sys/vm/numa_zonelist_order

Will rebuild zonelist in Node-based order.

command:
%echo Z > /proc/sys/vm/numa_zonelist_order

Will rebuild zonelist in Zone-based order.

Thanks to Lee Schermerhorn, he gives me much help and codes.

[Lee.Schermerhorn@hp.com: add check_highest_zone to build_zonelists_in_zone_order]
[akpm@linux-foundation.org: build fix]
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Christoph Lameter <clameter@sgi.com>
Cc: Andi Kleen <ak@suse.de>
Cc: "jesse.barnes@intel.com" <jesse.barnes@intel.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 09:05:35 -07:00
Christoph Lameter
4037d45220 Move remote node draining out of slab allocators
Currently the slab allocators contain callbacks into the page allocator to
perform the draining of pagesets on remote nodes.  This requires SLUB to have
a whole subsystem in order to be compatible with SLAB.  Moving node draining
out of the slab allocators avoids a section of code in SLUB.

Move the node draining so that is is done when the vm statistics are updated.
At that point we are already touching all the cachelines with the pagesets of
a processor.

Add a expire counter there.  If we have to update per zone or global vm
statistics then assume that the pageset will require subsequent draining.

The expire counter will be decremented on each vm stats update pass until it
reaches zero.  Then we will drain one batch from the pageset.  The draining
will cause vm counter updates which will then cause another expiration until
the pcp is empty.  So we will drain a batch every 3 seconds.

Note that remote node draining is a somewhat esoteric feature that is required
on large NUMA systems because otherwise significant portions of system memory
can become trapped in pcp queues.  The number of pcp is determined by the
number of processors and nodes in a system.  A system with 4 processors and 2
nodes has 8 pcps which is okay.  But a system with 1024 processors and 512
nodes has 512k pcps with a high potential for large amount of memory being
caught in them.

Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-09 12:30:56 -07:00
Andy Whitcroft
14e0729841 add pfn_valid_within helper for sub-MAX_ORDER hole detection
Generally we work under the assumption that memory the mem_map array is
contigious and valid out to MAX_ORDER_NR_PAGES block of pages, ie.  that if we
have validated any page within this MAX_ORDER_NR_PAGES block we need not check
any other.  This is not true when CONFIG_HOLES_IN_ZONE is set and we must
check each and every reference we make from a pfn.

Add a pfn_valid_within() helper which should be used when scanning pages
within a MAX_ORDER_NR_PAGES block when we have already checked the validility
of the block normally with pfn_valid().  This can then be optimised away when
we do not have holes within a MAX_ORDER_NR_PAGES block of pages.

Signed-off-by: Andy Whitcroft <apw@shadowen.org>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Bob Picco <bob.picco@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07 12:12:52 -07:00
Christoph Lameter
4b51d66989 [PATCH] optional ZONE_DMA: optional ZONE_DMA in the VM
Make ZONE_DMA optional in core code.

- ifdef all code for ZONE_DMA and related definitions following the example
  for ZONE_DMA32 and ZONE_HIGHMEM.

- Without ZONE_DMA, ZONE_HIGHMEM and ZONE_DMA32 we get to a ZONES_SHIFT of
  0.

- Modify the VM statistics to work correctly without a DMA zone.

- Modify slab to not create DMA slabs if there is no ZONE_DMA.

[akpm@osdl.org: cleanup]
[jdike@addtoit.com: build fix]
[apw@shadowen.org: Simplify calculation of the number of bits we need for ZONES_SHIFT]
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Cc: Andi Kleen <ak@suse.de>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: Kyle McMartin <kyle@mcmartin.ca>
Cc: Matthew Wilcox <willy@debian.org>
Cc: James Bottomley <James.Bottomley@steeleye.com>
Cc: Paul Mundt <lethal@linux-sh.org>
Signed-off-by: Andy Whitcroft <apw@shadowen.org>
Signed-off-by: Jeff Dike <jdike@addtoit.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-11 10:51:18 -08:00
Christoph Lameter
05a0416be2 [PATCH] Drop __get_zone_counts()
Values are readily available via ZVC per node and global sums.

Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-11 10:51:18 -08:00
Christoph Lameter
51ed449127 [PATCH] Reorder ZVCs according to cacheline
The global and per zone counter sums are in arrays of longs.  Reorder the ZVCs
so that the most frequently used ZVCs are put into the same cacheline.  That
way calculations of the global, node and per zone vm state touches only a
single cacheline.  This is mostly important for 64 bit systems were one 128
byte cacheline takes only 8 longs.

Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-11 10:51:17 -08:00
Christoph Lameter
d23ad42324 [PATCH] Use ZVC for free_pages
This is again simplifies some of the VM counter calculations through the use
of the ZVC consolidated counters.

[michal.k.k.piotrowski@gmail.com: build fix]
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Michal Piotrowski <michal.k.k.piotrowski@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-11 10:51:17 -08:00
Christoph Lameter
c878538598 [PATCH] Use ZVC for inactive and active counts
The determination of the dirty ratio to determine writeback behavior is
currently based on the number of total pages on the system.

However, not all pages in the system may be dirtied.  Thus the ratio is always
too low and can never reach 100%.  The ratio may be particularly skewed if
large hugepage allocations, slab allocations or device driver buffers make
large sections of memory not available anymore.  In that case we may get into
a situation in which f.e.  the background writeback ratio of 40% cannot be
reached anymore which leads to undesired writeback behavior.

This patchset fixes that issue by determining the ratio based on the actual
pages that may potentially be dirty.  These are the pages on the active and
the inactive list plus free pages.

The problem with those counts has so far been that it is expensive to
calculate these because counts from multiple nodes and multiple zones will
have to be summed up.  This patchset makes these counters ZVC counters.  This
means that a current sum per zone, per node and for the whole system is always
available via global variables and not expensive anymore to calculate.

The patchset results in some other good side effects:

- Removal of the various functions that sum up free, active and inactive
  page counts

- Cleanup of the functions that display information via the proc filesystem.

This patch:

The use of a ZVC for nr_inactive and nr_active allows a simplification of some
counter operations.  More ZVC functionality is used for sums etc in the
following patches.

[akpm@osdl.org: UP build fix]
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-11 10:51:17 -08:00
Dave Hansen
a2f3aa0257 [PATCH] Fix sparsemem on Cell
Fix an oops experienced on the Cell architecture when init-time functions,
early_*(), are called at runtime.  It alters the call paths to make sure
that the callers explicitly say whether the call is being made on behalf of
a hotplug even, or happening at boot-time.

It has been compile tested on ppc64, ia64, s390, i386 and x86_64.

Acked-by: Arnd Bergmann <arndb@de.ibm.com>
Signed-off-by: Dave Hansen <haveblue@us.ibm.com>
Cc: Yasunori Goto <y-goto@jp.fujitsu.com>
Acked-by: Andy Whitcroft <apw@shadowen.org>
Cc: Christoph Lameter <clameter@engr.sgi.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2007-01-11 18:18:20 -08:00