2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-23 04:34:11 +08:00
Commit Graph

44 Commits

Author SHA1 Message Date
Marek Szyprowski
e9da6e9905 ARM: dma-mapping: remove custom consistent dma region
This patch changes dma-mapping subsystem to use generic vmalloc areas
for all consistent dma allocations. This increases the total size limit
of the consistent allocations and removes platform hacks and a lot of
duplicated code.

Atomic allocations are served from special pool preallocated on boot,
because vmalloc areas cannot be reliably created in atomic context.

Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com>
Reviewed-by: Kyungmin Park <kyungmin.park@samsung.com>
Reviewed-by: Minchan Kim <minchan@kernel.org>
2012-07-30 12:25:45 +02:00
Marek Szyprowski
5e6cafc83e mm: vmalloc: use const void * for caller argument
'const void *' is a safer type for caller function type. This patch
updates all references to caller function type.

Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com>
Reviewed-by: Kyungmin Park <kyungmin.park@samsung.com>
Reviewed-by: Minchan Kim <minchan@kernel.org>
2012-07-30 12:25:44 +02:00
Russell King
73829af71f Merge branch 'vmalloc' of git://git.linaro.org/people/nico/linux into devel-stable 2011-12-05 23:27:59 +00:00
Nicolas Pitre
be9b7335e7 mm: add vm_area_add_early()
The existing vm_area_register_early() allows for early vmalloc space
allocation.  However upcoming cleanups in the ARM architecture require
that some fixed locations in the vmalloc area be reserved also very early.

The name "vm_area_register_early" would have been a good name for the
reservation part without the allocation.  Since it is already in use with
different semantics, let's create vm_area_add_early() instead.

Both vm_area_register_early() and vm_area_add_early() can be used together
meaning that the former is now implemented using the later where it is
ensured that no conflicting areas are added, but no attempt is made to
make the allocation scheme in vm_area_register_early() more sophisticated.
After all, you must know what you're doing when using those functions.

Signed-off-by: Nicolas Pitre <nicolas.pitre@linaro.org>
Acked-by: Andrew Morton <akpm@linux-foundation.org>
Cc: linux-mm@kvack.org
2011-11-18 13:51:22 -05:00
David Vrabel
cd12909cb5 xen: map foreign pages for shared rings by updating the PTEs directly
When mapping a foreign page with xenbus_map_ring_valloc() with the
GNTTABOP_map_grant_ref hypercall, set the GNTMAP_contains_pte flag and
pass a pointer to the PTE (in init_mm).

After the page is mapped, the usual fault mechanism can be used to
update additional MMs.  This allows the vmalloc_sync_all() to be
removed from alloc_vm_area().

Signed-off-by: David Vrabel <david.vrabel@citrix.com>
Acked-by: Andrew Morton <akpm@linux-foundation.org>
[v1: Squashed fix by Michal for no-mmu case]
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Michal Simek <monstr@monstr.eu>
2011-11-16 12:13:08 -05:00
Mitsuo Hayasaka
f5252e009d mm: avoid null pointer access in vm_struct via /proc/vmallocinfo
The /proc/vmallocinfo shows information about vmalloc allocations in
vmlist that is a linklist of vm_struct.  It, however, may access pages
field of vm_struct where a page was not allocated.  This results in a null
pointer access and leads to a kernel panic.

Why this happens: In __vmalloc_node_range() called from vmalloc(), newly
allocated vm_struct is added to vmlist at __get_vm_area_node() and then,
some fields of vm_struct such as nr_pages and pages are set at
__vmalloc_area_node().  In other words, it is added to vmlist before it is
fully initialized.  At the same time, when the /proc/vmallocinfo is read,
it accesses the pages field of vm_struct according to the nr_pages field
at show_numa_info().  Thus, a null pointer access happens.

The patch adds the newly allocated vm_struct to the vmlist *after* it is
fully initialized.  So, it can avoid accessing the pages field with
unallocated page when show_numa_info() is called.

Signed-off-by: Mitsuo Hayasaka <mitsuo.hayasaka.hu@hitachi.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Namhyung Kim <namhyung@gmail.com>
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Cc: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Cc: <stable@kernel.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-10-31 17:30:47 -07:00
Graf Yang
b554cb426a NOMMU: support SMP dynamic percpu_alloc
The percpu code requires more functions to be implemented in the mm core
which nommu currently does not provide.  So add inline implementations
since these are largely meaningless on nommu systems.

Signed-off-by: Graf Yang <graf.yang@analog.com>
Signed-off-by: Mike Frysinger <vapier@gentoo.org>
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Greg Ungerer <gerg@uclinux.org>
2011-03-28 12:53:29 +01:00
David Rientjes
d0a21265df mm: unify module_alloc code for vmalloc
Four architectures (arm, mips, sparc, x86) use __vmalloc_area() for
module_init().  Much of the code is duplicated and can be generalized in a
globally accessible function, __vmalloc_node_range().

__vmalloc_node() now calls into __vmalloc_node_range() with a range of
[VMALLOC_START, VMALLOC_END) for functionally equivalent behavior.

Each architecture may then use __vmalloc_node_range() directly to remove
the duplication of code.

Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13 17:32:34 -08:00
David Rientjes
ec3f64fc9c mm: remove gfp mask from pcpu_get_vm_areas
pcpu_get_vm_areas() only uses GFP_KERNEL allocations, so remove the gfp_t
formal and use the mask internally.

Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13 17:32:34 -08:00
David Rientjes
e5a5623b28 mm: remove unused get_vm_area_node
get_vm_area_node() is unused in the kernel and can thus be removed.

Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13 17:32:34 -08:00
Jeremy Fitzhardinge
64141da587 vmalloc: eagerly clear ptes on vunmap
On stock 2.6.37-rc4, running:

  # mount lilith:/export /mnt/lilith
  # find  /mnt/lilith/ -type f -print0 | xargs -0 file

crashes the machine fairly quickly under Xen.  Often it results in oops
messages, but the couple of times I tried just now, it just hung quietly
and made Xen print some rude messages:

    (XEN) mm.c:2389:d80 Bad type (saw 7400000000000001 != exp
    3000000000000000) for mfn 1d7058 (pfn 18fa7)
    (XEN) mm.c:964:d80 Attempt to create linear p.t. with write perms
    (XEN) mm.c:2389:d80 Bad type (saw 7400000000000010 != exp
    1000000000000000) for mfn 1d2e04 (pfn 1d1fb)
    (XEN) mm.c:2965:d80 Error while pinning mfn 1d2e04

Which means the domain tried to map a pagetable page RW, which would
allow it to map arbitrary memory, so Xen stopped it.  This is because
vm_unmap_ram() left some pages mapped in the vmalloc area after NFS had
finished with them, and those pages got recycled as pagetable pages
while still having these RW aliases.

Removing those mappings immediately removes the Xen-visible aliases, and
so it has no problem with those pages being reused as pagetable pages.
Deferring the TLB flush doesn't upset Xen because it can flush the TLB
itself as needed to maintain its invariants.

When unmapping a region in the vmalloc space, clear the ptes
immediately.  There's no point in deferring this because there's no
amortization benefit.

The TLBs are left dirty, and they are flushed lazily to amortize the
cost of the IPIs.

This specific motivation for this patch is an oops-causing regression
since 2.6.36 when using NFS under Xen, triggered by the NFS client's use
of vm_map_ram() introduced in 56e4ebf877 ("NFS: readdir with vmapped
pages") .  XFS also uses vm_map_ram() and could cause similar problems.

Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Cc: Nick Piggin <npiggin@kernel.dk>
Cc: Bryan Schumaker <bjschuma@netapp.com>
Cc: Trond Myklebust <Trond.Myklebust@netapp.com>
Cc: Alex Elder <aelder@sgi.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-12-02 14:51:15 -08:00
Dave Young
e1ca7788de mm: add vzalloc() and vzalloc_node() helpers
Add vzalloc() and vzalloc_node() to encapsulate the
vmalloc-then-memset-zero operation.

Use __GFP_ZERO to zero fill the allocated memory.

Signed-off-by: Dave Young <hidave.darkstar@gmail.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Acked-by: Greg Ungerer <gerg@snapgear.com>
Cc: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-26 16:52:10 -07:00
Tejun Heo
4f8b02b4e5 vmalloc: pcpu_get/free_vm_areas() aren't needed on UP
These functions are used only by percpu memory allocator on SMP.
Don't build them on UP.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Nick Piggin <npiggin@kernel.dk>
Reviewed-by: Chrsitoph Lameter <cl@linux.com>
2010-09-08 11:10:47 +02:00
Linus Torvalds
26f0cf9181 Merge branch 'stable/xen-swiotlb-0.8.6' of git://git.kernel.org/pub/scm/linux/kernel/git/konrad/xen
* 'stable/xen-swiotlb-0.8.6' of git://git.kernel.org/pub/scm/linux/kernel/git/konrad/xen:
  x86: Detect whether we should use Xen SWIOTLB.
  pci-swiotlb-xen: Add glue code to setup dma_ops utilizing xen_swiotlb_* functions.
  swiotlb-xen: SWIOTLB library for Xen PV guest with PCI passthrough.
  xen/mmu: inhibit vmap aliases rather than trying to clear them out
  vmap: add flag to allow lazy unmap to be disabled at runtime
  xen: Add xen_create_contiguous_region
  xen: Rename the balloon lock
  xen: Allow unprivileged Xen domains to create iomap pages
  xen: use _PAGE_IOMAP in ioremap to do machine mappings

Fix up trivial conflicts (adding both xen swiotlb and xen pci platform
driver setup close to each other) in drivers/xen/{Kconfig,Makefile} and
include/xen/xen-ops.h
2010-08-12 09:09:41 -07:00
Jeremy Fitzhardinge
a0d40c8025 vmap: add flag to allow lazy unmap to be disabled at runtime
Add a flag to force lazy_max_pages() to zero to prevent any outstanding
mapped pages.  We'll need this for Xen.

Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Acked-by: Nick Piggin <npiggin@suse.de>
2010-07-27 11:49:09 -04:00
Kenji Kaneshige
ffa71f33a8 x86, ioremap: Fix incorrect physical address handling in PAE mode
Current x86 ioremap() doesn't handle physical address higher than
32-bit properly in X86_32 PAE mode. When physical address higher than
32-bit is passed to ioremap(), higher 32-bits in physical address is
cleared wrongly. Due to this bug, ioremap() can map wrong address to
linear address space.

In my case, 64-bit MMIO region was assigned to a PCI device (ioat
device) on my system. Because of the ioremap()'s bug, wrong physical
address (instead of MMIO region) was mapped to linear address space.
Because of this, loading ioatdma driver caused unexpected behavior
(kernel panic, kernel hangup, ...).

Signed-off-by: Kenji Kaneshige <kaneshige.kenji@jp.fujitsu.com>
LKML-Reference: <4C1AE680.7090408@jp.fujitsu.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2010-07-09 11:42:03 -07:00
Tejun Heo
ca23e405e0 vmalloc: implement pcpu_get_vm_areas()
To directly use spread NUMA memories for percpu units, percpu
allocator will be updated to allow sparsely mapping units in a chunk.
As the distances between units can be very large, this makes
allocating single vmap area for each chunk undesirable.  This patch
implements pcpu_get_vm_areas() and pcpu_free_vm_areas() which
allocates and frees sparse congruent vmap areas.

pcpu_get_vm_areas() take @offsets and @sizes array which define
distances and sizes of vmap areas.  It scans down from the top of
vmalloc area looking for the top-most address which can accomodate all
the areas.  The top-down scan is to avoid interacting with regular
vmallocs which can push up these congruent areas up little by little
ending up wasting address space and page table.

To speed up top-down scan, the highest possible address hint is
maintained.  Although the scan is linear from the hint, given the
usual large holes between memory addresses between NUMA nodes, the
scanning is highly likely to finish after finding the first hole for
the last unit which is scanned first.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Nick Piggin <npiggin@suse.de>
2009-08-14 15:00:52 +09:00
Ingo Molnar
0edcf8d692 Merge branch 'tj-percpu' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/misc into core/percpu
Conflicts:
	arch/x86/include/asm/pgtable.h
2009-02-24 21:52:45 +01:00
Tejun Heo
c0c0a29379 vmalloc: add @align to vm_area_register_early()
Impact: allow larger alignment for early vmalloc area allocation

Some early vmalloc users might want larger alignment, for example, for
custom large page mapping.  Add @align to vm_area_register_early().
While at it, drop docbook comment on non-existent @size.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
2009-02-24 11:57:21 +09:00
Tejun Heo
8fc4898500 vmalloc: add un/map_kernel_range_noflush()
Impact: two more public map/unmap functions

Implement map_kernel_range_noflush() and unmap_kernel_range_noflush().
These functions respectively map and unmap address range in kernel VM
area but doesn't do any vcache or tlb flushing.  These will be used by
new percpu allocator.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
2009-02-20 16:29:08 +09:00
Tejun Heo
f0aa661790 vmalloc: implement vm_area_register_early()
Impact: allow multiple early vm areas

There are places where kernel VM area needs to be allocated before
vmalloc is initialized.  This is done by allocating static vm_struct,
initializing several fields and linking it to vmlist and later vmalloc
initialization picking up these from vmlist.  This is currently done
manually and if there's more than one such areas, there's no defined
way to arbitrate who gets which address.

This patch implements vm_area_register_early(), which takes vm_area
struct with flags and size initialized, assigns address to it and puts
it on the vmlist.  This way, multiple early vm areas can determine
which addresses they should use.  The only current user - alpha mm
init - is converted to use it.

Signed-off-by: Tejun Heo <tj@kernel.org>
2009-02-20 16:29:08 +09:00
Benjamin Herrenschmidt
c296861291 vmalloc: add __get_vm_area_caller()
We have get_vm_area_caller() and __get_vm_area() but not
__get_vm_area_caller()

On powerpc, I use __get_vm_area() to separate the ranges of addresses
given to vmalloc vs.  ioremap (various good reasons for that) so in order
to be able to implement the new caller tracking in /proc/vmallocinfo, I
need a "_caller" variant of it.

(akpm: needed for ongoing powerpc development, so merge it early)

[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-02-18 15:37:53 -08:00
KOSAKI Motohiro
69beeb1d34 mm: make vread() and vwrite() declaration
Sparse output following warnings.

mm/vmalloc.c:1436:6: warning: symbol 'vread' was not declared. Should it be static?
mm/vmalloc.c:1474:6: warning: symbol 'vwrite' was not declared. Should it be static?

However, it is used by /dev/kmem. fixed here.

Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-06 15:59:05 -08:00
Alexey Dobriyan
5f6a6a9c4e proc: move /proc/vmallocinfo to mm/vmalloc.c
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Acked-by: Christoph Lameter <cl@linux-foundation.org>
2008-10-23 15:48:28 +04:00
Nick Piggin
db64fe0225 mm: rewrite vmap layer
Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and
provide a fast, scalable percpu frontend for small vmaps (requires a
slightly different API, though).

The biggest problem with vmap is actually vunmap.  Presently this requires
a global kernel TLB flush, which on most architectures is a broadcast IPI
to all CPUs to flush the cache.  This is all done under a global lock.  As
the number of CPUs increases, so will the number of vunmaps a scaled
workload will want to perform, and so will the cost of a global TLB flush.
 This gives terrible quadratic scalability characteristics.

Another problem is that the entire vmap subsystem works under a single
lock.  It is a rwlock, but it is actually taken for write in all the fast
paths, and the read locking would likely never be run concurrently anyway,
so it's just pointless.

This is a rewrite of vmap subsystem to solve those problems.  The existing
vmalloc API is implemented on top of the rewritten subsystem.

The TLB flushing problem is solved by using lazy TLB unmapping.  vmap
addresses do not have to be flushed immediately when they are vunmapped,
because the kernel will not reuse them again (would be a use-after-free)
until they are reallocated.  So the addresses aren't allocated again until
a subsequent TLB flush.  A single TLB flush then can flush multiple
vunmaps from each CPU.

XEN and PAT and such do not like deferred TLB flushing because they can't
always handle multiple aliasing virtual addresses to a physical address.
They now call vm_unmap_aliases() in order to flush any deferred mappings.
That call is very expensive (well, actually not a lot more expensive than
a single vunmap under the old scheme), however it should be OK if not
called too often.

The virtual memory extent information is stored in an rbtree rather than a
linked list to improve the algorithmic scalability.

There is a per-CPU allocator for small vmaps, which amortizes or avoids
global locking.

To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces
must be used in place of vmap and vunmap.  Vmalloc does not use these
interfaces at the moment, so it will not be quite so scalable (although it
will use lazy TLB flushing).

As a quick test of performance, I ran a test that loops in the kernel,
linearly mapping then touching then unmapping 4 pages.  Different numbers
of tests were run in parallel on an 4 core, 2 socket opteron.  Results are
in nanoseconds per map+touch+unmap.

threads           vanilla         vmap rewrite
1                 14700           2900
2                 33600           3000
4                 49500           2800
8                 70631           2900

So with a 8 cores, the rewritten version is already 25x faster.

In a slightly more realistic test (although with an older and less
scalable version of the patch), I ripped the not-very-good vunmap batching
code out of XFS, and implemented the large buffer mapping with vm_map_ram
and vm_unmap_ram...  along with a couple of other tricks, I was able to
speed up a large directory workload by 20x on a 64 CPU system.  I believe
vmap/vunmap is actually sped up a lot more than 20x on such a system, but
I'm running into other locks now.  vmap is pretty well blown off the
profiles.

Before:
1352059 total                                      0.1401
798784 _write_lock                              8320.6667 <- vmlist_lock
529313 default_idle                             1181.5022
 15242 smp_call_function                         15.8771  <- vmap tlb flushing
  2472 __get_vm_area_node                         1.9312  <- vmap
  1762 remove_vm_area                             4.5885  <- vunmap
   316 map_vm_area                                0.2297  <- vmap
   312 kfree                                      0.1950
   300 _spin_lock                                 3.1250
   252 sn_send_IPI_phys                           0.4375  <- tlb flushing
   238 vmap                                       0.8264  <- vmap
   216 find_lock_page                             0.5192
   196 find_next_bit                              0.3603
   136 sn2_send_IPI                               0.2024
   130 pio_phys_write_mmr                         2.0312
   118 unmap_kernel_range                         0.1229

After:
 78406 total                                      0.0081
 40053 default_idle                              89.4040
 33576 ia64_spinlock_contention                 349.7500
  1650 _spin_lock                                17.1875
   319 __reg_op                                   0.5538
   281 _atomic_dec_and_lock                       1.0977
   153 mutex_unlock                               1.5938
   123 iget_locked                                0.1671
   117 xfs_dir_lookup                             0.1662
   117 dput                                       0.1406
   114 xfs_iget_core                              0.0268
    92 xfs_da_hashname                            0.1917
    75 d_alloc                                    0.0670
    68 vmap_page_range                            0.0462 <- vmap
    58 kmem_cache_alloc                           0.0604
    57 memset                                     0.0540
    52 rb_next                                    0.1625
    50 __copy_user                                0.0208
    49 bitmap_find_free_region                    0.2188 <- vmap
    46 ia64_sn_udelay                             0.1106
    45 find_inode_fast                            0.1406
    42 memcmp                                     0.2188
    42 finish_task_switch                         0.1094
    42 __d_lookup                                 0.0410
    40 radix_tree_lookup_slot                     0.1250
    37 _spin_unlock_irqrestore                    0.3854
    36 xfs_bmapi                                  0.0050
    36 kmem_cache_free                            0.0256
    35 xfs_vn_getattr                             0.0322
    34 radix_tree_lookup                          0.1062
    33 __link_path_walk                           0.0035
    31 xfs_da_do_buf                              0.0091
    30 _xfs_buf_find                              0.0204
    28 find_get_page                              0.0875
    27 xfs_iread                                  0.0241
    27 __strncpy_from_user                        0.2812
    26 _xfs_buf_initialize                        0.0406
    24 _xfs_buf_lookup_pages                      0.0179
    24 vunmap_page_range                          0.0250 <- vunmap
    23 find_lock_page                             0.0799
    22 vm_map_ram                                 0.0087 <- vmap
    20 kfree                                      0.0125
    19 put_page                                   0.0330
    18 __kmalloc                                  0.0176
    17 xfs_da_node_lookup_int                     0.0086
    17 _read_lock                                 0.0885
    17 page_waitqueue                             0.0664

vmap has gone from being the top 5 on the profiles and flushing the crap
out of all TLBs, to using less than 1% of kernel time.

[akpm@linux-foundation.org: cleanups, section fix]
[akpm@linux-foundation.org: fix build on alpha]
Signed-off-by: Nick Piggin <npiggin@suse.de>
Cc: Jeremy Fitzhardinge <jeremy@goop.org>
Cc: Krzysztof Helt <krzysztof.h1@poczta.fm>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-20 08:52:32 -07:00
Hugh Dickins
605d9288b3 mm: VM_flags comment fixes
Try to comment away a little of the confusion between mm's vm_area_struct
vm_flags and vmalloc's vm_struct flags: based on an idea by Ulrich Drepper.

Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-08-16 16:45:56 -07:00
Christoph Lameter
2301696932 vmallocinfo: add caller information
Add caller information so that /proc/vmallocinfo shows where the allocation
request for a slice of vmalloc memory originated.

Results in output like this:

0xffffc20000000000-0xffffc20000801000 8392704 alloc_large_system_hash+0x127/0x246 pages=2048 vmalloc vpages
0xffffc20000801000-0xffffc20000806000   20480 alloc_large_system_hash+0x127/0x246 pages=4 vmalloc
0xffffc20000806000-0xffffc20000c07000 4198400 alloc_large_system_hash+0x127/0x246 pages=1024 vmalloc vpages
0xffffc20000c07000-0xffffc20000c0a000   12288 alloc_large_system_hash+0x127/0x246 pages=2 vmalloc
0xffffc20000c0a000-0xffffc20000c0c000    8192 acpi_os_map_memory+0x13/0x1c phys=cff68000 ioremap
0xffffc20000c0c000-0xffffc20000c0f000   12288 acpi_os_map_memory+0x13/0x1c phys=cff64000 ioremap
0xffffc20000c10000-0xffffc20000c15000   20480 acpi_os_map_memory+0x13/0x1c phys=cff65000 ioremap
0xffffc20000c16000-0xffffc20000c18000    8192 acpi_os_map_memory+0x13/0x1c phys=cff69000 ioremap
0xffffc20000c18000-0xffffc20000c1a000    8192 acpi_os_map_memory+0x13/0x1c phys=fed1f000 ioremap
0xffffc20000c1a000-0xffffc20000c1c000    8192 acpi_os_map_memory+0x13/0x1c phys=cff68000 ioremap
0xffffc20000c1c000-0xffffc20000c1e000    8192 acpi_os_map_memory+0x13/0x1c phys=cff68000 ioremap
0xffffc20000c1e000-0xffffc20000c20000    8192 acpi_os_map_memory+0x13/0x1c phys=cff68000 ioremap
0xffffc20000c20000-0xffffc20000c22000    8192 acpi_os_map_memory+0x13/0x1c phys=cff68000 ioremap
0xffffc20000c22000-0xffffc20000c24000    8192 acpi_os_map_memory+0x13/0x1c phys=cff68000 ioremap
0xffffc20000c24000-0xffffc20000c26000    8192 acpi_os_map_memory+0x13/0x1c phys=e0081000 ioremap
0xffffc20000c26000-0xffffc20000c28000    8192 acpi_os_map_memory+0x13/0x1c phys=e0080000 ioremap
0xffffc20000c28000-0xffffc20000c2d000   20480 alloc_large_system_hash+0x127/0x246 pages=4 vmalloc
0xffffc20000c2d000-0xffffc20000c31000   16384 tcp_init+0xd5/0x31c pages=3 vmalloc
0xffffc20000c31000-0xffffc20000c34000   12288 alloc_large_system_hash+0x127/0x246 pages=2 vmalloc
0xffffc20000c34000-0xffffc20000c36000    8192 init_vdso_vars+0xde/0x1f1
0xffffc20000c36000-0xffffc20000c38000    8192 pci_iomap+0x8a/0xb4 phys=d8e00000 ioremap
0xffffc20000c38000-0xffffc20000c3a000    8192 usb_hcd_pci_probe+0x139/0x295 [usbcore] phys=d8e00000 ioremap
0xffffc20000c3a000-0xffffc20000c3e000   16384 sys_swapon+0x509/0xa15 pages=3 vmalloc
0xffffc20000c40000-0xffffc20000c61000  135168 e1000_probe+0x1c4/0xa32 phys=d8a20000 ioremap
0xffffc20000c61000-0xffffc20000c6a000   36864 _xfs_buf_map_pages+0x8e/0xc0 vmap
0xffffc20000c6a000-0xffffc20000c73000   36864 _xfs_buf_map_pages+0x8e/0xc0 vmap
0xffffc20000c73000-0xffffc20000c7c000   36864 _xfs_buf_map_pages+0x8e/0xc0 vmap
0xffffc20000c7c000-0xffffc20000c7f000   12288 e1000e_setup_tx_resources+0x29/0xbe pages=2 vmalloc
0xffffc20000c80000-0xffffc20001481000 8392704 pci_mmcfg_arch_init+0x90/0x118 phys=e0000000 ioremap
0xffffc20001481000-0xffffc20001682000 2101248 alloc_large_system_hash+0x127/0x246 pages=512 vmalloc
0xffffc20001682000-0xffffc20001e83000 8392704 alloc_large_system_hash+0x127/0x246 pages=2048 vmalloc vpages
0xffffc20001e83000-0xffffc20002204000 3674112 alloc_large_system_hash+0x127/0x246 pages=896 vmalloc vpages
0xffffc20002204000-0xffffc2000220d000   36864 _xfs_buf_map_pages+0x8e/0xc0 vmap
0xffffc2000220d000-0xffffc20002216000   36864 _xfs_buf_map_pages+0x8e/0xc0 vmap
0xffffc20002216000-0xffffc2000221f000   36864 _xfs_buf_map_pages+0x8e/0xc0 vmap
0xffffc2000221f000-0xffffc20002228000   36864 _xfs_buf_map_pages+0x8e/0xc0 vmap
0xffffc20002228000-0xffffc20002231000   36864 _xfs_buf_map_pages+0x8e/0xc0 vmap
0xffffc20002231000-0xffffc20002234000   12288 e1000e_setup_rx_resources+0x35/0x122 pages=2 vmalloc
0xffffc20002240000-0xffffc20002261000  135168 e1000_probe+0x1c4/0xa32 phys=d8a60000 ioremap
0xffffc20002261000-0xffffc2000270c000 4894720 sys_swapon+0x509/0xa15 pages=1194 vmalloc vpages
0xffffffffa0000000-0xffffffffa0022000  139264 module_alloc+0x4f/0x55 pages=33 vmalloc
0xffffffffa0022000-0xffffffffa0029000   28672 module_alloc+0x4f/0x55 pages=6 vmalloc
0xffffffffa002b000-0xffffffffa0034000   36864 module_alloc+0x4f/0x55 pages=8 vmalloc
0xffffffffa0034000-0xffffffffa003d000   36864 module_alloc+0x4f/0x55 pages=8 vmalloc
0xffffffffa003d000-0xffffffffa0049000   49152 module_alloc+0x4f/0x55 pages=11 vmalloc
0xffffffffa0049000-0xffffffffa0050000   28672 module_alloc+0x4f/0x55 pages=6 vmalloc

[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 08:58:21 -07:00
Christoph Lameter
a10aa57987 vmalloc: show vmalloced areas via /proc/vmallocinfo
Implement a new proc file that allows the display of the currently allocated
vmalloc memory.

It allows to see the users of vmalloc.  That is important if vmalloc space is
scarce (i386 for example).

And it's going to be important for the compound page fallback to vmalloc.
Many of the current users can be switched to use compound pages with fallback.
 This means that the number of users of vmalloc is reduced and page tables no
longer necessary to access the memory.  /proc/vmallocinfo allows to review how
that reduction occurs.

If memory becomes fragmented and larger order allocations are no longer
possible then /proc/vmallocinfo allows to see which compound page allocations
fell back to virtual compound pages.  That is important for new users of
virtual compound pages.  Such as order 1 stack allocation etc that may
fallback to virtual compound pages in the future.

/proc/vmallocinfo permissions are made readable-only-by-root to avoid possible
information leakage.

[akpm@linux-foundation.org: coding-style fixes]
[akpm@linux-foundation.org: CONFIG_MMU=n build fix]
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Arjan van de Ven <arjan@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 08:58:21 -07:00
Christoph Lameter
b3bdda02aa vmalloc: add const to void* parameters
Make vmalloc functions work the same way as kfree() and friends that
take a const void * argument.

[akpm@linux-foundation.org: fix consts, coding-style]
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 09:44:14 -08:00
Jeremy Fitzhardinge
9585116ba0 i386: fix iounmap's use of vm_struct's size field
get_vm_area always returns an area with an adjacent guard page.  That guard
page is included in vm_struct.size.  iounmap uses vm_struct.size to
determine how much address space needs to have change_page_attr applied to
it, which will BUG if applied to the guard page.

This patch adds a helper function - get_vm_area_size() in linux/vmalloc.h -
to return the actual size of a vm area, and uses it to make iounmap do the
right thing.  There are probably other places which should be using
get_vm_area_size().

Thanks to Dave Young <hidave.darkstar@gmail.com> for debugging the
problem.

[ Andi, it wasn't clear to me whether x86_64 needs the same fix. ]

Signed-off-by: Jeremy Fitzhardinge <jeremy@xensource.com>
Cc: Dave Young <hidave.darkstar@gmail.com>
Cc: Chuck Ebbert <cebbert@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-21 18:37:14 -07:00
Jeremy Fitzhardinge
5f4352fbff Allocate and free vmalloc areas
Allocate/release a chunk of vmalloc address space:
 alloc_vm_area reserves a chunk of address space, and makes sure all
 the pagetables are constructed for that address range - but no pages.

 free_vm_area releases the address space range.

Signed-off-by: Jeremy Fitzhardinge <jeremy@xensource.com>
Signed-off-by: Ian Pratt <ian.pratt@xensource.com>
Signed-off-by: Christian Limpach <Christian.Limpach@cl.cam.ac.uk>
Signed-off-by: Chris Wright <chrisw@sous-sol.org>
Cc: "Jan Beulich" <JBeulich@novell.com>
Cc: "Andi Kleen" <ak@muc.de>
2007-07-18 08:47:41 -07:00
Benjamin Herrenschmidt
c19c03fc74 [POWERPC] unmap_vm_area becomes unmap_kernel_range for the public
This makes unmap_vm_area static and a wrapper around a new
exported unmap_kernel_range that takes an explicit range instead
of a vm_area struct.

This makes it more versatile for code that wants to play with kernel
page tables outside of the standard vmalloc area.

(One example is some rework of the PowerPC PCI IO space mapping
code that depends on that patch and removes some code duplication
and horrible abuse of forged struct vm_struct).

Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
2007-06-14 22:29:56 +10:00
Christoph Hellwig
1eeb66a1bb move die notifier handling to common code
This patch moves the die notifier handling to common code.  Previous
various architectures had exactly the same code for it.  Note that the new
code is compiled unconditionally, this should be understood as an appel to
the other architecture maintainer to implement support for it aswell (aka
sprinkling a notify_die or two in the proper place)

arm had a notifiy_die that did something totally different, I renamed it to
arm_notify_die as part of the patch and made it static to the file it's
declared and used at.  avr32 used to pass slightly less information through
this interface and I brought it into line with the other architectures.

[akpm@linux-foundation.org: build fix]
[akpm@linux-foundation.org: fix vmalloc_sync_all bustage]
[bryan.wu@analog.com: fix vmalloc_sync_all in nommu]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Cc: <linux-arch@vger.kernel.org>
Cc: Russell King <rmk@arm.linux.org.uk>
Signed-off-by: Bryan Wu <bryan.wu@analog.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-08 11:15:04 -07:00
Eric Dumazet
2b4ac44e7c [PATCH] vmalloc: optimization, cleanup, bugfixes
- reorder 'struct vm_struct' to speedup lookups on CPUS with small cache
  lines.  The fields 'next,addr,size' should be now in the same cache line,
  to speedup lookups.

- One minor cleanup in __get_vm_area_node()

- Bugfixes in vmalloc_user() and vmalloc_32_user() NULL returns from
  __vmalloc() and __find_vm_area() were not tested.

[akpm@osdl.org: remove redundant BUG_ONs]
Signed-off-by: Eric Dumazet <dada1@cosmosbay.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-11-13 07:40:42 -08:00
Giridhar Pemmasani
52fd24ca1d [PATCH] __vmalloc with GFP_ATOMIC causes 'sleeping from invalid context'
If __vmalloc is called to allocate memory with GFP_ATOMIC in atomic
context, the chain of calls results in __get_vm_area_node allocating memory
for vm_struct with GFP_KERNEL, causing the 'sleeping from invalid context'
warning.  This patch fixes it by passing the gfp flags along so
__get_vm_area_node allocates memory for vm_struct with the same flags.

Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-10-28 11:30:52 -07:00
Rolf Eike Beer
d24afc57d5 [PATCH] Mark __remove_vm_area() static
The function is exported but not used from anywhere else.  It's also marked as
"not for driver use" so noone out there should really care.

Signed-off-by: Rolf Eike Beer <eike-kernel@sf-tec.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-27 08:26:13 -07:00
Adrian Bunk
b221385bc4 [PATCH] mm/: make functions static
This patch makes the following needlessly global functions static:
 - slab.c: kmem_find_general_cachep()
 - swap.c: __page_cache_release()
 - vmalloc.c: __vmalloc_node()

Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-26 08:48:45 -07:00
Jan Kiszka
8757d5fa6b [PATCH] mm: fix oom roll-back of __vmalloc_area_node
__vunmap must not rely on area->nr_pages when picking the release methode
for area->pages.  It may be too small when __vmalloc_area_node failed early
due to lacking memory.  Instead, use a flag in vmstruct to differentiate.

Signed-off-by: Jan Kiszka <jan.kiszka@web.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-07-14 21:53:51 -07:00
Nick Piggin
833423143c [PATCH] mm: introduce remap_vmalloc_range()
Add remap_vmalloc_range, vmalloc_user, and vmalloc_32_user so that drivers
can have a nice interface for remapping vmalloc memory.

Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 07:42:49 -07:00
Christoph Lameter
930fc45a49 [PATCH] vmalloc_node
This patch adds

vmalloc_node(size, node)	-> Allocate necessary memory on the specified node

and

get_vm_area_node(size, flags, node)

and the other functions that it depends on.

Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-10-29 21:40:35 -07:00
Al Viro
dd0fc66fb3 [PATCH] gfp flags annotations - part 1
- added typedef unsigned int __nocast gfp_t;

 - replaced __nocast uses for gfp flags with gfp_t - it gives exactly
   the same warnings as far as sparse is concerned, doesn't change
   generated code (from gcc point of view we replaced unsigned int with
   typedef) and documents what's going on far better.

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-10-08 15:00:57 -07:00
Deepak Saxena
fd195c49fb [PATCH] arm: allow for arch-specific IOREMAP_MAX_ORDER
Version 6 of the ARM architecture introduces the concept of 16MB pages
(supersections) and 36-bit (40-bit actually, but nobody uses this) physical
addresses.  36-bit addressed memory and I/O and ARMv6 can only be mapped
using supersections and the requirement on these is that both virtual and
physical addresses be 16MB aligned.  In trying to add support for ioremap()
of 36-bit I/O, we run into the issue that get_vm_area() allows for a
maximum of 512K alignment via the IOREMAP_MAX_ORDER constant.  To work
around this, we can:

- Allocate a larger VM area than needed (size + (1ul << IOREMAP_MAX_ORDER))
  and then align the pointer ourselves, but this ends up with 512K of
  wasted VM per ioremap().

- Provide a new __get_vm_area_aligned() API and make __get_vm_area() sit
  on top of this. I did this and it works but I don't like the idea
  adding another VM API just for this one case.

- My preferred solution which is to allow the architecture to override
  the IOREMAP_MAX_ORDER constant with it's own version.

Signed-off-by: Deepak Saxena <dsaxena@plexity.net>
Cc: Russell King <rmk@arm.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-05 00:05:46 -07:00
Andi Kleen
7856dfeb23 [PATCH] x86_64: Fixed guard page handling again in iounmap
Caused oopses again.  Also fix potential mismatch in checking if
change_page_attr was needed.

To do it without races I needed to change mm/vmalloc.c to export a
__remove_vm_area that does not take vmlist lock.

Noticed by Terence Ripperda and based on a patch of his.

Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-05-20 15:48:20 -07:00
Linus Torvalds
1da177e4c3 Linux-2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.

Let it rip!
2005-04-16 15:20:36 -07:00