2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-26 14:14:01 +08:00
Commit Graph

92 Commits

Author SHA1 Message Date
Qian Cai
08003d0b63 inet: fix compilation warnings in fqdir_pre_exit()
The linux-next commit "inet: fix various use-after-free in defrags
units" [1] introduced compilation warnings,

./include/net/inet_frag.h:117:1: warning: 'inline' is not at beginning
of declaration [-Wold-style-declaration]
 static void inline fqdir_pre_exit(struct fqdir *fqdir)
 ^~~~~~
In file included from ./include/net/netns/ipv4.h:10,
                 from ./include/net/net_namespace.h:20,
                 from ./include/linux/netdevice.h:38,
                 from ./include/linux/icmpv6.h:13,
                 from ./include/linux/ipv6.h:86,
                 from ./include/net/ipv6.h:12,
                 from ./include/rdma/ib_verbs.h:51,
                 from ./include/linux/mlx5/device.h:37,
                 from ./include/linux/mlx5/driver.h:51,
                 from
drivers/net/ethernet/mellanox/mlx5/core/pagealloc.c:37:

[1] https://lore.kernel.org/netdev/20190618180900.88939-3-edumazet@google.com/

Signed-off-by: Qian Cai <cai@lca.pw>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-23 11:12:12 -07:00
Eric Dumazet
d5dd88794a inet: fix various use-after-free in defrags units
syzbot reported another issue caused by my recent patches. [1]

The issue here is that fqdir_exit() is initiating a work queue
and immediately returns. A bit later cleanup_net() was able
to free the MIB (percpu data) and the whole struct net was freed,
but we had active frag timers that fired and triggered use-after-free.

We need to make sure that timers can catch fqdir->dead being set,
to bailout.

Since RCU is used for the reader side, this means
we want to respect an RCU grace period between these operations :

1) qfdir->dead = 1;

2) netns dismantle (freeing of various data structure)

This patch uses new new (struct pernet_operations)->pre_exit
infrastructure to ensures a full RCU grace period
happens between fqdir_pre_exit() and fqdir_exit()

This also means we can use a regular work queue, we no
longer need rcu_work.

Tested:

$ time for i in {1..1000}; do unshare -n /bin/false;done

real	0m2.585s
user	0m0.160s
sys	0m2.214s

[1]

BUG: KASAN: use-after-free in ip_expire+0x73e/0x800 net/ipv4/ip_fragment.c:152
Read of size 8 at addr ffff88808b9fe330 by task syz-executor.4/11860

CPU: 1 PID: 11860 Comm: syz-executor.4 Not tainted 5.2.0-rc2+ #22
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
Call Trace:
 <IRQ>
 __dump_stack lib/dump_stack.c:77 [inline]
 dump_stack+0x172/0x1f0 lib/dump_stack.c:113
 print_address_description.cold+0x7c/0x20d mm/kasan/report.c:188
 __kasan_report.cold+0x1b/0x40 mm/kasan/report.c:317
 kasan_report+0x12/0x20 mm/kasan/common.c:614
 __asan_report_load8_noabort+0x14/0x20 mm/kasan/generic_report.c:132
 ip_expire+0x73e/0x800 net/ipv4/ip_fragment.c:152
 call_timer_fn+0x193/0x720 kernel/time/timer.c:1322
 expire_timers kernel/time/timer.c:1366 [inline]
 __run_timers kernel/time/timer.c:1685 [inline]
 __run_timers kernel/time/timer.c:1653 [inline]
 run_timer_softirq+0x66f/0x1740 kernel/time/timer.c:1698
 __do_softirq+0x25c/0x94c kernel/softirq.c:293
 invoke_softirq kernel/softirq.c:374 [inline]
 irq_exit+0x180/0x1d0 kernel/softirq.c:414
 exiting_irq arch/x86/include/asm/apic.h:536 [inline]
 smp_apic_timer_interrupt+0x13b/0x550 arch/x86/kernel/apic/apic.c:1068
 apic_timer_interrupt+0xf/0x20 arch/x86/entry/entry_64.S:806
 </IRQ>
RIP: 0010:tomoyo_domain_quota_is_ok+0x131/0x540 security/tomoyo/util.c:1035
Code: 24 4c 3b 65 d0 0f 84 9c 00 00 00 e8 19 1d 73 fe 49 8d 7c 24 18 48 ba 00 00 00 00 00 fc ff df 48 89 f8 48 c1 e8 03 0f b6 04 10 <48> 89 fa 83 e2 07 38 d0 7f 08 84 c0 0f 85 69 03 00 00 41 0f b6 5c
RSP: 0018:ffff88806ae079c0 EFLAGS: 00000a02 ORIG_RAX: ffffffffffffff13
RAX: 0000000000000000 RBX: 0000000000000010 RCX: ffffc9000e655000
RDX: dffffc0000000000 RSI: ffffffff82fd88a7 RDI: ffff888086202398
RBP: ffff88806ae07a00 R08: ffff88808b6c8700 R09: ffffed100d5c0f4d
R10: ffffed100d5c0f4c R11: 0000000000000000 R12: ffff888086202380
R13: 0000000000000030 R14: 00000000000000d3 R15: 0000000000000000
 tomoyo_supervisor+0x2e8/0xef0 security/tomoyo/common.c:2087
 tomoyo_audit_path_number_log security/tomoyo/file.c:235 [inline]
 tomoyo_path_number_perm+0x42f/0x520 security/tomoyo/file.c:734
 tomoyo_file_ioctl+0x23/0x30 security/tomoyo/tomoyo.c:335
 security_file_ioctl+0x77/0xc0 security/security.c:1370
 ksys_ioctl+0x57/0xd0 fs/ioctl.c:711
 __do_sys_ioctl fs/ioctl.c:720 [inline]
 __se_sys_ioctl fs/ioctl.c:718 [inline]
 __x64_sys_ioctl+0x73/0xb0 fs/ioctl.c:718
 do_syscall_64+0xfd/0x680 arch/x86/entry/common.c:301
 entry_SYSCALL_64_after_hwframe+0x49/0xbe
RIP: 0033:0x4592c9
Code: fd b7 fb ff c3 66 2e 0f 1f 84 00 00 00 00 00 66 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 0f 83 cb b7 fb ff c3 66 2e 0f 1f 84 00 00 00 00
RSP: 002b:00007f8db5e44c78 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
RAX: ffffffffffffffda RBX: 0000000000000003 RCX: 00000000004592c9
RDX: 0000000020000080 RSI: 00000000000089f1 RDI: 0000000000000006
RBP: 000000000075bf20 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 00007f8db5e456d4
R13: 00000000004cc770 R14: 00000000004d5cd8 R15: 00000000ffffffff

Allocated by task 9047:
 save_stack+0x23/0x90 mm/kasan/common.c:71
 set_track mm/kasan/common.c:79 [inline]
 __kasan_kmalloc mm/kasan/common.c:489 [inline]
 __kasan_kmalloc.constprop.0+0xcf/0xe0 mm/kasan/common.c:462
 kasan_slab_alloc+0xf/0x20 mm/kasan/common.c:497
 slab_post_alloc_hook mm/slab.h:437 [inline]
 slab_alloc mm/slab.c:3326 [inline]
 kmem_cache_alloc+0x11a/0x6f0 mm/slab.c:3488
 kmem_cache_zalloc include/linux/slab.h:732 [inline]
 net_alloc net/core/net_namespace.c:386 [inline]
 copy_net_ns+0xed/0x340 net/core/net_namespace.c:426
 create_new_namespaces+0x400/0x7b0 kernel/nsproxy.c:107
 unshare_nsproxy_namespaces+0xc2/0x200 kernel/nsproxy.c:206
 ksys_unshare+0x440/0x980 kernel/fork.c:2692
 __do_sys_unshare kernel/fork.c:2760 [inline]
 __se_sys_unshare kernel/fork.c:2758 [inline]
 __x64_sys_unshare+0x31/0x40 kernel/fork.c:2758
 do_syscall_64+0xfd/0x680 arch/x86/entry/common.c:301
 entry_SYSCALL_64_after_hwframe+0x49/0xbe

Freed by task 2541:
 save_stack+0x23/0x90 mm/kasan/common.c:71
 set_track mm/kasan/common.c:79 [inline]
 __kasan_slab_free+0x102/0x150 mm/kasan/common.c:451
 kasan_slab_free+0xe/0x10 mm/kasan/common.c:459
 __cache_free mm/slab.c:3432 [inline]
 kmem_cache_free+0x86/0x260 mm/slab.c:3698
 net_free net/core/net_namespace.c:402 [inline]
 net_drop_ns.part.0+0x70/0x90 net/core/net_namespace.c:409
 net_drop_ns net/core/net_namespace.c:408 [inline]
 cleanup_net+0x538/0x960 net/core/net_namespace.c:571
 process_one_work+0x989/0x1790 kernel/workqueue.c:2269
 worker_thread+0x98/0xe40 kernel/workqueue.c:2415
 kthread+0x354/0x420 kernel/kthread.c:255
 ret_from_fork+0x24/0x30 arch/x86/entry/entry_64.S:352

The buggy address belongs to the object at ffff88808b9fe100
 which belongs to the cache net_namespace of size 6784
The buggy address is located 560 bytes inside of
 6784-byte region [ffff88808b9fe100, ffff88808b9ffb80)
The buggy address belongs to the page:
page:ffffea00022e7f80 refcount:1 mapcount:0 mapping:ffff88821b6f60c0 index:0x0 compound_mapcount: 0
flags: 0x1fffc0000010200(slab|head)
raw: 01fffc0000010200 ffffea000256f288 ffffea0001bbef08 ffff88821b6f60c0
raw: 0000000000000000 ffff88808b9fe100 0000000100000001 0000000000000000
page dumped because: kasan: bad access detected

Memory state around the buggy address:
 ffff88808b9fe200: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
 ffff88808b9fe280: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
>ffff88808b9fe300: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
                                     ^
 ffff88808b9fe380: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
 ffff88808b9fe400: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb

Fixes: 3c8fc87820 ("inet: frags: rework rhashtable dismantle")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reported-by: syzbot <syzkaller@googlegroups.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-19 11:37:47 -04:00
Eric Dumazet
dc93f46bc4 inet: frags: fix use-after-free read in inet_frag_destroy_rcu
As caught by syzbot [1], the rcu grace period that is respected
before fqdir_rwork_fn() proceeds and frees fqdir is not enough
to prevent inet_frag_destroy_rcu() being run after the freeing.

We need a proper rcu_barrier() synchronization to replace
the one we had in inet_frags_fini()

We also have to fix a potential problem at module removal :
inet_frags_fini() needs to make sure that all queued work queues
(fqdir_rwork_fn) have completed, otherwise we might
call kmem_cache_destroy() too soon and get another use-after-free.

[1]
BUG: KASAN: use-after-free in inet_frag_destroy_rcu+0xd9/0xe0 net/ipv4/inet_fragment.c:201
Read of size 8 at addr ffff88806ed47a18 by task swapper/1/0

CPU: 1 PID: 0 Comm: swapper/1 Not tainted 5.2.0-rc1+ #2
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
Call Trace:
 <IRQ>
 __dump_stack lib/dump_stack.c:77 [inline]
 dump_stack+0x172/0x1f0 lib/dump_stack.c:113
 print_address_description.cold+0x7c/0x20d mm/kasan/report.c:188
 __kasan_report.cold+0x1b/0x40 mm/kasan/report.c:317
 kasan_report+0x12/0x20 mm/kasan/common.c:614
 __asan_report_load8_noabort+0x14/0x20 mm/kasan/generic_report.c:132
 inet_frag_destroy_rcu+0xd9/0xe0 net/ipv4/inet_fragment.c:201
 __rcu_reclaim kernel/rcu/rcu.h:222 [inline]
 rcu_do_batch kernel/rcu/tree.c:2092 [inline]
 invoke_rcu_callbacks kernel/rcu/tree.c:2310 [inline]
 rcu_core+0xba5/0x1500 kernel/rcu/tree.c:2291
 __do_softirq+0x25c/0x94c kernel/softirq.c:293
 invoke_softirq kernel/softirq.c:374 [inline]
 irq_exit+0x180/0x1d0 kernel/softirq.c:414
 exiting_irq arch/x86/include/asm/apic.h:536 [inline]
 smp_apic_timer_interrupt+0x13b/0x550 arch/x86/kernel/apic/apic.c:1068
 apic_timer_interrupt+0xf/0x20 arch/x86/entry/entry_64.S:806
 </IRQ>
RIP: 0010:native_safe_halt+0xe/0x10 arch/x86/include/asm/irqflags.h:61
Code: ff ff 48 89 df e8 f2 95 8c fa eb 82 e9 07 00 00 00 0f 00 2d e4 45 4b 00 f4 c3 66 90 e9 07 00 00 00 0f 00 2d d4 45 4b 00 fb f4 <c3> 90 55 48 89 e5 41 57 41 56 41 55 41 54 53 e8 8e 18 42 fa e8 99
RSP: 0018:ffff8880a98e7d78 EFLAGS: 00000282 ORIG_RAX: ffffffffffffff13
RAX: 1ffffffff1164e11 RBX: ffff8880a98d4340 RCX: 0000000000000000
RDX: dffffc0000000000 RSI: 0000000000000006 RDI: ffff8880a98d4bbc
RBP: ffff8880a98e7da8 R08: ffff8880a98d4340 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000001
R13: ffffffff88b27078 R14: 0000000000000001 R15: 0000000000000000
 arch_cpu_idle+0xa/0x10 arch/x86/kernel/process.c:571
 default_idle_call+0x36/0x90 kernel/sched/idle.c:94
 cpuidle_idle_call kernel/sched/idle.c:154 [inline]
 do_idle+0x377/0x560 kernel/sched/idle.c:263
 cpu_startup_entry+0x1b/0x20 kernel/sched/idle.c:354
 start_secondary+0x34e/0x4c0 arch/x86/kernel/smpboot.c:267
 secondary_startup_64+0xa4/0xb0 arch/x86/kernel/head_64.S:243

Allocated by task 8877:
 save_stack+0x23/0x90 mm/kasan/common.c:71
 set_track mm/kasan/common.c:79 [inline]
 __kasan_kmalloc mm/kasan/common.c:489 [inline]
 __kasan_kmalloc.constprop.0+0xcf/0xe0 mm/kasan/common.c:462
 kasan_kmalloc+0x9/0x10 mm/kasan/common.c:503
 kmem_cache_alloc_trace+0x151/0x750 mm/slab.c:3555
 kmalloc include/linux/slab.h:547 [inline]
 kzalloc include/linux/slab.h:742 [inline]
 fqdir_init include/net/inet_frag.h:115 [inline]
 ipv6_frags_init_net+0x48/0x460 net/ipv6/reassembly.c:513
 ops_init+0xb3/0x410 net/core/net_namespace.c:130
 setup_net+0x2d3/0x740 net/core/net_namespace.c:316
 copy_net_ns+0x1df/0x340 net/core/net_namespace.c:439
 create_new_namespaces+0x400/0x7b0 kernel/nsproxy.c:107
 unshare_nsproxy_namespaces+0xc2/0x200 kernel/nsproxy.c:206
 ksys_unshare+0x440/0x980 kernel/fork.c:2692
 __do_sys_unshare kernel/fork.c:2760 [inline]
 __se_sys_unshare kernel/fork.c:2758 [inline]
 __x64_sys_unshare+0x31/0x40 kernel/fork.c:2758
 do_syscall_64+0xfd/0x680 arch/x86/entry/common.c:301
 entry_SYSCALL_64_after_hwframe+0x49/0xbe

Freed by task 17:
 save_stack+0x23/0x90 mm/kasan/common.c:71
 set_track mm/kasan/common.c:79 [inline]
 __kasan_slab_free+0x102/0x150 mm/kasan/common.c:451
 kasan_slab_free+0xe/0x10 mm/kasan/common.c:459
 __cache_free mm/slab.c:3432 [inline]
 kfree+0xcf/0x220 mm/slab.c:3755
 fqdir_rwork_fn+0x33/0x40 net/ipv4/inet_fragment.c:154
 process_one_work+0x989/0x1790 kernel/workqueue.c:2269
 worker_thread+0x98/0xe40 kernel/workqueue.c:2415
 kthread+0x354/0x420 kernel/kthread.c:255
 ret_from_fork+0x24/0x30 arch/x86/entry/entry_64.S:352

The buggy address belongs to the object at ffff88806ed47a00
 which belongs to the cache kmalloc-512 of size 512
The buggy address is located 24 bytes inside of
 512-byte region [ffff88806ed47a00, ffff88806ed47c00)
The buggy address belongs to the page:
page:ffffea0001bb51c0 refcount:1 mapcount:0 mapping:ffff8880aa400940 index:0x0
flags: 0x1fffc0000000200(slab)
raw: 01fffc0000000200 ffffea000282a788 ffffea0001bb53c8 ffff8880aa400940
raw: 0000000000000000 ffff88806ed47000 0000000100000006 0000000000000000
page dumped because: kasan: bad access detected

Memory state around the buggy address:
 ffff88806ed47900: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
 ffff88806ed47980: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
>ffff88806ed47a00: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
                            ^
 ffff88806ed47a80: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
 ffff88806ed47b00: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb

Fixes: 3c8fc87820 ("inet: frags: rework rhashtable dismantle")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reported-by: syzbot <syzkaller@googlegroups.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-05-28 17:22:15 -07:00
Eric Dumazet
6b73d19711 inet: frags: uninline fqdir_init()
fqdir_init() is not fast path and is getting bigger.

Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-05-28 17:22:15 -07:00
Eric Dumazet
3c8fc87820 inet: frags: rework rhashtable dismantle
syszbot found an interesting use-after-free [1] happening
while IPv4 fragment rhashtable was destroyed at netns dismantle.

While no insertions can possibly happen at the time a dismantling
netns is destroying this rhashtable, timers can still fire and
attempt to remove elements from this rhashtable.

This is forbidden, since rhashtable_free_and_destroy() has
no synchronization against concurrent inserts and deletes.

Add a new fqdir->dead flag so that timers do not attempt
a rhashtable_remove_fast() operation.

We also have to respect an RCU grace period before starting
the rhashtable_free_and_destroy() from process context,
thus we use rcu_work infrastructure.

This is a refinement of a prior rough attempt to fix this bug :
https://marc.info/?l=linux-netdev&m=153845936820900&w=2

Since the rhashtable cleanup is now deferred to a work queue,
netns dismantles should be slightly faster.

[1]
BUG: KASAN: use-after-free in __read_once_size include/linux/compiler.h:194 [inline]
BUG: KASAN: use-after-free in rhashtable_last_table+0x162/0x180 lib/rhashtable.c:212
Read of size 8 at addr ffff8880a6497b70 by task kworker/0:0/5

CPU: 0 PID: 5 Comm: kworker/0:0 Not tainted 5.2.0-rc1+ #2
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
Workqueue: events rht_deferred_worker
Call Trace:
 __dump_stack lib/dump_stack.c:77 [inline]
 dump_stack+0x172/0x1f0 lib/dump_stack.c:113
 print_address_description.cold+0x7c/0x20d mm/kasan/report.c:188
 __kasan_report.cold+0x1b/0x40 mm/kasan/report.c:317
 kasan_report+0x12/0x20 mm/kasan/common.c:614
 __asan_report_load8_noabort+0x14/0x20 mm/kasan/generic_report.c:132
 __read_once_size include/linux/compiler.h:194 [inline]
 rhashtable_last_table+0x162/0x180 lib/rhashtable.c:212
 rht_deferred_worker+0x111/0x2030 lib/rhashtable.c:411
 process_one_work+0x989/0x1790 kernel/workqueue.c:2269
 worker_thread+0x98/0xe40 kernel/workqueue.c:2415
 kthread+0x354/0x420 kernel/kthread.c:255
 ret_from_fork+0x24/0x30 arch/x86/entry/entry_64.S:352

Allocated by task 32687:
 save_stack+0x23/0x90 mm/kasan/common.c:71
 set_track mm/kasan/common.c:79 [inline]
 __kasan_kmalloc mm/kasan/common.c:489 [inline]
 __kasan_kmalloc.constprop.0+0xcf/0xe0 mm/kasan/common.c:462
 kasan_kmalloc+0x9/0x10 mm/kasan/common.c:503
 __do_kmalloc_node mm/slab.c:3620 [inline]
 __kmalloc_node+0x4e/0x70 mm/slab.c:3627
 kmalloc_node include/linux/slab.h:590 [inline]
 kvmalloc_node+0x68/0x100 mm/util.c:431
 kvmalloc include/linux/mm.h:637 [inline]
 kvzalloc include/linux/mm.h:645 [inline]
 bucket_table_alloc+0x90/0x480 lib/rhashtable.c:178
 rhashtable_init+0x3f4/0x7b0 lib/rhashtable.c:1057
 inet_frags_init_net include/net/inet_frag.h:109 [inline]
 ipv4_frags_init_net+0x182/0x410 net/ipv4/ip_fragment.c:683
 ops_init+0xb3/0x410 net/core/net_namespace.c:130
 setup_net+0x2d3/0x740 net/core/net_namespace.c:316
 copy_net_ns+0x1df/0x340 net/core/net_namespace.c:439
 create_new_namespaces+0x400/0x7b0 kernel/nsproxy.c:107
 unshare_nsproxy_namespaces+0xc2/0x200 kernel/nsproxy.c:206
 ksys_unshare+0x440/0x980 kernel/fork.c:2692
 __do_sys_unshare kernel/fork.c:2760 [inline]
 __se_sys_unshare kernel/fork.c:2758 [inline]
 __x64_sys_unshare+0x31/0x40 kernel/fork.c:2758
 do_syscall_64+0xfd/0x680 arch/x86/entry/common.c:301
 entry_SYSCALL_64_after_hwframe+0x49/0xbe

Freed by task 7:
 save_stack+0x23/0x90 mm/kasan/common.c:71
 set_track mm/kasan/common.c:79 [inline]
 __kasan_slab_free+0x102/0x150 mm/kasan/common.c:451
 kasan_slab_free+0xe/0x10 mm/kasan/common.c:459
 __cache_free mm/slab.c:3432 [inline]
 kfree+0xcf/0x220 mm/slab.c:3755
 kvfree+0x61/0x70 mm/util.c:460
 bucket_table_free+0x69/0x150 lib/rhashtable.c:108
 rhashtable_free_and_destroy+0x165/0x8b0 lib/rhashtable.c:1155
 inet_frags_exit_net+0x3d/0x50 net/ipv4/inet_fragment.c:152
 ipv4_frags_exit_net+0x73/0x90 net/ipv4/ip_fragment.c:695
 ops_exit_list.isra.0+0xaa/0x150 net/core/net_namespace.c:154
 cleanup_net+0x3fb/0x960 net/core/net_namespace.c:553
 process_one_work+0x989/0x1790 kernel/workqueue.c:2269
 worker_thread+0x98/0xe40 kernel/workqueue.c:2415
 kthread+0x354/0x420 kernel/kthread.c:255
 ret_from_fork+0x24/0x30 arch/x86/entry/entry_64.S:352

The buggy address belongs to the object at ffff8880a6497b40
 which belongs to the cache kmalloc-1k of size 1024
The buggy address is located 48 bytes inside of
 1024-byte region [ffff8880a6497b40, ffff8880a6497f40)
The buggy address belongs to the page:
page:ffffea0002992580 refcount:1 mapcount:0 mapping:ffff8880aa400ac0 index:0xffff8880a64964c0 compound_mapcount: 0
flags: 0x1fffc0000010200(slab|head)
raw: 01fffc0000010200 ffffea0002916e88 ffffea000218fe08 ffff8880aa400ac0
raw: ffff8880a64964c0 ffff8880a6496040 0000000100000005 0000000000000000
page dumped because: kasan: bad access detected

Memory state around the buggy address:
 ffff8880a6497a00: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
 ffff8880a6497a80: fb fb fb fb fb fb fb fb fc fc fc fc fc fc fc fc
>ffff8880a6497b00: fc fc fc fc fc fc fc fc fb fb fb fb fb fb fb fb
                                                             ^
 ffff8880a6497b80: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
 ffff8880a6497c00: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb

Fixes: 648700f76b ("inet: frags: use rhashtables for reassembly units")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reported-by: syzbot <syzkaller@googlegroups.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-05-26 14:08:05 -07:00
Eric Dumazet
4907abc605 net: dynamically allocate fqdir structures
Following patch will add rcu grace period before fqdir
rhashtable destruction, so we need to dynamically allocate
fqdir structures to not force expensive synchronize_rcu() calls
in netns dismantle path.

Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-05-26 14:08:05 -07:00
Eric Dumazet
a39aca678a net: add a net pointer to struct fqdir
fqdir will soon be dynamically allocated.

We need to reach the struct net pointer from fqdir,
so add it, and replace the various container_of() constructs
by direct access to the new field.

Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-05-26 14:08:05 -07:00
Eric Dumazet
9cce45f22c net: rename inet_frags_init_net() to fdir_init()
And pass an extra parameter, since we will soon
dynamically allocate fqdir structures.

Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-05-26 14:08:05 -07:00
Eric Dumazet
89fb900514 net: rename inet_frags_exit_net() to fqdir_exit()
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-05-26 14:08:04 -07:00
Eric Dumazet
6ce3b4dcee inet: rename netns_frags to fqdir
1) struct netns_frags is renamed to struct fqdir
  This structure is really holding many frag queues in a hash table.

2) (struct inet_frag_queue)->net field is renamed to fqdir
  since net is generally associated to a 'struct net' pointer
  in networking stack.

Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-05-26 14:08:04 -07:00
Peter Oskolkov
d8cf757fbd net: remove unused struct inet_frag_queue.fragments field
Now that all users of struct inet_frag_queue have been converted
to use 'rb_fragments', remove the unused 'fragments' field.

Build with `make allyesconfig` succeeded. ip_defrag selftest passed.

Signed-off-by: Peter Oskolkov <posk@google.com>
Acked-by: Stefan Schmidt <stefan@datenfreihafen.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-02-26 08:27:05 -08:00
Peter Oskolkov
c23f35d19d net: IP defrag: encapsulate rbtree defrag code into callable functions
This is a refactoring patch: without changing runtime behavior,
it moves rbtree-related code from IPv4-specific files/functions
into .h/.c defrag files shared with IPv6 defragmentation code.

Signed-off-by: Peter Oskolkov <posk@google.com>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Florian Westphal <fw@strlen.de>
Cc: Tom Herbert <tom@herbertland.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-01-25 21:37:11 -08:00
Peter Oskolkov
353c9cb360 ip: add helpers to process in-order fragments faster.
This patch introduces several helper functions/macros that will be
used in the follow-up patch. No runtime changes yet.

The new logic (fully implemented in the second patch) is as follows:

* Nodes in the rb-tree will now contain not single fragments, but lists
  of consecutive fragments ("runs").

* At each point in time, the current "active" run at the tail is
  maintained/tracked. Fragments that arrive in-order, adjacent
  to the previous tail fragment, are added to this tail run without
  triggering the re-balancing of the rb-tree.

* If a fragment arrives out of order with the offset _before_ the tail run,
  it is inserted into the rb-tree as a single fragment.

* If a fragment arrives after the current tail fragment (with a gap),
  it starts a new "tail" run, as is inserted into the rb-tree
  at the end as the head of the new run.

skb->cb is used to store additional information
needed here (suggested by Eric Dumazet).

Reported-by: Willem de Bruijn <willemb@google.com>
Signed-off-by: Peter Oskolkov <posk@google.com>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Florian Westphal <fw@strlen.de>
Signed-off-by: David S. Miller <davem@davemloft.net>
2018-08-11 17:54:18 -07:00
Peter Oskolkov
fa0f527358 ip: use rb trees for IP frag queue.
Similar to TCP OOO RX queue, it makes sense to use rb trees to store
IP fragments, so that OOO fragments are inserted faster.

Tested:

- a follow-up patch contains a rather comprehensive ip defrag
  self-test (functional)
- ran neper `udp_stream -c -H <host> -F 100 -l 300 -T 20`:
    netstat --statistics
    Ip:
        282078937 total packets received
        0 forwarded
        0 incoming packets discarded
        946760 incoming packets delivered
        18743456 requests sent out
        101 fragments dropped after timeout
        282077129 reassemblies required
        944952 packets reassembled ok
        262734239 packet reassembles failed
   (The numbers/stats above are somewhat better re:
    reassemblies vs a kernel without this patchset. More
    comprehensive performance testing TBD).

Reported-by: Jann Horn <jannh@google.com>
Reported-by: Juha-Matti Tilli <juha-matti.tilli@iki.fi>
Suggested-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Peter Oskolkov <posk@google.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Florian Westphal <fw@strlen.de>
Signed-off-by: David S. Miller <davem@davemloft.net>
2018-08-05 17:16:46 -07:00
NeilBrown
0eb71a9da5 rhashtable: split rhashtable.h
Due to the use of rhashtables in net namespaces,
rhashtable.h is included in lots of the kernel,
so a small changes can required a large recompilation.
This makes development painful.

This patch splits out rhashtable-types.h which just includes
the major type declarations, and does not include (non-trivial)
inline code.  rhashtable.h is no longer included by anything
in the include/ directory.
Common include files only include rhashtable-types.h so a large
recompilation is only triggered when that changes.

Acked-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: NeilBrown <neilb@suse.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2018-06-22 13:43:27 +09:00
Eric Dumazet
c2615cf5a7 inet: frags: reorganize struct netns_frags
Put the read-mostly fields in a separate cache line
at the beginning of struct netns_frags, to reduce
false sharing noticed in inet_frag_kill()

Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2018-03-31 23:25:39 -04:00
Eric Dumazet
3e67f106f6 inet: frags: break the 2GB limit for frags storage
Some users are willing to provision huge amounts of memory to be able
to perform reassembly reasonnably well under pressure.

Current memory tracking is using one atomic_t and integers.

Switch to atomic_long_t so that 64bit arches can use more than 2GB,
without any cost for 32bit arches.

Note that this patch avoids an overflow error, if high_thresh was set
to ~2GB, since this test in inet_frag_alloc() was never true :

if (... || frag_mem_limit(nf) > nf->high_thresh)

Tested:

$ echo 16000000000 >/proc/sys/net/ipv4/ipfrag_high_thresh

<frag DDOS>

$ grep FRAG /proc/net/sockstat
FRAG: inuse 14705885 memory 16000002880

$ nstat -n ; sleep 1 ; nstat | grep Reas
IpReasmReqds                    3317150            0.0
IpReasmFails                    3317112            0.0

Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2018-03-31 23:25:39 -04:00
Eric Dumazet
2d44ed22e6 inet: frags: remove inet_frag_maybe_warn_overflow()
This function is obsolete, after rhashtable addition to inet defrag.

Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2018-03-31 23:25:39 -04:00
Eric Dumazet
399d1404be inet: frags: get rif of inet_frag_evicting()
This refactors ip_expire() since one indentation level is removed.

Note: in the future, we should try hard to avoid the skb_clone()
since this is a serious performance cost.
Under DDOS, the ICMP message wont be sent because of rate limits.

Fact that ip6_expire_frag_queue() does not use skb_clone() is
disturbing too. Presumably IPv6 should have the same
issue than the one we fixed in commit ec4fbd6475
("inet: frag: release spinlock before calling icmp_send()")

Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2018-03-31 23:25:39 -04:00
Eric Dumazet
6befe4a78b inet: frags: remove some helpers
Remove sum_frag_mem_limit(), ip_frag_mem() & ip6_frag_mem()

Also since we use rhashtable we can bring back the number of fragments
in "grep FRAG /proc/net/sockstat /proc/net/sockstat6" that was
removed in commit 434d305405 ("inet: frag: don't account number
of fragment queues")

Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2018-03-31 23:25:39 -04:00
Eric Dumazet
648700f76b inet: frags: use rhashtables for reassembly units
Some applications still rely on IP fragmentation, and to be fair linux
reassembly unit is not working under any serious load.

It uses static hash tables of 1024 buckets, and up to 128 items per bucket (!!!)

A work queue is supposed to garbage collect items when host is under memory
pressure, and doing a hash rebuild, changing seed used in hash computations.

This work queue blocks softirqs for up to 25 ms when doing a hash rebuild,
occurring every 5 seconds if host is under fire.

Then there is the problem of sharing this hash table for all netns.

It is time to switch to rhashtables, and allocate one of them per netns
to speedup netns dismantle, since this is a critical metric these days.

Lookup is now using RCU. A followup patch will even remove
the refcount hold/release left from prior implementation and save
a couple of atomic operations.

Before this patch, 16 cpus (16 RX queue NIC) could not handle more
than 1 Mpps frags DDOS.

After the patch, I reach 9 Mpps without any tuning, and can use up to 2GB
of storage for the fragments (exact number depends on frags being evicted
after timeout)

$ grep FRAG /proc/net/sockstat
FRAG: inuse 1966916 memory 2140004608

A followup patch will change the limits for 64bit arches.

Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Kirill Tkhai <ktkhai@virtuozzo.com>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: Florian Westphal <fw@strlen.de>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Alexander Aring <alex.aring@gmail.com>
Cc: Stefan Schmidt <stefan@osg.samsung.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2018-03-31 23:25:39 -04:00
Eric Dumazet
093ba72914 inet: frags: add a pointer to struct netns_frags
In order to simplify the API, add a pointer to struct inet_frags.
This will allow us to make things less complex.

These functions no longer have a struct inet_frags parameter :

inet_frag_destroy(struct inet_frag_queue *q  /*, struct inet_frags *f */)
inet_frag_put(struct inet_frag_queue *q /*, struct inet_frags *f */)
inet_frag_kill(struct inet_frag_queue *q /*, struct inet_frags *f */)
inet_frags_exit_net(struct netns_frags *nf /*, struct inet_frags *f */)
ip6_expire_frag_queue(struct net *net, struct frag_queue *fq)

Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2018-03-31 23:25:38 -04:00
Eric Dumazet
787bea7748 inet: frags: change inet_frags_init_net() return value
We will soon initialize one rhashtable per struct netns_frags
in inet_frags_init_net().

This patch changes the return value to eventually propagate an
error.

Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2018-03-31 23:25:38 -04:00
David S. Miller
2a171788ba Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
Files removed in 'net-next' had their license header updated
in 'net'.  We take the remove from 'net-next'.

Signed-off-by: David S. Miller <davem@davemloft.net>
2017-11-04 09:26:51 +09:00
Greg Kroah-Hartman
b24413180f License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.

By default all files without license information are under the default
license of the kernel, which is GPL version 2.

Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier.  The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.

This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.

How this work was done:

Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
 - file had no licensing information it it.
 - file was a */uapi/* one with no licensing information in it,
 - file was a */uapi/* one with existing licensing information,

Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.

The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne.  Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.

The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed.  Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.

Criteria used to select files for SPDX license identifier tagging was:
 - Files considered eligible had to be source code files.
 - Make and config files were included as candidates if they contained >5
   lines of source
 - File already had some variant of a license header in it (even if <5
   lines).

All documentation files were explicitly excluded.

The following heuristics were used to determine which SPDX license
identifiers to apply.

 - when both scanners couldn't find any license traces, file was
   considered to have no license information in it, and the top level
   COPYING file license applied.

   For non */uapi/* files that summary was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0                                              11139

   and resulted in the first patch in this series.

   If that file was a */uapi/* path one, it was "GPL-2.0 WITH
   Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0 WITH Linux-syscall-note                        930

   and resulted in the second patch in this series.

 - if a file had some form of licensing information in it, and was one
   of the */uapi/* ones, it was denoted with the Linux-syscall-note if
   any GPL family license was found in the file or had no licensing in
   it (per prior point).  Results summary:

   SPDX license identifier                            # files
   ---------------------------------------------------|------
   GPL-2.0 WITH Linux-syscall-note                       270
   GPL-2.0+ WITH Linux-syscall-note                      169
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
   LGPL-2.1+ WITH Linux-syscall-note                      15
   GPL-1.0+ WITH Linux-syscall-note                       14
   ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
   LGPL-2.0+ WITH Linux-syscall-note                       4
   LGPL-2.1 WITH Linux-syscall-note                        3
   ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
   ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1

   and that resulted in the third patch in this series.

 - when the two scanners agreed on the detected license(s), that became
   the concluded license(s).

 - when there was disagreement between the two scanners (one detected a
   license but the other didn't, or they both detected different
   licenses) a manual inspection of the file occurred.

 - In most cases a manual inspection of the information in the file
   resulted in a clear resolution of the license that should apply (and
   which scanner probably needed to revisit its heuristics).

 - When it was not immediately clear, the license identifier was
   confirmed with lawyers working with the Linux Foundation.

 - If there was any question as to the appropriate license identifier,
   the file was flagged for further research and to be revisited later
   in time.

In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.

Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights.  The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.

Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.

In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.

Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
 - a full scancode scan run, collecting the matched texts, detected
   license ids and scores
 - reviewing anything where there was a license detected (about 500+
   files) to ensure that the applied SPDX license was correct
 - reviewing anything where there was no detection but the patch license
   was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
   SPDX license was correct

This produced a worksheet with 20 files needing minor correction.  This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.

These .csv files were then reviewed by Greg.  Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected.  This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.)  Finally Greg ran the script using the .csv files to
generate the patches.

Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-02 11:10:55 +01:00
Kees Cook
78802011fb inet: frags: Convert timers to use timer_setup()
In preparation for unconditionally passing the struct timer_list pointer to
all timer callbacks, switch to using the new timer_setup() and from_timer()
to pass the timer pointer explicitly.

Cc: Alexander Aring <alex.aring@gmail.com>
Cc: Stefan Schmidt <stefan@osg.samsung.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
Cc: Hideaki YOSHIFUJI <yoshfuji@linux-ipv6.org>
Cc: Pablo Neira Ayuso <pablo@netfilter.org>
Cc: Jozsef Kadlecsik <kadlec@blackhole.kfki.hu>
Cc: Florian Westphal <fw@strlen.de>
Cc: linux-wpan@vger.kernel.org
Cc: netdev@vger.kernel.org
Cc: netfilter-devel@vger.kernel.org
Cc: coreteam@netfilter.org
Signed-off-by: Kees Cook <keescook@chromium.org>
Acked-by: Stefan Schmidt <stefan@osg.samsung.com> # for ieee802154
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-18 12:39:55 +01:00
Jesper Dangaard Brouer
5a63643e58 Revert "net: fix percpu memory leaks"
This reverts commit 1d6119baf0.

After reverting commit 6d7b857d54 ("net: use lib/percpu_counter API
for fragmentation mem accounting") then here is no need for this
fix-up patch.  As percpu_counter is no longer used, it cannot
memory leak it any-longer.

Fixes: 6d7b857d54 ("net: use lib/percpu_counter API for fragmentation mem accounting")
Fixes: 1d6119baf0 ("net: fix percpu memory leaks")
Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-09-03 11:01:05 -07:00
Jesper Dangaard Brouer
fb452a1aa3 Revert "net: use lib/percpu_counter API for fragmentation mem accounting"
This reverts commit 6d7b857d54.

There is a bug in fragmentation codes use of the percpu_counter API,
that can cause issues on systems with many CPUs.

The frag_mem_limit() just reads the global counter (fbc->count),
without considering other CPUs can have upto batch size (130K) that
haven't been subtracted yet.  Due to the 3MBytes lower thresh limit,
this become dangerous at >=24 CPUs (3*1024*1024/130000=24).

The correct API usage would be to use __percpu_counter_compare() which
does the right thing, and takes into account the number of (online)
CPUs and batch size, to account for this and call __percpu_counter_sum()
when needed.

We choose to revert the use of the lib/percpu_counter API for frag
memory accounting for several reasons:

1) On systems with CPUs > 24, the heavier fully locked
   __percpu_counter_sum() is always invoked, which will be more
   expensive than the atomic_t that is reverted to.

Given systems with more than 24 CPUs are becoming common this doesn't
seem like a good option.  To mitigate this, the batch size could be
decreased and thresh be increased.

2) The add_frag_mem_limit+sub_frag_mem_limit pairs happen on the RX
   CPU, before SKBs are pushed into sockets on remote CPUs.  Given
   NICs can only hash on L2 part of the IP-header, the NIC-RXq's will
   likely be limited.  Thus, a fair chance that atomic add+dec happen
   on the same CPU.

Revert note that commit 1d6119baf0 ("net: fix percpu memory leaks")
removed init_frag_mem_limit() and instead use inet_frags_init_net().
After this revert, inet_frags_uninit_net() becomes empty.

Fixes: 6d7b857d54 ("net: use lib/percpu_counter API for fragmentation mem accounting")
Fixes: 1d6119baf0 ("net: fix percpu memory leaks")
Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Acked-by: Florian Westphal <fw@strlen.de>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-09-03 11:01:05 -07:00
Linus Torvalds
a4c20b9a57 Merge branch 'for-4.13' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu
Pull percpu updates from Tejun Heo:
 "These are the percpu changes for the v4.13-rc1 merge window. There are
  a couple visibility related changes - tracepoints and allocator stats
  through debugfs, along with __ro_after_init markings and a cosmetic
  rename in percpu_counter.

  Please note that the simple O(#elements_in_the_chunk) area allocator
  used by percpu allocator is again showing scalability issues,
  primarily with bpf allocating and freeing large number of counters.
  Dennis is working on the replacement allocator and the percpu
  allocator will be seeing increased churns in the coming cycles"

* 'for-4.13' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu:
  percpu: fix static checker warnings in pcpu_destroy_chunk
  percpu: fix early calls for spinlock in pcpu_stats
  percpu: resolve err may not be initialized in pcpu_alloc
  percpu_counter: Rename __percpu_counter_add to percpu_counter_add_batch
  percpu: add tracepoint support for percpu memory
  percpu: expose statistics about percpu memory via debugfs
  percpu: migrate percpu data structures to internal header
  percpu: add missing lockdep_assert_held to func pcpu_free_area
  mark most percpu globals as __ro_after_init
2017-07-06 08:59:41 -07:00
Reshetova, Elena
edcb691871 net: convert inet_frag_queue.refcnt from atomic_t to refcount_t
refcount_t type and corresponding API should be
used instead of atomic_t when the variable is used as
a reference counter. This allows to avoid accidental
refcounter overflows that might lead to use-after-free
situations.

Signed-off-by: Elena Reshetova <elena.reshetova@intel.com>
Signed-off-by: Hans Liljestrand <ishkamiel@gmail.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: David Windsor <dwindsor@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-01 07:39:09 -07:00
Nikolay Borisov
104b4e5139 percpu_counter: Rename __percpu_counter_add to percpu_counter_add_batch
Currently, percpu_counter_add is a wrapper around __percpu_counter_add
which is preempt safe due to explicit calls to preempt_disable.  Given
how __ prefix is used in percpu related interfaces, the naming
unfortunately creates the false sense that __percpu_counter_add is
less safe than percpu_counter_add.  In terms of context-safety,
they're equivalent.  The only difference is that the __ version takes
a batch parameter.

Make this a bit more explicit by just renaming __percpu_counter_add to
percpu_counter_add_batch.

This patch doesn't cause any functional changes.

tj: Minor updates to patch description for clarity.  Cosmetic
    indentation updates.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Chris Mason <clm@fb.com>
Cc: Josef Bacik <jbacik@fb.com>
Cc: David Sterba <dsterba@suse.com>
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Cc: Jan Kara <jack@suse.com>
Cc: Jens Axboe <axboe@fb.com>
Cc: linux-mm@kvack.org
Cc: "David S. Miller" <davem@davemloft.net>
2017-06-20 15:42:32 -04:00
Alexey Dobriyan
4c0ebd6fed net: make struct inet_frags::qsize unsigned
This field is sizeof of corresponding kmem_cache so it can't be negative.

Prepare for 32-bit kmem_cache_create().

Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-05-23 11:13:19 -04:00
Eric Dumazet
c2a2efbbfc net: remove bh disabling around percpu_counter accesses
Shaohua Li made percpu_counter irq safe in commit 098faf5805
("percpu_counter: make APIs irq safe")

We can safely remove BH disable/enable sections around various
percpu_counter manipulations.

Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-01-20 11:27:22 -05:00
Nikolay Borisov
0fbf4cb27e ipv4: namespacify ip fragment max dist sysctl knob
Signed-off-by: Nikolay Borisov <kernel@kyup.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-02-16 20:42:54 -05:00
Florian Westphal
a72a5e2d34 inet: kill unused skb_free op
The only user was removed in commit
029f7f3b87 ("netfilter: ipv6: nf_defrag: avoid/free clone operations").

Signed-off-by: Florian Westphal <fw@strlen.de>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-01-05 22:25:57 -05:00
Eric Dumazet
1d6119baf0 net: fix percpu memory leaks
This patch fixes following problems :

1) percpu_counter_init() can return an error, therefore
  init_frag_mem_limit() must propagate this error so that
  inet_frags_init_net() can do the same up to its callers.

2) If ip[46]_frags_ns_ctl_register() fail, we must unwind
   properly and free the percpu_counter.

Without this fix, we leave freed object in percpu_counters
global list (if CONFIG_HOTPLUG_CPU) leading to crashes.

This bug was detected by KASAN and syzkaller tool
(http://github.com/google/syzkaller)

Fixes: 6d7b857d54 ("net: use lib/percpu_counter API for fragmentation mem accounting")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Cc: Hannes Frederic Sowa <hannes@stressinduktion.org>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Acked-by: Hannes Frederic Sowa <hannes@stressinduktion.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-11-02 22:47:14 -05:00
Nikolay Aleksandrov
caaecdd3d3 inet: frags: remove INET_FRAG_EVICTED and use list_evictor for the test
We can simply remove the INET_FRAG_EVICTED flag to avoid all the flags
race conditions with the evictor and use a participation test for the
evictor list, when we're at that point (after inet_frag_kill) in the
timer there're 2 possible cases:

1. The evictor added the entry to its evictor list while the timer was
waiting for the chainlock
or
2. The timer unchained the entry and the evictor won't see it

In both cases we should be able to see list_evictor correctly due
to the sync on the chainlock.

Joint work with Florian Westphal.

Tested-by: Frank Schreuder <fschreuder@transip.nl>
Signed-off-by: Nikolay Aleksandrov <nikolay@cumulusnetworks.com>
Signed-off-by: Florian Westphal <fw@strlen.de>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-07-26 21:00:15 -07:00
Florian Westphal
0e60d245a0 inet: frag: change *_frag_mem_limit functions to take netns_frags as argument
Followup patch will call it after inet_frag_queue was freed, so q->net
doesn't work anymore (but netf = q->net; free(q); mem_limit(netf) would).

Tested-by: Frank Schreuder <fschreuder@transip.nl>
Signed-off-by: Florian Westphal <fw@strlen.de>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-07-26 21:00:14 -07:00
Florian Westphal
d1fe19444d inet: frag: don't re-use chainlist for evictor
commit 65ba1f1ec0 ("inet: frags: fix a race between inet_evict_bucket
and inet_frag_kill") describes the bug, but the fix doesn't work reliably.

Problem is that ->flags member can be set on other cpu without chainlock
being held by that task, i.e. the RMW-Cycle can clear INET_FRAG_EVICTED
bit after we put the element on the evictor private list.

We can crash when walking the 'private' evictor list since an element can
be deleted from list underneath the evictor.

Join work with Nikolay Alexandrov.

Fixes: b13d3cbfb8 ("inet: frag: move eviction of queues to work queue")
Reported-by: Johan Schuijt <johan@transip.nl>
Tested-by: Frank Schreuder <fschreuder@transip.nl>
Signed-off-by: Nikolay Alexandrov <nikolay@cumulusnetworks.com>
Signed-off-by: Florian Westphal <fw@strlen.de>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-07-26 21:00:14 -07:00
Florian Westphal
d6b915e29f ip_fragment: don't forward defragmented DF packet
We currently always send fragments without DF bit set.

Thus, given following setup:

mtu1500 - mtu1500:1400 - mtu1400:1280 - mtu1280
   A           R1              R2         B

Where R1 and R2 run linux with netfilter defragmentation/conntrack
enabled, then if Host A sent a fragmented packet _with_ DF set to B, R1
will respond with icmp too big error if one of these fragments exceeded
1400 bytes.

However, if R1 receives fragment sizes 1200 and 100, it would
forward the reassembled packet without refragmenting, i.e.
R2 will send an icmp error in response to a packet that was never sent,
citing mtu that the original sender never exceeded.

The other minor issue is that a refragmentation on R1 will conceal the
MTU of R2-B since refragmentation does not set DF bit on the fragments.

This modifies ip_fragment so that we track largest fragment size seen
both for DF and non-DF packets, and set frag_max_size to the largest
value.

If the DF fragment size is larger or equal to the non-df one, we will
consider the packet a path mtu probe:
We set DF bit on the reassembled skb and also tag it with a new IPCB flag
to force refragmentation even if skb fits outdev mtu.

We will also set DF bit on each fragment in this case.

Joint work with Hannes Frederic Sowa.

Reported-by: Jesse Gross <jesse@nicira.com>
Signed-off-by: Florian Westphal <fw@strlen.de>
Acked-by: Hannes Frederic Sowa <hannes@stressinduktion.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-05-27 13:03:31 -04:00
Tejun Heo
908c7f1949 percpu_counter: add @gfp to percpu_counter_init()
Percpu allocator now supports allocation mask.  Add @gfp to
percpu_counter_init() so that !GFP_KERNEL allocation masks can be used
with percpu_counters too.

We could have left percpu_counter_init() alone and added
percpu_counter_init_gfp(); however, the number of users isn't that
high and introducing _gfp variants to all percpu data structures would
be quite ugly, so let's just do the conversion.  This is the one with
the most users.  Other percpu data structures are a lot easier to
convert.

This patch doesn't make any functional difference.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Jan Kara <jack@suse.cz>
Acked-by: "David S. Miller" <davem@davemloft.net>
Cc: x86@kernel.org
Cc: Jens Axboe <axboe@kernel.dk>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Andrew Morton <akpm@linux-foundation.org>
2014-09-08 09:51:29 +09:00
Nikolay Aleksandrov
d4ad4d22e7 inet: frags: use kmem_cache for inet_frag_queue
Use kmem_cache to allocate/free inet_frag_queue objects since they're
all the same size per inet_frags user and are alloced/freed in high volumes
thus making it a perfect case for kmem_cache.

Signed-off-by: Nikolay Aleksandrov <nikolay@redhat.com>
Acked-by: Florian Westphal <fw@strlen.de>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-08-02 15:31:31 -07:00
Nikolay Aleksandrov
1ab1934ed8 inet: frags: enum the flag definitions and add descriptions
Move the flags to an enum definion, swap FIRST_IN/LAST_IN to be in increasing
order and add comments explaining each flag and the inet_frag_queue struct
members.

Signed-off-by: Nikolay Aleksandrov <nikolay@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-08-02 15:31:31 -07:00
Nikolay Aleksandrov
06aa8b8a03 inet: frags: rename last_in to flags
The last_in field has been used to store various flags different from
first/last frag in so give it a more descriptive name: flags.

Signed-off-by: Nikolay Aleksandrov <nikolay@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-08-02 15:31:31 -07:00
Florian Westphal
ab1c724f63 inet: frag: use seqlock for hash rebuild
rehash is rare operation, don't force readers to take
the read-side rwlock.

Instead, we only have to detect the (rare) case where
the secret was altered while we are trying to insert
a new inetfrag queue into the table.

If it was changed, drop the bucket lock and recompute
the hash to get the 'new' chain bucket that we have to
insert into.

Joint work with Nikolay Aleksandrov.

Signed-off-by: Florian Westphal <fw@strlen.de>
Signed-off-by: Nikolay Aleksandrov <nikolay@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-07-27 22:34:36 -07:00
Florian Westphal
e3a57d18b0 inet: frag: remove periodic secret rebuild timer
merge functionality into the eviction workqueue.

Instead of rebuilding every n seconds, take advantage of the upper
hash chain length limit.

If we hit it, mark table for rebuild and schedule workqueue.
To prevent frequent rebuilds when we're completely overloaded,
don't rebuild more than once every 5 seconds.

ipfrag_secret_interval sysctl is now obsolete and has been marked as
deprecated, it still can be changed so scripts won't be broken but it
won't have any effect. A comment is left above each unused secret_timer
variable to avoid confusion.

Joint work with Nikolay Aleksandrov.

Signed-off-by: Florian Westphal <fw@strlen.de>
Signed-off-by: Nikolay Aleksandrov <nikolay@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-07-27 22:34:36 -07:00
Florian Westphal
3fd588eb90 inet: frag: remove lru list
no longer used.

Signed-off-by: Florian Westphal <fw@strlen.de>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-07-27 22:34:36 -07:00
Florian Westphal
434d305405 inet: frag: don't account number of fragment queues
The 'nqueues' counter is protected by the lru list lock,
once thats removed this needs to be converted to atomic
counter.  Given this isn't used for anything except for
reporting it to userspace via /proc, just remove it.

We still report the memory currently used by fragment
reassembly queues.

Signed-off-by: Florian Westphal <fw@strlen.de>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-07-27 22:34:36 -07:00
Florian Westphal
b13d3cbfb8 inet: frag: move eviction of queues to work queue
When the high_thresh limit is reached we try to toss the 'oldest'
incomplete fragment queues until memory limits are below the low_thresh
value.  This happens in softirq/packet processing context.

This has two drawbacks:

1) processors might evict a queue that was about to be completed
by another cpu, because they will compete wrt. resource usage and
resource reclaim.

2) LRU list maintenance is expensive.

But when constantly overloaded, even the 'least recently used' element is
recent, so removing 'lru' queue first is not 'fairer' than removing any
other fragment queue.

This moves eviction out of the fast path:

When the low threshold is reached, a work queue is scheduled
which then iterates over the table and removes the queues that exceed
the memory limits of the namespace. It sets a new flag called
INET_FRAG_EVICTED on the evicted queues so the proper counters will get
incremented when the queue is forcefully expired.

When the high threshold is reached, no more fragment queues are
created until we're below the limit again.

The LRU list is now unused and will be removed in a followup patch.

Joint work with Nikolay Aleksandrov.

Suggested-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Florian Westphal <fw@strlen.de>
Signed-off-by: Nikolay Aleksandrov <nikolay@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-07-27 22:34:35 -07:00
Florian Westphal
86e93e470c inet: frag: move evictor calls into frag_find function
First step to move eviction handling into a work queue.

We lose two spots that accounted evicted fragments in MIB counters.

Accounting will be restored since the upcoming work-queue evictor
invokes the frag queue timer callbacks instead.

Signed-off-by: Florian Westphal <fw@strlen.de>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-07-27 22:34:35 -07:00