To maximize throughput in systems with asymmetric CPU capacities (e.g.
ARM big.LITTLE) load-balancing has to consider task and CPU utilization
as well as per-CPU compute capacity when load-balancing in addition to
the current average load based load-balancing policy. Tasks with high
utilization that are scheduled on a lower capacity CPU need to be
identified and migrated to a higher capacity CPU if possible to maximize
throughput.
To implement this additional policy an additional group_type
(load-balance scenario) is added: 'group_misfit_task'. This represents
scenarios where a sched_group has one or more tasks that are not
suitable for its per-CPU capacity. 'group_misfit_task' is only considered
if the system is not overloaded or imbalanced ('group_imbalanced' or
'group_overloaded').
Identifying misfit tasks requires the rq lock to be held. To avoid
taking remote rq locks to examine source sched_groups for misfit tasks,
each CPU is responsible for tracking misfit tasks themselves and update
the rq->misfit_task flag. This means checking task utilization when
tasks are scheduled and on sched_tick.
Signed-off-by: Morten Rasmussen <morten.rasmussen@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dietmar.eggemann@arm.com
Cc: gaku.inami.xh@renesas.com
Cc: valentin.schneider@arm.com
Cc: vincent.guittot@linaro.org
Link: http://lkml.kernel.org/r/1530699470-29808-3-git-send-email-morten.rasmussen@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The existing asymmetric CPU capacity code should cause minimal overhead
for others. Putting it behind a static_key, it has been done for SMT
optimizations, would make it easier to extend and improve without
causing harm to others moving forward.
Signed-off-by: Morten Rasmussen <morten.rasmussen@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dietmar.eggemann@arm.com
Cc: gaku.inami.xh@renesas.com
Cc: valentin.schneider@arm.com
Cc: vincent.guittot@linaro.org
Link: http://lkml.kernel.org/r/1530699470-29808-2-git-send-email-morten.rasmussen@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Fix kernel-doc warning for missing 'flags' parameter description:
../kernel/sched/fair.c:3371: warning: Function parameter or member 'flags' not described in 'attach_entity_load_avg'
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: ea14b57e8a ("sched/cpufreq: Provide migration hint")
Link: http://lkml.kernel.org/r/cdda0d42-880d-4229-a9f7-5899c977a063@infradead.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
It can happen that load_balance() finds a busiest group and then a
busiest rq but the calculated imbalance is in fact 0.
In such situation, detach_tasks() returns immediately and lets the
flag LBF_ALL_PINNED set. The busiest CPU is then wrongly assumed to
have pinned tasks and removed from the load balance mask. then, we
redo a load balance without the busiest CPU. This creates wrong load
balance situation and generates wrong task migration.
If the calculated imbalance is 0, it's useless to try to find a
busiest rq as no task will be migrated and we can return immediately.
This situation can happen with heterogeneous system or smp system when
RT tasks are decreasing the capacity of some CPUs.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dietmar.eggemann@arm.com
Cc: jhugo@codeaurora.org
Link: http://lkml.kernel.org/r/1536306664-29827-1-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Since commit:
523e979d31 ("sched/core: Use PELT for scale_rt_capacity()")
scale_rt_capacity() returns the remaining capacity and not a scale factor
to apply on cpu_capacity_orig. arch_scale_cpu() is directly called by
scale_rt_capacity() so we must take the sched_domain argument.
Reported-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 523e979d31 ("sched/core: Use PELT for scale_rt_capacity()")
Link: http://lkml.kernel.org/r/20180904093626.GA23936@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When a task which previously ran on a given CPU is remotely queued to
wake up on that same CPU, there is a period where the task's state is
TASK_WAKING and its vruntime is not normalized. This is not accounted
for in vruntime_normalized() which will cause an error in the task's
vruntime if it is switched from the fair class during this time.
For example if it is boosted to RT priority via rt_mutex_setprio(),
rq->min_vruntime will not be subtracted from the task's vruntime but
it will be added again when the task returns to the fair class. The
task's vruntime will have been erroneously doubled and the effective
priority of the task will be reduced.
Note this will also lead to inflation of all vruntimes since the doubled
vruntime value will become the rq's min_vruntime when other tasks leave
the rq. This leads to repeated doubling of the vruntime and priority
penalty.
Fix this by recognizing a WAKING task's vruntime as normalized only if
sched_remote_wakeup is true. This indicates a migration, in which case
the vruntime would have been normalized in migrate_task_rq_fair().
Based on a similar patch from John Dias <joaodias@google.com>.
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Steve Muckle <smuckle@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Chris Redpath <Chris.Redpath@arm.com>
Cc: John Dias <joaodias@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Miguel de Dios <migueldedios@google.com>
Cc: Morten Rasmussen <Morten.Rasmussen@arm.com>
Cc: Patrick Bellasi <Patrick.Bellasi@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Quentin Perret <quentin.perret@arm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Todd Kjos <tkjos@google.com>
Cc: kernel-team@android.com
Fixes: b5179ac70d ("sched/fair: Prepare to fix fairness problems on migration")
Link: http://lkml.kernel.org/r/20180831224217.169476-1-smuckle@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
update_blocked_averages() is called to periodiccally decay the stalled load
of idle CPUs and to sync all loads before running load balance.
When cfs rq is idle, it trigs a load balance during pick_next_task_fair()
in order to potentially pull tasks and to use this newly idle CPU. This
load balance happens whereas prev task from another class has not been put
and its utilization updated yet. This may lead to wrongly account running
time as idle time for RT or DL classes.
Test that no RT or DL task is running when updating their utilization in
update_blocked_averages().
We still update RT and DL utilization instead of simply skipping them to
make sure that all metrics are synced when used during load balance.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 371bf42732 ("sched/rt: Add rt_rq utilization tracking")
Fixes: 3727e0e163 ("sched/dl: Add dl_rq utilization tracking")
Link: http://lkml.kernel.org/r/1535728975-22799-1-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Merge L1 Terminal Fault fixes from Thomas Gleixner:
"L1TF, aka L1 Terminal Fault, is yet another speculative hardware
engineering trainwreck. It's a hardware vulnerability which allows
unprivileged speculative access to data which is available in the
Level 1 Data Cache when the page table entry controlling the virtual
address, which is used for the access, has the Present bit cleared or
other reserved bits set.
If an instruction accesses a virtual address for which the relevant
page table entry (PTE) has the Present bit cleared or other reserved
bits set, then speculative execution ignores the invalid PTE and loads
the referenced data if it is present in the Level 1 Data Cache, as if
the page referenced by the address bits in the PTE was still present
and accessible.
While this is a purely speculative mechanism and the instruction will
raise a page fault when it is retired eventually, the pure act of
loading the data and making it available to other speculative
instructions opens up the opportunity for side channel attacks to
unprivileged malicious code, similar to the Meltdown attack.
While Meltdown breaks the user space to kernel space protection, L1TF
allows to attack any physical memory address in the system and the
attack works across all protection domains. It allows an attack of SGX
and also works from inside virtual machines because the speculation
bypasses the extended page table (EPT) protection mechanism.
The assoicated CVEs are: CVE-2018-3615, CVE-2018-3620, CVE-2018-3646
The mitigations provided by this pull request include:
- Host side protection by inverting the upper address bits of a non
present page table entry so the entry points to uncacheable memory.
- Hypervisor protection by flushing L1 Data Cache on VMENTER.
- SMT (HyperThreading) control knobs, which allow to 'turn off' SMT
by offlining the sibling CPU threads. The knobs are available on
the kernel command line and at runtime via sysfs
- Control knobs for the hypervisor mitigation, related to L1D flush
and SMT control. The knobs are available on the kernel command line
and at runtime via sysfs
- Extensive documentation about L1TF including various degrees of
mitigations.
Thanks to all people who have contributed to this in various ways -
patches, review, testing, backporting - and the fruitful, sometimes
heated, but at the end constructive discussions.
There is work in progress to provide other forms of mitigations, which
might be less horrible performance wise for a particular kind of
workloads, but this is not yet ready for consumption due to their
complexity and limitations"
* 'l1tf-final' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (75 commits)
x86/microcode: Allow late microcode loading with SMT disabled
tools headers: Synchronise x86 cpufeatures.h for L1TF additions
x86/mm/kmmio: Make the tracer robust against L1TF
x86/mm/pat: Make set_memory_np() L1TF safe
x86/speculation/l1tf: Make pmd/pud_mknotpresent() invert
x86/speculation/l1tf: Invert all not present mappings
cpu/hotplug: Fix SMT supported evaluation
KVM: VMX: Tell the nested hypervisor to skip L1D flush on vmentry
x86/speculation: Use ARCH_CAPABILITIES to skip L1D flush on vmentry
x86/speculation: Simplify sysfs report of VMX L1TF vulnerability
Documentation/l1tf: Remove Yonah processors from not vulnerable list
x86/KVM/VMX: Don't set l1tf_flush_l1d from vmx_handle_external_intr()
x86/irq: Let interrupt handlers set kvm_cpu_l1tf_flush_l1d
x86: Don't include linux/irq.h from asm/hardirq.h
x86/KVM/VMX: Introduce per-host-cpu analogue of l1tf_flush_l1d
x86/irq: Demote irq_cpustat_t::__softirq_pending to u16
x86/KVM/VMX: Move the l1tf_flush_l1d test to vmx_l1d_flush()
x86/KVM/VMX: Replace 'vmx_l1d_flush_always' with 'vmx_l1d_flush_cond'
x86/KVM/VMX: Don't set l1tf_flush_l1d to true from vmx_l1d_flush()
cpu/hotplug: detect SMT disabled by BIOS
...
The metrics for updating scan periods are local or task specific.
Currently this update happens under the numa_group lock, which seems
unnecessary. Hence move this update outside the lock.
Running SPECjbb2005 on a 4 node machine and comparing bops/JVM
JVMS LAST_PATCH WITH_PATCH %CHANGE
16 25355.9 25645.4 1.141
1 72812 72142 -0.92
Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Rik van Riel <riel@surriel.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1529514181-9842-15-git-send-email-srikar@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
task_numa_find_cpu() helps to find the CPU to swap/move the task to.
It's guarded by numa_has_capacity(). However node not having capacity
shouldn't deter a task swapping if it helps NUMA placement.
Further load_too_imbalanced(), which evaluates possibilities of move/swap,
provides similar checks as numa_has_capacity.
Hence remove numa_has_capacity() to enhance possibilities of task
swapping even if load is imbalanced.
Running SPECjbb2005 on a 4 node machine and comparing bops/JVM
JVMS LAST_PATCH WITH_PATCH %CHANGE
16 25657.9 25804.1 0.569
1 74435 73413 -1.37
Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Rik van Riel <riel@surriel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1529514181-9842-13-git-send-email-srikar@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There are checks in migrate_swap_stop() that check if the task/CPU
combination is as per migrate_swap_arg before migrating.
However atleast one of the two tasks to be swapped by migrate_swap() could
have migrated to a completely different CPU before updating the
migrate_swap_arg. The new CPU where the task is currently running could
be a different node too. If the task has migrated, numa balancer might
end up placing a task in a wrong node. Instead of achieving node
consolidation, it may end up spreading the load across nodes.
To avoid that pass the CPUs as additional parameters.
While here, place migrate_swap under CONFIG_NUMA_BALANCING.
Running SPECjbb2005 on a 4 node machine and comparing bops/JVM
JVMS LAST_PATCH WITH_PATCH %CHANGE
16 25377.3 25226.6 -0.59
1 72287 73326 1.437
Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Rik van Riel <riel@surriel.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1529514181-9842-10-git-send-email-srikar@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The task_capacity field in 'struct numa_stats' is redundant.
Also move nr_running for better packing within the struct.
No functional changes.
Running SPECjbb2005 on a 4 node machine and comparing bops/JVM
JVMS LAST_PATCH WITH_PATCH %CHANGE
16 25308.6 25377.3 0.271
1 72964 72287 -0.92
Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Rik van Riel <riel@surriel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1529514181-9842-9-git-send-email-srikar@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently preferred node is set to dst_nid which is the last node in the
iteration whose group weight or task weight is greater than the current
node. However it doesn't guarantee that dst_nid has the numa capacity
to move. It also doesn't guarantee that dst_nid has the best_cpu which
is the CPU/node ideal for node migration.
Lets consider faults on a 4 node system with group weight numbers
in different nodes being in 0 < 1 < 2 < 3 proportion. Consider the task
is running on 3 and 0 is its preferred node but its capacity is full.
Consider nodes 1, 2 and 3 have capacity. Then the task should be
migrated to node 1. Currently the task gets moved to node 2. env.dst_nid
points to the last node whose faults were greater than current node.
Modify to set the preferred node based of best_cpu. Earlier setting
preferred node was skipped if nr_active_nodes is 1. This could result in
the task being moved out of the preferred node to a random node during
regular load balancing.
Also while modifying task_numa_migrate(), use sched_setnuma to set
preferred node. This ensures out numa accounting is correct.
Running SPECjbb2005 on a 4 node machine and comparing bops/JVM
JVMS LAST_PATCH WITH_PATCH %CHANGE
16 25122.9 25549.6 1.698
1 73850 73190 -0.89
Running SPECjbb2005 on a 16 node machine and comparing bops/JVM
JVMS LAST_PATCH WITH_PATCH %CHANGE
8 105930 113437 7.08676
1 178624 196130 9.80047
(numbers from v1 based on v4.17-rc5)
Testcase Time: Min Max Avg StdDev
numa01.sh Real: 435.78 653.81 534.58 83.20
numa01.sh Sys: 121.93 187.18 145.90 23.47
numa01.sh User: 37082.81 51402.80 43647.60 5409.75
numa02.sh Real: 60.64 61.63 61.19 0.40
numa02.sh Sys: 14.72 25.68 19.06 4.03
numa02.sh User: 5210.95 5266.69 5233.30 20.82
numa03.sh Real: 746.51 808.24 780.36 23.88
numa03.sh Sys: 97.26 108.48 105.07 4.28
numa03.sh User: 58956.30 61397.05 60162.95 1050.82
numa04.sh Real: 465.97 519.27 484.81 19.62
numa04.sh Sys: 304.43 359.08 334.68 20.64
numa04.sh User: 37544.16 41186.15 39262.44 1314.91
numa05.sh Real: 411.57 457.20 433.29 16.58
numa05.sh Sys: 230.05 435.48 339.95 67.58
numa05.sh User: 33325.54 36896.31 35637.84 1222.64
Testcase Time: Min Max Avg StdDev %Change
numa01.sh Real: 506.35 794.46 599.06 104.26 -10.76%
numa01.sh Sys: 150.37 223.56 195.99 24.94 -25.55%
numa01.sh User: 43450.69 61752.04 49281.50 6635.33 -11.43%
numa02.sh Real: 60.33 62.40 61.31 0.90 -0.195%
numa02.sh Sys: 18.12 31.66 24.28 5.89 -21.49%
numa02.sh User: 5203.91 5325.32 5260.29 49.98 -0.513%
numa03.sh Real: 696.47 853.62 745.80 57.28 4.6339%
numa03.sh Sys: 85.68 123.71 97.89 13.48 7.3347%
numa03.sh User: 55978.45 66418.63 59254.94 3737.97 1.5323%
numa04.sh Real: 444.05 514.83 497.06 26.85 -2.464%
numa04.sh Sys: 230.39 375.79 316.23 48.58 5.8343%
numa04.sh User: 35403.12 41004.10 39720.80 2163.08 -1.153%
numa05.sh Real: 423.09 460.41 439.57 13.92 -1.428%
numa05.sh Sys: 287.38 480.15 369.37 68.52 -7.964%
numa05.sh User: 34732.12 38016.80 36255.85 1070.51 -1.704%
Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1529514181-9842-5-git-send-email-srikar@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently load_too_imbalance() cares about the slope of imbalance.
It doesn't care of the direction of the imbalance.
However this may not work if nodes that are being compared have
dissimilar capacities. Few nodes might have more cores than other nodes
in the system. Also unlike traditional load balance at a NUMA sched
domain, multiple requests to migrate from the same source node to same
destination node may run in parallel. This can cause huge load
imbalance. This is specially true on a larger machines with either large
cores per node or more number of nodes in the system. Hence allow
move/swap only if the imbalance is going to reduce.
Running SPECjbb2005 on a 4 node machine and comparing bops/JVM
JVMS LAST_PATCH WITH_PATCH %CHANGE
16 25058.2 25122.9 0.25
1 72950 73850 1.23
(numbers from v1 based on v4.17-rc5)
Testcase Time: Min Max Avg StdDev
numa01.sh Real: 516.14 892.41 739.84 151.32
numa01.sh Sys: 153.16 192.99 177.70 14.58
numa01.sh User: 39821.04 69528.92 57193.87 10989.48
numa02.sh Real: 60.91 62.35 61.58 0.63
numa02.sh Sys: 16.47 26.16 21.20 3.85
numa02.sh User: 5227.58 5309.61 5265.17 31.04
numa03.sh Real: 739.07 917.73 795.75 64.45
numa03.sh Sys: 94.46 136.08 109.48 14.58
numa03.sh User: 57478.56 72014.09 61764.48 5343.69
numa04.sh Real: 442.61 715.43 530.31 96.12
numa04.sh Sys: 224.90 348.63 285.61 48.83
numa04.sh User: 35836.84 47522.47 40235.41 3985.26
numa05.sh Real: 386.13 489.17 434.94 43.59
numa05.sh Sys: 144.29 438.56 278.80 105.78
numa05.sh User: 33255.86 36890.82 34879.31 1641.98
Testcase Time: Min Max Avg StdDev %Change
numa01.sh Real: 435.78 653.81 534.58 83.20 38.39%
numa01.sh Sys: 121.93 187.18 145.90 23.47 21.79%
numa01.sh User: 37082.81 51402.80 43647.60 5409.75 31.03%
numa02.sh Real: 60.64 61.63 61.19 0.40 0.637%
numa02.sh Sys: 14.72 25.68 19.06 4.03 11.22%
numa02.sh User: 5210.95 5266.69 5233.30 20.82 0.608%
numa03.sh Real: 746.51 808.24 780.36 23.88 1.972%
numa03.sh Sys: 97.26 108.48 105.07 4.28 4.197%
numa03.sh User: 58956.30 61397.05 60162.95 1050.82 2.661%
numa04.sh Real: 465.97 519.27 484.81 19.62 9.385%
numa04.sh Sys: 304.43 359.08 334.68 20.64 -14.6%
numa04.sh User: 37544.16 41186.15 39262.44 1314.91 2.478%
numa05.sh Real: 411.57 457.20 433.29 16.58 0.380%
numa05.sh Sys: 230.05 435.48 339.95 67.58 -17.9%
numa05.sh User: 33325.54 36896.31 35637.84 1222.64 -2.12%
Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Rik van Riel <riel@surriel.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1529514181-9842-4-git-send-email-srikar@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reuse cpu_util_irq() that has been defined for schedutil and set irq util
to 0 when !CONFIG_IRQ_TIME_ACCOUNTING.
But the compiler is not able to optimize the sequence (at least with
aarch64 GCC 7.2.1):
free *= (max - irq);
free /= max;
when irq is fixed to 0
Add a new inline function scale_irq_capacity() that will scale utilization
when irq is accounted. Reuse this funciton in schedutil which applies
similar formula.
Suggested-by: Ingo Molnar <mingo@redhat.com>
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: rjw@rjwysocki.net
Link: http://lkml.kernel.org/r/1532001606-6689-1-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
interrupt and steal time are the only remaining activities tracked by
rt_avg. Like for sched classes, we can use PELT to track their average
utilization of the CPU. But unlike sched class, we don't track when
entering/leaving interrupt; Instead, we take into account the time spent
under interrupt context when we update rqs' clock (rq_clock_task).
This also means that we have to decay the normal context time and account
for interrupt time during the update.
That's also important to note that because:
rq_clock == rq_clock_task + interrupt time
and rq_clock_task is used by a sched class to compute its utilization, the
util_avg of a sched class only reflects the utilization of the time spent
in normal context and not of the whole time of the CPU. The utilization of
interrupt gives an more accurate level of utilization of CPU.
The CPU utilization is:
avg_irq + (1 - avg_irq / max capacity) * /Sum avg_rq
Most of the time, avg_irq is small and neglictible so the use of the
approximation CPU utilization = /Sum avg_rq was enough.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten.Rasmussen@arm.com
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: claudio@evidence.eu.com
Cc: daniel.lezcano@linaro.org
Cc: dietmar.eggemann@arm.com
Cc: joel@joelfernandes.org
Cc: juri.lelli@redhat.com
Cc: luca.abeni@santannapisa.it
Cc: patrick.bellasi@arm.com
Cc: quentin.perret@arm.com
Cc: rjw@rjwysocki.net
Cc: valentin.schneider@arm.com
Cc: viresh.kumar@linaro.org
Link: http://lkml.kernel.org/r/1530200714-4504-7-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When a new task wakes-up for the first time, its initial utilization
is set to half of the spare capacity of its CPU. The current
implementation of post_init_entity_util_avg() uses SCHED_CAPACITY_SCALE
directly as a capacity reference. As a result, on a big.LITTLE system, a
new task waking up on an idle little CPU will be given ~512 of util_avg,
even if the CPU's capacity is significantly less than that.
Fix this by computing the spare capacity with arch_scale_cpu_capacity().
Signed-off-by: Quentin Perret <quentin.perret@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dietmar.eggemann@arm.com
Cc: morten.rasmussen@arm.com
Cc: patrick.bellasi@arm.com
Link: http://lkml.kernel.org/r/20180612112215.25448-1-quentin.perret@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When a cfs_rq is throttled, parent cfs_rq->nr_running is decreased and
everything happens at cfs_rq level. Currently util_est stays unchanged
in such case and it keeps accounting the utilization of throttled tasks.
This can somewhat make sense as we don't dequeue tasks but only throttled
cfs_rq.
If a task of another group is enqueued/dequeued and root cfs_rq becomes
idle during the dequeue, util_est will be cleared whereas it was
accounting util_est of throttled tasks before. So the behavior of util_est
is not always the same regarding throttled tasks and depends of side
activity. Furthermore, util_est will not be updated when the cfs_rq is
unthrottled as everything happens at cfs_rq level. Main results is that
util_est will stay null whereas we now have running tasks. We have to wait
for the next dequeue/enqueue of the previously throttled tasks to get an
up to date util_est.
Remove the assumption that cfs_rq's estimated utilization of a CPU is 0
if there is no running task so the util_est of a task remains until the
latter is dequeued even if its cfs_rq has been throttled.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Patrick Bellasi <patrick.bellasi@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 7f65ea42eb ("sched/fair: Add util_est on top of PELT")
Link: http://lkml.kernel.org/r/1528972380-16268-1-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When period gets restarted after some idle time, start_cfs_bandwidth()
doesn't update the expiration information, expire_cfs_rq_runtime() will
see cfs_rq->runtime_expires smaller than rq clock and go to the clock
drift logic, wasting needless CPU cycles on the scheduler hot path.
Update the global expiration in start_cfs_bandwidth() to avoid frequent
expire_cfs_rq_runtime() calls once a new period begins.
Signed-off-by: Xunlei Pang <xlpang@linux.alibaba.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Ben Segall <bsegall@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20180620101834.24455-2-xlpang@linux.alibaba.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
I noticed that cgroup task groups constantly get throttled even
if they have low CPU usage, this causes some jitters on the response
time to some of our business containers when enabling CPU quotas.
It's very simple to reproduce:
mkdir /sys/fs/cgroup/cpu/test
cd /sys/fs/cgroup/cpu/test
echo 100000 > cpu.cfs_quota_us
echo $$ > tasks
then repeat:
cat cpu.stat | grep nr_throttled # nr_throttled will increase steadily
After some analysis, we found that cfs_rq::runtime_remaining will
be cleared by expire_cfs_rq_runtime() due to two equal but stale
"cfs_{b|q}->runtime_expires" after period timer is re-armed.
The current condition to judge clock drift in expire_cfs_rq_runtime()
is wrong, the two runtime_expires are actually the same when clock
drift happens, so this condtion can never hit. The orginal design was
correctly done by this commit:
a9cf55b286 ("sched: Expire invalid runtime")
... but was changed to be the current implementation due to its locking bug.
This patch introduces another way, it adds a new field in both structures
cfs_rq and cfs_bandwidth to record the expiration update sequence, and
uses them to figure out if clock drift happens (true if they are equal).
Signed-off-by: Xunlei Pang <xlpang@linux.alibaba.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Ben Segall <bsegall@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 51f2176d74 ("sched/fair: Fix unlocked reads of some cfs_b->quota/period")
Link: http://lkml.kernel.org/r/20180620101834.24455-1-xlpang@linux.alibaba.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
After commit:
82958366cf ("sched: Replace update_shares weight distribution with per-entity computation")
tg_unthrottle_up() did not update the weight.
Signed-off-by: Li RongQing <lirongqing@baidu.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/lkml/1523423816-18322-1-git-send-email-lirongqing@baidu.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The static key sched_smt_present is only updated at boot time when SMT
siblings have been detected. Booting with maxcpus=1 and bringing the
siblings online after boot rebuilds the scheduling domains correctly but
does not update the static key, so the SMT code is not enabled.
Let the key be updated in the scheduler CPU hotplug code to fix this.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
When a task is enqueued the estimated utilization of a CPU is updated
to better support the selection of the required frequency.
However, schedutil is (implicitly) updated by update_load_avg() which
always happens before util_est_{en,de}queue(), thus potentially
introducing a latency between estimated utilization updates and
frequency selections.
Let's update util_est at the beginning of enqueue_task_fair(),
which will ensure that all schedutil updates will see the most
updated estimated utilization value for a CPU.
Reported-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Acked-by: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com>
Cc: Steve Muckle <smuckle@google.com>
Fixes: 7f65ea42eb ("sched/fair: Add util_est on top of PELT")
Link: http://lkml.kernel.org/r/20180524141023.13765-3-patrick.bellasi@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In the following commit:
247f2f6f3c ("sched/core: Don't schedule threads on pre-empted vCPUs")
... we distinguish between idle_cpu() when the vCPU is not running for
scheduling threads.
However, the idle_cpu() function is used in other places for
actually checking whether the state of the CPU is idle or not.
Hence split the use of that function based on the desired return value,
by introducing the available_idle_cpu() function.
This fixes a (slight) regression in that initial vCPU commit, because
some code paths (like the load-balancer) don't care and shouldn't care
if the vCPU is preempted or not, they just want to know if there's any
tasks on the CPU.
Signed-off-by: Rohit Jain <rohit.k.jain@oracle.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dhaval.giani@oracle.com
Cc: linux-kernel@vger.kernel.org
Cc: matt@codeblueprint.co.uk
Cc: steven.sistare@oracle.com
Cc: subhra.mazumdar@oracle.com
Link: http://lkml.kernel.org/r/1525883988-10356-1-git-send-email-rohit.k.jain@oracle.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Threads share an address space and each can change the protections of the
same address space to trap NUMA faults. This is redundant and potentially
counter-productive as any thread doing the update will suffice. Potentially
only one thread is required but that thread may be idle or it may not have
any locality concerns and pick an unsuitable scan rate.
This patch uses independent scan period but they are staggered based on
the number of address space users when the thread is created. The intent
is that threads will avoid scanning at the same time and have a chance
to adapt their scan rate later if necessary. This reduces the total scan
activity early in the lifetime of the threads.
The different in headline performance across a range of machines and
workloads is marginal but the system CPU usage is reduced as well as overall
scan activity. The following is the time reported by NAS Parallel Benchmark
using unbound openmp threads and a D size class:
4.17.0-rc1 4.17.0-rc1
vanilla stagger-v1r1
Time bt.D 442.77 ( 0.00%) 419.70 ( 5.21%)
Time cg.D 171.90 ( 0.00%) 180.85 ( -5.21%)
Time ep.D 33.10 ( 0.00%) 32.90 ( 0.60%)
Time is.D 9.59 ( 0.00%) 9.42 ( 1.77%)
Time lu.D 306.75 ( 0.00%) 304.65 ( 0.68%)
Time mg.D 54.56 ( 0.00%) 52.38 ( 4.00%)
Time sp.D 1020.03 ( 0.00%) 903.77 ( 11.40%)
Time ua.D 400.58 ( 0.00%) 386.49 ( 3.52%)
Note it's not a universal win but we have no prior knowledge of which
thread matters but the number of threads created often exceeds the size
of the node when the threads are not bound. However, there is a reducation
of overall system CPU usage:
4.17.0-rc1 4.17.0-rc1
vanilla stagger-v1r1
sys-time-bt.D 48.78 ( 0.00%) 48.22 ( 1.15%)
sys-time-cg.D 25.31 ( 0.00%) 26.63 ( -5.22%)
sys-time-ep.D 1.65 ( 0.00%) 0.62 ( 62.42%)
sys-time-is.D 40.05 ( 0.00%) 24.45 ( 38.95%)
sys-time-lu.D 37.55 ( 0.00%) 29.02 ( 22.72%)
sys-time-mg.D 47.52 ( 0.00%) 34.92 ( 26.52%)
sys-time-sp.D 119.01 ( 0.00%) 109.05 ( 8.37%)
sys-time-ua.D 51.52 ( 0.00%) 45.13 ( 12.40%)
NUMA scan activity is also reduced:
NUMA alloc local 1042828 1342670
NUMA base PTE updates 140481138 93577468
NUMA huge PMD updates 272171 180766
NUMA page range updates 279832690 186129660
NUMA hint faults 1395972 1193897
NUMA hint local faults 877925 855053
NUMA hint local percent 62 71
NUMA pages migrated 12057909 9158023
Similar observations are made for other thread-intensive workloads. System
CPU usage is lower even though the headline gains in performance tend to be
small. For example, specjbb 2005 shows almost no difference in performance
but scan activity is reduced by a third on a 4-socket box. I didn't find
a workload (thread intensive or otherwise) that suffered badly.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/r/20180504154109.mvrha2qo5wdl65vr@techsingularity.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull x86/pti updates from Thomas Gleixner:
"A mixed bag of fixes and updates for the ghosts which are hunting us.
The scheduler fixes have been pulled into that branch to avoid
conflicts.
- A set of fixes to address a khread_parkme() race which caused lost
wakeups and loss of state.
- A deadlock fix for stop_machine() solved by moving the wakeups
outside of the stopper_lock held region.
- A set of Spectre V1 array access restrictions. The possible
problematic spots were discuvered by Dan Carpenters new checks in
smatch.
- Removal of an unused file which was forgotten when the rest of that
functionality was removed"
* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/vdso: Remove unused file
perf/x86/cstate: Fix possible Spectre-v1 indexing for pkg_msr
perf/x86/msr: Fix possible Spectre-v1 indexing in the MSR driver
perf/x86: Fix possible Spectre-v1 indexing for x86_pmu::event_map()
perf/x86: Fix possible Spectre-v1 indexing for hw_perf_event cache_*
perf/core: Fix possible Spectre-v1 indexing for ->aux_pages[]
sched/autogroup: Fix possible Spectre-v1 indexing for sched_prio_to_weight[]
sched/core: Fix possible Spectre-v1 indexing for sched_prio_to_weight[]
sched/core: Introduce set_special_state()
kthread, sched/wait: Fix kthread_parkme() completion issue
kthread, sched/wait: Fix kthread_parkme() wait-loop
sched/fair: Fix the update of blocked load when newly idle
stop_machine, sched: Fix migrate_swap() vs. active_balance() deadlock
This reverts commit 7347fc87df.
Srikar Dronamra pointed out that while the commit in question did show
a performance improvement on ppc64, it did so at the cost of disabling
active CPU migration by automatic NUMA balancing which was not the intent.
The issue was that a serious flaw in the logic failed to ever active balance
if SD_WAKE_AFFINE was disabled on scheduler domains. Even when it's enabled,
the logic is still bizarre and against the original intent.
Investigation showed that fixing the patch in either the way he suggested,
using the correct comparison for jiffies values or introducing a new
numa_migrate_deferred variable in task_struct all perform similarly to a
revert with a mix of gains and losses depending on the workload, machine
and socket count.
The original intent of the commit was to handle a problem whereby
wake_affine, idle balancing and automatic NUMA balancing disagree on the
appropriate placement for a task. This was particularly true for cases where
a single task was a massive waker of tasks but where wake_wide logic did
not apply. This was particularly noticeable when a futex (a barrier) woke
all worker threads and tried pulling the wakees to the waker nodes. In that
specific case, it could be handled by tuning MPI or openMP appropriately,
but the behavior is not illogical and was worth attempting to fix. However,
the approach was wrong. Given that we're at rc4 and a fix is not obvious,
it's better to play safe, revert this commit and retry later.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: efault@gmx.de
Cc: ggherdovich@suse.cz
Cc: hpa@zytor.com
Cc: matt@codeblueprint.co.uk
Cc: mpe@ellerman.id.au
Link: http://lkml.kernel.org/r/20180509163115.6fnnyeg4vdm2ct4v@techsingularity.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Call sync_entity_load_avg() directly from find_idlest_cpu() instead of
select_task_rq_fair(), as that's where we need to use task's utilization
value. And call sync_entity_load_avg() only after making sure sched
domain spans over one of the allowed CPUs for the task.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Link: http://lkml.kernel.org/r/cd019d1753824c81130eae7b43e2bbcec47cc1ad.1524738578.git.viresh.kumar@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Rearrange select_task_rq_fair() a bit to avoid executing some
conditional statements in few specific code-paths. That gets rid of the
goto as well.
This shouldn't result in any functional changes.
Tested-by: Rohit Jain <rohit.k.jain@oracle.com>
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Link: http://lkml.kernel.org/r/20831b8d237bf3a20e4e328286f678b425ff04c9.1524738578.git.viresh.kumar@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
With commit:
31e77c93e4 ("sched/fair: Update blocked load when newly idle")
... we release the rq->lock when updating blocked load of idle CPUs.
This opens a time window during which another CPU can add a task to this
CPU's cfs_rq.
The check for newly added task of idle_balance() is not in the common path.
Move the out label to include this check.
Reported-by: Heiner Kallweit <hkallweit1@gmail.com>
Tested-by: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 31e77c93e4 ("sched/fair: Update blocked load when newly idle")
Link: http://lkml.kernel.org/r/20180426103133.GA6953@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
By renaming the functions we can get rid of the skip parameter
and have better code redability. It makes zero sense to have
things such as:
rq_clock_skip_update(rq, false)
When the skip request is in fact not going to happen. Ever. Rename
things such that we end up with:
rq_clock_skip_update(rq)
rq_clock_cancel_skipupdate(rq)
Signed-off-by: Davidlohr Bueso <dbueso@suse.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Cc: matt@codeblueprint.co.uk
Cc: rostedt@goodmis.org
Link: http://lkml.kernel.org/r/20180404161539.nhadkff2aats74jh@linux-n805
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The estimated utilization of a task is currently updated every time the
task is dequeued. However, to keep overheads under control, PELT signals
are effectively updated at maximum once every 1ms.
Thus, for really short running tasks, it can happen that their util_avg
value has not been updates since their last enqueue. If such tasks are
also frequently running tasks (e.g. the kind of workload generated by
hackbench) it can also happen that their util_avg is updated only every
few activations.
This means that updating util_est at every dequeue potentially introduces
not necessary overheads and it's also conceptually wrong if the util_avg
signal has never been updated during a task activation.
Let's introduce a throttling mechanism on task's util_est updates
to sync them with util_avg updates. To make the solution memory
efficient, both in terms of space and load/store operations, we encode a
synchronization flag into the LSB of util_est.enqueued.
This makes util_est an even values only metric, which is still
considered good enough for its purpose.
The synchronization bit is (re)set by __update_load_avg_se() once the
PELT signal of a task has been updated during its last activation.
Such a throttling mechanism allows to keep under control util_est
overheads in the wakeup hot path, thus making it a suitable mechanism
which can be enabled also on high-intensity workload systems.
Thus, this now switches on by default the estimation utilization
scheduler feature.
Suggested-by: Chris Redpath <chris.redpath@arm.com>
Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com>
Cc: Steve Muckle <smuckle@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Todd Kjos <tkjos@android.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Link: http://lkml.kernel.org/r/20180309095245.11071-5-patrick.bellasi@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When the scheduler looks at the CPU utilization, the current PELT value
for a CPU is returned straight away. In certain scenarios this can have
undesired side effects on task placement.
For example, since the task utilization is decayed at wakeup time, when
a long sleeping big task is enqueued it does not add immediately a
significant contribution to the target CPU.
As a result we generate a race condition where other tasks can be placed
on the same CPU while it is still considered relatively empty.
In order to reduce this kind of race conditions, this patch introduces the
required support to integrate the usage of the CPU's estimated utilization
in the wakeup path, via cpu_util_wake(), as well as in the load-balance
path, via cpu_util() which is used by update_sg_lb_stats().
The estimated utilization of a CPU is defined to be the maximum between
its PELT's utilization and the sum of the estimated utilization (at
previous dequeue time) of all the tasks currently RUNNABLE on that CPU.
This allows to properly represent the spare capacity of a CPU which, for
example, has just got a big task running since a long sleep period.
Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com>
Cc: Steve Muckle <smuckle@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Todd Kjos <tkjos@android.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Link: http://lkml.kernel.org/r/20180309095245.11071-3-patrick.bellasi@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The util_avg signal computed by PELT is too variable for some use-cases.
For example, a big task waking up after a long sleep period will have its
utilization almost completely decayed. This introduces some latency before
schedutil will be able to pick the best frequency to run a task.
The same issue can affect task placement. Indeed, since the task
utilization is already decayed at wakeup, when the task is enqueued in a
CPU, this can result in a CPU running a big task as being temporarily
represented as being almost empty. This leads to a race condition where
other tasks can be potentially allocated on a CPU which just started to run
a big task which slept for a relatively long period.
Moreover, the PELT utilization of a task can be updated every [ms], thus
making it a continuously changing value for certain longer running
tasks. This means that the instantaneous PELT utilization of a RUNNING
task is not really meaningful to properly support scheduler decisions.
For all these reasons, a more stable signal can do a better job of
representing the expected/estimated utilization of a task/cfs_rq.
Such a signal can be easily created on top of PELT by still using it as
an estimator which produces values to be aggregated on meaningful
events.
This patch adds a simple implementation of util_est, a new signal built on
top of PELT's util_avg where:
util_est(task) = max(task::util_avg, f(task::util_avg@dequeue))
This allows to remember how big a task has been reported by PELT in its
previous activations via f(task::util_avg@dequeue), which is the new
_task_util_est(struct task_struct*) function added by this patch.
If a task should change its behavior and it runs longer in a new
activation, after a certain time its util_est will just track the
original PELT signal (i.e. task::util_avg).
The estimated utilization of cfs_rq is defined only for root ones.
That's because the only sensible consumer of this signal are the
scheduler and schedutil when looking for the overall CPU utilization
due to FAIR tasks.
For this reason, the estimated utilization of a root cfs_rq is simply
defined as:
util_est(cfs_rq) = max(cfs_rq::util_avg, cfs_rq::util_est::enqueued)
where:
cfs_rq::util_est::enqueued = sum(_task_util_est(task))
for each RUNNABLE task on that root cfs_rq
It's worth noting that the estimated utilization is tracked only for
objects of interests, specifically:
- Tasks: to better support tasks placement decisions
- root cfs_rqs: to better support both tasks placement decisions as
well as frequencies selection
Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com>
Cc: Steve Muckle <smuckle@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Todd Kjos <tkjos@android.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Link: http://lkml.kernel.org/r/20180309095245.11071-2-patrick.bellasi@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When NEWLY_IDLE load balance is not triggered, we might need to update the
blocked load anyway. We can kick an ilb so an idle CPU will take care of
updating blocked load or we can try to update them locally before entering
idle. In the latter case, we reuse part of the nohz_idle_balance.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: brendan.jackman@arm.com
Cc: dietmar.eggemann@arm.com
Cc: morten.rasmussen@foss.arm.com
Cc: valentin.schneider@arm.com
Link: http://lkml.kernel.org/r/1518622006-16089-4-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We're going to want to call nohz_idle_balance() or parts thereof from
idle_balance(). Since we already have a forward declaration of
idle_balance() move it down such that it's below nohz_idle_balance()
avoiding the need for a forward declaration for that.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Now that we have two back-to-back NO_HZ_COMMON blocks, merge them.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This pure code movement results in two #ifdef CONFIG_NO_HZ_COMMON
sections landing next to each other.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Avoid calling update_blocked_averages() when it does not in fact have
any by re-using/extending update_nohz_stats().
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Instead of using the cfs_rq_is_decayed() which monitors all *_avg
and *_sum, we create a cfs_rq_has_blocked() which only takes care of
util_avg and load_avg. We are only interested by these 2 values which are
decaying faster than the *_sum so we can stop the periodic update earlier.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: brendan.jackman@arm.com
Cc: dietmar.eggemann@arm.com
Cc: morten.rasmussen@foss.arm.com
Cc: valentin.schneider@arm.com
Link: http://lkml.kernel.org/r/1518517879-2280-3-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Stopped the periodic update of blocked load when all idle CPUs have fully
decayed. We introduce a new nohz.has_blocked that reflect if some idle
CPUs has blocked load that have to be periodiccally updated. nohz.has_blocked
is set everytime that a Idle CPU can have blocked load and it is then clear
when no more blocked load has been detected during an update. We don't need
atomic operation but only to make cure of the right ordering when updating
nohz.idle_cpus_mask and nohz.has_blocked.
Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: brendan.jackman@arm.com
Cc: dietmar.eggemann@arm.com
Cc: morten.rasmussen@foss.arm.com
Cc: valentin.schneider@arm.com
Link: http://lkml.kernel.org/r/1518517879-2280-2-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
It was suggested that a migration hint might be usefull for the
CPU-freq governors.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Juri Lelli <juri.lelli@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The primary observation is that nohz enter/exit is always from the
current CPU, therefore NOHZ_TICK_STOPPED does not in fact need to be
an atomic.
Secondary is that we appear to have 2 nearly identical hooks in the
nohz enter code, set_cpu_sd_state_idle() and
nohz_balance_enter_idle(). Fold the whole set_cpu_sd_state thing into
nohz_balance_{enter,exit}_idle.
Removes an atomic op from both enter and exit paths.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Since we already iterate CPUs looking for work on NEWIDLE, use this
iteration to age the blocked load. If the domain for which this is
done completely spand the idle set, we can push the ILB based aging
forward.
Suggested-by: Brendan Jackman <brendan.jackman@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Teach the idle balancer about the need to update statistics which have
a different periodicity from regular balancing.
Suggested-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The current:
if (nohz_kick_needed())
nohz_balancer_kick()
is pointless complexity, fold them into a single call and avoid the
various conditions at the call site.
When we introduce multiple different needs to kick the ilb, the above
construct also becomes a problem.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Split the NOHZ idle balancer into doing two separate actions:
- update blocked load statistic
- actually load-balance
Since the latter requires the former, ensure this happens. For now
always tag both bits at the same time.
Prepares for a future where we can toggle only the STATS bit.
Suggested-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Using atomic_t allows us to use the more flexible bitops provided
there. Also its smaller.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Due to using GCC defines for configuration, some labels might be unused in
certain configurations. While adding a __maybe_unused to the label is
fine in general, the line has to be terminated with ';'. This is also
reflected in the GCC documentation, but GCC parsed the previous variant
without an error message.
This has been spotted while compiling with goto-cc, the compiler for the
CPROVER tool suite.
Signed-off-by: Norbert Manthey <nmanthey@amazon.de>
Signed-off-by: Michael Tautschnig <tautschn@amazon.co.uk>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1519717660-16157-1-git-send-email-nmanthey@amazon.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Do the following cleanups and simplifications:
- sched/sched.h already includes <asm/paravirt.h>, so no need to
include it in sched/core.c again.
- order the <linux/sched/*.h> headers alphabetically
- add all <linux/sched/*.h> headers to kernel/sched/sched.h
- remove all unnecessary includes from the .c files that
are already included in kernel/sched/sched.h.
Finally, make all scheduler .c files use a single common header:
#include "sched.h"
... which now contains a union of the relied upon headers.
This makes the various .c files easier to read and easier to handle.
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
A good number of small style inconsistencies have accumulated
in the scheduler core, so do a pass over them to harmonize
all these details:
- fix speling in comments,
- use curly braces for multi-line statements,
- remove unnecessary parentheses from integer literals,
- capitalize consistently,
- remove stray newlines,
- add comments where necessary,
- remove invalid/unnecessary comments,
- align structure definitions and other data types vertically,
- add missing newlines for increased readability,
- fix vertical tabulation where it's misaligned,
- harmonize preprocessor conditional block labeling
and vertical alignment,
- remove line-breaks where they uglify the code,
- add newline after local variable definitions,
No change in functionality:
md5:
1191fa0a890cfa8132156d2959d7e9e2 built-in.o.before.asm
1191fa0a890cfa8132156d2959d7e9e2 built-in.o.after.asm
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When a CPU runs in full dynticks mode, a 1Hz tick remains in order to
keep the scheduler stats alive. However this residual tick is a burden
for bare metal tasks that can't stand any interruption at all, or want
to minimize them.
The usual boot parameters "nohz_full=" or "isolcpus=nohz" will now
outsource these scheduler ticks to the global workqueue so that a
housekeeping CPU handles those remotely. The sched_class::task_tick()
implementations have been audited and look safe to be called remotely
as the target runqueue and its current task are passed in parameter
and don't seem to be accessed locally.
Note that in the case of using isolcpus, it's still up to the user to
affine the global workqueues to the housekeeping CPUs through
/sys/devices/virtual/workqueue/cpumask or domains isolation
"isolcpus=nohz,domain".
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Chris Metcalf <cmetcalf@mellanox.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Wanpeng Li <kernellwp@gmail.com>
Link: http://lkml.kernel.org/r/1519186649-3242-6-git-send-email-frederic@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
If wake_affine() pulls a task to another node for any reason and the node is
no longer preferred then temporarily stop automatic NUMA balancing pulling
the task back. Otherwise, tasks with a strong waker/wakee relationship
may constantly fight automatic NUMA balancing over where a task should
be placed.
Once again netperf is interesting here. The performance barely changes
but automatic NUMA balancing is interesting:
Hmean send-64 354.67 ( 0.00%) 352.15 ( -0.71%)
Hmean send-128 702.91 ( 0.00%) 693.84 ( -1.29%)
Hmean send-256 1350.07 ( 0.00%) 1344.19 ( -0.44%)
Hmean send-1024 5124.38 ( 0.00%) 4941.24 ( -3.57%)
Hmean send-2048 9687.44 ( 0.00%) 9624.45 ( -0.65%)
Hmean send-3312 14577.64 ( 0.00%) 14514.35 ( -0.43%)
Hmean send-4096 16393.62 ( 0.00%) 16488.30 ( 0.58%)
Hmean send-8192 26877.26 ( 0.00%) 26431.63 ( -1.66%)
Hmean send-16384 38683.43 ( 0.00%) 38264.91 ( -1.08%)
Hmean recv-64 354.67 ( 0.00%) 352.15 ( -0.71%)
Hmean recv-128 702.91 ( 0.00%) 693.84 ( -1.29%)
Hmean recv-256 1350.07 ( 0.00%) 1344.19 ( -0.44%)
Hmean recv-1024 5124.38 ( 0.00%) 4941.24 ( -3.57%)
Hmean recv-2048 9687.43 ( 0.00%) 9624.45 ( -0.65%)
Hmean recv-3312 14577.59 ( 0.00%) 14514.35 ( -0.43%)
Hmean recv-4096 16393.55 ( 0.00%) 16488.20 ( 0.58%)
Hmean recv-8192 26876.96 ( 0.00%) 26431.29 ( -1.66%)
Hmean recv-16384 38682.41 ( 0.00%) 38263.94 ( -1.08%)
NUMA alloc hit 1465986 1423090
NUMA alloc miss 0 0
NUMA interleave hit 0 0
NUMA alloc local 1465897 1423003
NUMA base PTE updates 1473 1420
NUMA huge PMD updates 0 0
NUMA page range updates 1473 1420
NUMA hint faults 1383 1312
NUMA hint local faults 451 124
NUMA hint local percent 32 9
There is a slight degrading in performance but there are slightly fewer
NUMA faults. There is a large drop in the percentage of local faults but
the bulk of migrations for netperf are in small shared libraries so it's
reflecting the fact that automatic NUMA balancing has backed off. This is
a case where despite wake_affine() and automatic NUMA balancing fighting
for placement that there is a marginal benefit to rescheduling to local
data quickly. However, it should be noted that wake_affine() and automatic
NUMA balancing fighting each other constantly is undesirable.
However, the benefit in other cases is large. This is the result for NAS
with the D class sizing on a 4-socket machine:
nas-mpi
4.15.0 4.15.0
sdnuma-v1r23 delayretry-v1r23
Time cg.D 557.00 ( 0.00%) 431.82 ( 22.47%)
Time ep.D 77.83 ( 0.00%) 79.01 ( -1.52%)
Time is.D 26.46 ( 0.00%) 26.64 ( -0.68%)
Time lu.D 727.14 ( 0.00%) 597.94 ( 17.77%)
Time mg.D 191.35 ( 0.00%) 146.85 ( 23.26%)
4.15.0 4.15.0
sdnuma-v1r23delayretry-v1r23
User 75665.20 70413.30
System 20321.59 8861.67
Elapsed 766.13 634.92
Minor Faults 16528502 7127941
Major Faults 4553 5068
NUMA alloc local 6963197 6749135
NUMA base PTE updates 366409093 107491434
NUMA huge PMD updates 687556 198880
NUMA page range updates 718437765 209317994
NUMA hint faults 13643410 4601187
NUMA hint local faults 9212593 3063996
NUMA hint local percent 67 66
Note the massive reduction in system CPU usage even though the percentage
of local faults is barely affected. There is a massive reduction in the
number of PTE updates showing that automatic NUMA balancing has backed off.
A critical observation is also that there is a massive reduction in minor
faults which is due to far fewer NUMA hinting faults being trapped.
There were questions on NAS OMP and how it behaved related to threads
being bound to CPUs. First, there are more gains than losses with this
patch applied and a reduction in system CPU usage:
nas-omp
4.16.0-rc1 4.16.0-rc1
sdnuma-v2r1 delayretry-v2r1
Time bt.D 436.71 ( 0.00%) 430.05 ( 1.53%)
Time cg.D 201.02 ( 0.00%) 180.87 ( 10.02%)
Time ep.D 32.84 ( 0.00%) 32.68 ( 0.49%)
Time is.D 9.63 ( 0.00%) 9.64 ( -0.10%)
Time lu.D 331.20 ( 0.00%) 304.80 ( 7.97%)
Time mg.D 54.87 ( 0.00%) 52.72 ( 3.92%)
Time sp.D 1108.78 ( 0.00%) 917.10 ( 17.29%)
Time ua.D 378.81 ( 0.00%) 398.83 ( -5.28%)
4.16.0-rc1 4.16.0-rc1
sdnuma-v2r1delayretry-v2r1
User 305633.08 296751.91
System 451.75 357.80
Elapsed 2595.73 2368.13
However, it does not close the gap between binding and being unbound. There
is negligible difference between the performance of the baseline and a
patched kernel when threads are bound so it is not presented here:
4.16.0-rc1 4.16.0-rc1
delayretry-bind delayretry-unbound
Time bt.D 385.02 ( 0.00%) 430.05 ( -11.70%)
Time cg.D 144.02 ( 0.00%) 180.87 ( -25.59%)
Time ep.D 32.85 ( 0.00%) 32.68 ( 0.52%)
Time is.D 10.52 ( 0.00%) 9.64 ( 8.37%)
Time lu.D 285.31 ( 0.00%) 304.80 ( -6.83%)
Time mg.D 43.21 ( 0.00%) 52.72 ( -22.01%)
Time sp.D 820.24 ( 0.00%) 917.10 ( -11.81%)
Time ua.D 337.09 ( 0.00%) 398.83 ( -18.32%)
4.16.0-rc1 4.16.0-rc1
delayretry-binddelayretry-unbound
User 277731.25 296751.91
System 261.29 357.80
Elapsed 2100.55 2368.13
Unfortunately, while performance is improved by the patch, there is still
quite a long way to go before it's equivalent to hard binding.
Other workloads like hackbench, tbench, dbench and schbench are barely
affected. dbench shows a mix of gains and losses depending on the machine
although in general, the results are more stable.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Giovanni Gherdovich <ggherdovich@suse.cz>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20180213133730.24064-7-mgorman@techsingularity.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
find_idlest_group() compares a local group with each other group to select
the one that is most idle. When comparing groups in different NUMA domains,
a very slight imbalance is enough to select a remote NUMA node even if the
runnable load on both groups is 0 or close to 0. This ignores the cost of
remote accesses entirely and is a problem when selecting the CPU for a
newly forked task to run on. This is problematic when a forking server
is almost guaranteed to run on a remote node incurring numerous remote
accesses and potentially causing automatic NUMA balancing to try migrate
the task back or migrate the data to another node. Similar weirdness is
observed if a basic shell command pipes output to another as each process
in the pipeline is likely to start on different nodes and then get adjusted
later by wake_affine().
This patch adds imbalance to remote domains when considering whether to
select CPUs from remote domains. If the local domain is selected, imbalance
will still be used to try select a CPU from a lower scheduler domain's group
instead of stacking tasks on the same CPU.
A variety of workloads and machines were tested and as expected, there is no
difference on UMA. The difference on NUMA can be dramatic. This is a comparison
of elapsed times running the git regression test suite. It's fork-intensive with
short-lived processes:
4.15.0 4.15.0
noexit-v1r23 sdnuma-v1r23
Elapsed min 1706.06 ( 0.00%) 1435.94 ( 15.83%)
Elapsed mean 1709.53 ( 0.00%) 1436.98 ( 15.94%)
Elapsed stddev 2.16 ( 0.00%) 1.01 ( 53.38%)
Elapsed coeffvar 0.13 ( 0.00%) 0.07 ( 44.54%)
Elapsed max 1711.59 ( 0.00%) 1438.01 ( 15.98%)
4.15.0 4.15.0
noexit-v1r23 sdnuma-v1r23
User 5434.12 5188.41
System 4878.77 3467.09
Elapsed 10259.06 8624.21
That shows a considerable reduction in elapsed times. It's important to
note that automatic NUMA balancing does not affect this load as processes
are too short-lived.
There is also a noticable impact on hackbench such as this example using
processes and pipes:
hackbench-process-pipes
4.15.0 4.15.0
noexit-v1r23 sdnuma-v1r23
Amean 1 1.0973 ( 0.00%) 0.9393 ( 14.40%)
Amean 4 1.3427 ( 0.00%) 1.3730 ( -2.26%)
Amean 7 1.4233 ( 0.00%) 1.6670 ( -17.12%)
Amean 12 3.0250 ( 0.00%) 3.3013 ( -9.13%)
Amean 21 9.0860 ( 0.00%) 9.5343 ( -4.93%)
Amean 30 14.6547 ( 0.00%) 13.2433 ( 9.63%)
Amean 48 22.5447 ( 0.00%) 20.4303 ( 9.38%)
Amean 79 29.2010 ( 0.00%) 26.7853 ( 8.27%)
Amean 110 36.7443 ( 0.00%) 35.8453 ( 2.45%)
Amean 141 45.8533 ( 0.00%) 42.6223 ( 7.05%)
Amean 172 55.1317 ( 0.00%) 50.6473 ( 8.13%)
Amean 203 64.4420 ( 0.00%) 58.3957 ( 9.38%)
Amean 234 73.2293 ( 0.00%) 67.1047 ( 8.36%)
Amean 265 80.5220 ( 0.00%) 75.7330 ( 5.95%)
Amean 296 88.7567 ( 0.00%) 82.1533 ( 7.44%)
It's not a universal win as there are occasions when spreading wide and
quickly is a benefit but it's more of a win than it is a loss. For other
workloads, there is little difference but netperf is interesting. Without
the patch, the server and client starts on different nodes but quickly get
migrated due to wake_affine. Hence, the difference is overall performance
is marginal but detectable:
4.15.0 4.15.0
noexit-v1r23 sdnuma-v1r23
Hmean send-64 349.09 ( 0.00%) 354.67 ( 1.60%)
Hmean send-128 699.16 ( 0.00%) 702.91 ( 0.54%)
Hmean send-256 1316.34 ( 0.00%) 1350.07 ( 2.56%)
Hmean send-1024 5063.99 ( 0.00%) 5124.38 ( 1.19%)
Hmean send-2048 9705.19 ( 0.00%) 9687.44 ( -0.18%)
Hmean send-3312 14359.48 ( 0.00%) 14577.64 ( 1.52%)
Hmean send-4096 16324.20 ( 0.00%) 16393.62 ( 0.43%)
Hmean send-8192 26112.61 ( 0.00%) 26877.26 ( 2.93%)
Hmean send-16384 37208.44 ( 0.00%) 38683.43 ( 3.96%)
Hmean recv-64 349.09 ( 0.00%) 354.67 ( 1.60%)
Hmean recv-128 699.16 ( 0.00%) 702.91 ( 0.54%)
Hmean recv-256 1316.34 ( 0.00%) 1350.07 ( 2.56%)
Hmean recv-1024 5063.99 ( 0.00%) 5124.38 ( 1.19%)
Hmean recv-2048 9705.16 ( 0.00%) 9687.43 ( -0.18%)
Hmean recv-3312 14359.42 ( 0.00%) 14577.59 ( 1.52%)
Hmean recv-4096 16323.98 ( 0.00%) 16393.55 ( 0.43%)
Hmean recv-8192 26111.85 ( 0.00%) 26876.96 ( 2.93%)
Hmean recv-16384 37206.99 ( 0.00%) 38682.41 ( 3.97%)
However, what is very interesting is how automatic NUMA balancing behaves.
Each netperf instance runs long enough for balancing to activate:
NUMA base PTE updates 4620 1473
NUMA huge PMD updates 0 0
NUMA page range updates 4620 1473
NUMA hint faults 4301 1383
NUMA hint local faults 1309 451
NUMA hint local percent 30 32
NUMA pages migrated 1335 491
AutoNUMA cost 21% 6%
There is an unfortunate number of remote faults although tracing indicated
that the vast majority are in shared libraries. However, the tendency to
start tasks on the same node if there is capacity means that there were
far fewer PTE updates and faults incurred overall.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Giovanni Gherdovich <ggherdovich@suse.cz>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20180213133730.24064-6-mgorman@techsingularity.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When a task exits, it notifies the parent that it has exited. This is a
sync wakeup and the exiting task may pull the parent towards the wakers
CPU. For simple workloads like using a shell, it was observed that the
shell is pulled across nodes by exiting processes. This is daft as the
parent may be long-lived and properly placed. This patch special cases a
sync wakeup on exit to avoid pulling tasks across nodes. Testing on a range
of workloads and machines showed very little differences in performance
although there was a small 3% boost on some machines running a shellscript
intensive workload (git regression test suite).
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Giovanni Gherdovich <ggherdovich@suse.cz>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20180213133730.24064-5-mgorman@techsingularity.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
wake_affine_weight() will consider migrating a task to, or near, the current
CPU if there is a load imbalance. If the CPUs share LLC then either CPU
is valid as a search-for-idle-sibling target and equally appropriate for
stacking two tasks on one CPU if an idle sibling is unavailable. If they do
not share cache then a cross-node migration potentially impacts locality
so while they are equal from a CPU capacity point of view, they are not
equal in terms of memory locality. In either case, it's more appropriate
to migrate only if there is a difference in their effective load.
This patch modifies wake_affine_weight() to only consider migrating a task
if there is a load imbalance for normal wakeups but will allow potential
stacking if the loads are equal and it's a sync wakeup.
For the most part, the different in performance is marginal. For example,
on a 4-socket server running netperf UDP_STREAM on localhost the differences
are as follows:
4.15.0 4.15.0
16rc0 noequal-v1r23
Hmean send-64 355.47 ( 0.00%) 349.50 ( -1.68%)
Hmean send-128 697.98 ( 0.00%) 693.35 ( -0.66%)
Hmean send-256 1328.02 ( 0.00%) 1318.77 ( -0.70%)
Hmean send-1024 5051.83 ( 0.00%) 5051.11 ( -0.01%)
Hmean send-2048 9637.02 ( 0.00%) 9601.34 ( -0.37%)
Hmean send-3312 14355.37 ( 0.00%) 14414.51 ( 0.41%)
Hmean send-4096 16464.97 ( 0.00%) 16301.37 ( -0.99%)
Hmean send-8192 26722.42 ( 0.00%) 26428.95 ( -1.10%)
Hmean send-16384 38137.81 ( 0.00%) 38046.11 ( -0.24%)
Hmean recv-64 355.47 ( 0.00%) 349.50 ( -1.68%)
Hmean recv-128 697.98 ( 0.00%) 693.35 ( -0.66%)
Hmean recv-256 1328.02 ( 0.00%) 1318.77 ( -0.70%)
Hmean recv-1024 5051.83 ( 0.00%) 5051.11 ( -0.01%)
Hmean recv-2048 9636.95 ( 0.00%) 9601.30 ( -0.37%)
Hmean recv-3312 14355.32 ( 0.00%) 14414.48 ( 0.41%)
Hmean recv-4096 16464.74 ( 0.00%) 16301.16 ( -0.99%)
Hmean recv-8192 26721.63 ( 0.00%) 26428.17 ( -1.10%)
Hmean recv-16384 38136.00 ( 0.00%) 38044.88 ( -0.24%)
Stddev send-64 7.30 ( 0.00%) 4.75 ( 34.96%)
Stddev send-128 15.15 ( 0.00%) 22.38 ( -47.66%)
Stddev send-256 13.99 ( 0.00%) 19.14 ( -36.81%)
Stddev send-1024 105.73 ( 0.00%) 67.38 ( 36.27%)
Stddev send-2048 294.57 ( 0.00%) 223.88 ( 24.00%)
Stddev send-3312 302.28 ( 0.00%) 271.74 ( 10.10%)
Stddev send-4096 195.92 ( 0.00%) 121.10 ( 38.19%)
Stddev send-8192 399.71 ( 0.00%) 563.77 ( -41.04%)
Stddev send-16384 1163.47 ( 0.00%) 1103.68 ( 5.14%)
Stddev recv-64 7.30 ( 0.00%) 4.75 ( 34.96%)
Stddev recv-128 15.15 ( 0.00%) 22.38 ( -47.66%)
Stddev recv-256 13.99 ( 0.00%) 19.14 ( -36.81%)
Stddev recv-1024 105.73 ( 0.00%) 67.38 ( 36.27%)
Stddev recv-2048 294.59 ( 0.00%) 223.89 ( 24.00%)
Stddev recv-3312 302.24 ( 0.00%) 271.75 ( 10.09%)
Stddev recv-4096 196.03 ( 0.00%) 121.14 ( 38.20%)
Stddev recv-8192 399.86 ( 0.00%) 563.65 ( -40.96%)
Stddev recv-16384 1163.79 ( 0.00%) 1103.86 ( 5.15%)
The difference in overall performance is marginal but note that most
measurements are less variable. There were similar observations for other
netperf comparisons. hackbench with sockets or threads with processes or
threads showed minor difference with some reduction of migration. tbench
showed only marginal differences that were within the noise. dbench,
regardless of filesystem, showed minor differences all of which are
within noise. Multiple machines, both UMA and NUMA were tested without
any regressions showing up.
The biggest risk with a patch like this is affecting wakeup latencies.
However, the schbench load from Facebook which is very sensitive to wakeup
latency showed a mixed result with mostly improvements in wakeup latency:
4.15.0 4.15.0
16rc0 noequal-v1r23
Lat 50.00th-qrtle-1 38.00 ( 0.00%) 38.00 ( 0.00%)
Lat 75.00th-qrtle-1 49.00 ( 0.00%) 41.00 ( 16.33%)
Lat 90.00th-qrtle-1 52.00 ( 0.00%) 50.00 ( 3.85%)
Lat 95.00th-qrtle-1 54.00 ( 0.00%) 51.00 ( 5.56%)
Lat 99.00th-qrtle-1 63.00 ( 0.00%) 60.00 ( 4.76%)
Lat 99.50th-qrtle-1 66.00 ( 0.00%) 61.00 ( 7.58%)
Lat 99.90th-qrtle-1 78.00 ( 0.00%) 65.00 ( 16.67%)
Lat 50.00th-qrtle-2 38.00 ( 0.00%) 38.00 ( 0.00%)
Lat 75.00th-qrtle-2 42.00 ( 0.00%) 43.00 ( -2.38%)
Lat 90.00th-qrtle-2 46.00 ( 0.00%) 48.00 ( -4.35%)
Lat 95.00th-qrtle-2 49.00 ( 0.00%) 50.00 ( -2.04%)
Lat 99.00th-qrtle-2 55.00 ( 0.00%) 57.00 ( -3.64%)
Lat 99.50th-qrtle-2 58.00 ( 0.00%) 60.00 ( -3.45%)
Lat 99.90th-qrtle-2 65.00 ( 0.00%) 68.00 ( -4.62%)
Lat 50.00th-qrtle-4 41.00 ( 0.00%) 41.00 ( 0.00%)
Lat 75.00th-qrtle-4 45.00 ( 0.00%) 46.00 ( -2.22%)
Lat 90.00th-qrtle-4 50.00 ( 0.00%) 50.00 ( 0.00%)
Lat 95.00th-qrtle-4 54.00 ( 0.00%) 53.00 ( 1.85%)
Lat 99.00th-qrtle-4 61.00 ( 0.00%) 61.00 ( 0.00%)
Lat 99.50th-qrtle-4 65.00 ( 0.00%) 64.00 ( 1.54%)
Lat 99.90th-qrtle-4 76.00 ( 0.00%) 82.00 ( -7.89%)
Lat 50.00th-qrtle-8 48.00 ( 0.00%) 46.00 ( 4.17%)
Lat 75.00th-qrtle-8 55.00 ( 0.00%) 54.00 ( 1.82%)
Lat 90.00th-qrtle-8 60.00 ( 0.00%) 59.00 ( 1.67%)
Lat 95.00th-qrtle-8 63.00 ( 0.00%) 63.00 ( 0.00%)
Lat 99.00th-qrtle-8 71.00 ( 0.00%) 69.00 ( 2.82%)
Lat 99.50th-qrtle-8 74.00 ( 0.00%) 73.00 ( 1.35%)
Lat 99.90th-qrtle-8 98.00 ( 0.00%) 90.00 ( 8.16%)
Lat 50.00th-qrtle-16 56.00 ( 0.00%) 55.00 ( 1.79%)
Lat 75.00th-qrtle-16 68.00 ( 0.00%) 67.00 ( 1.47%)
Lat 90.00th-qrtle-16 77.00 ( 0.00%) 78.00 ( -1.30%)
Lat 95.00th-qrtle-16 82.00 ( 0.00%) 84.00 ( -2.44%)
Lat 99.00th-qrtle-16 90.00 ( 0.00%) 93.00 ( -3.33%)
Lat 99.50th-qrtle-16 93.00 ( 0.00%) 97.00 ( -4.30%)
Lat 99.90th-qrtle-16 110.00 ( 0.00%) 110.00 ( 0.00%)
Lat 50.00th-qrtle-32 68.00 ( 0.00%) 62.00 ( 8.82%)
Lat 75.00th-qrtle-32 90.00 ( 0.00%) 83.00 ( 7.78%)
Lat 90.00th-qrtle-32 110.00 ( 0.00%) 100.00 ( 9.09%)
Lat 95.00th-qrtle-32 122.00 ( 0.00%) 111.00 ( 9.02%)
Lat 99.00th-qrtle-32 145.00 ( 0.00%) 133.00 ( 8.28%)
Lat 99.50th-qrtle-32 154.00 ( 0.00%) 143.00 ( 7.14%)
Lat 99.90th-qrtle-32 2316.00 ( 0.00%) 515.00 ( 77.76%)
Lat 50.00th-qrtle-35 69.00 ( 0.00%) 72.00 ( -4.35%)
Lat 75.00th-qrtle-35 92.00 ( 0.00%) 95.00 ( -3.26%)
Lat 90.00th-qrtle-35 111.00 ( 0.00%) 114.00 ( -2.70%)
Lat 95.00th-qrtle-35 122.00 ( 0.00%) 124.00 ( -1.64%)
Lat 99.00th-qrtle-35 142.00 ( 0.00%) 144.00 ( -1.41%)
Lat 99.50th-qrtle-35 150.00 ( 0.00%) 154.00 ( -2.67%)
Lat 99.90th-qrtle-35 6104.00 ( 0.00%) 5640.00 ( 7.60%)
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Giovanni Gherdovich <ggherdovich@suse.cz>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20180213133730.24064-4-mgorman@techsingularity.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
On sync wakeups, the previous CPU effective load may not be used so delay
the calculation until it's needed.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Giovanni Gherdovich <ggherdovich@suse.cz>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20180213133730.24064-3-mgorman@techsingularity.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The only caller of wake_affine() knows the CPU ID. Pass it in instead of
rechecking it.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Giovanni Gherdovich <ggherdovich@suse.cz>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20180213133730.24064-2-mgorman@techsingularity.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Remove a useless space in # ifdef and align it with others.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1518512382-29426-1-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The select_idle_sibling() (SIS) rewrite in commit:
10e2f1acd0 ("sched/core: Rewrite and improve select_idle_siblings()")
... replaced a domain iteration with a search that broadly speaking
does a wrapped walk of the scheduler domain sharing a last-level-cache.
While this had a number of improvements, one consequence is that two tasks
that share a waker/wakee relationship push each other around a socket. Even
though two tasks may be active, all cores are evenly used. This is great from
a search perspective and spreads a load across individual cores, but it has
adverse consequences for cpufreq. As each CPU has relatively low utilisation,
cpufreq may decide the utilisation is too low to used a higher P-state and
overall computation throughput suffers.
While individual cpufreq and cpuidle drivers may compensate by artifically
boosting P-state (at c0) or avoiding lower C-states (during idle), it does
not help if hardware-based cpufreq (e.g. HWP) is used.
This patch tracks a recently used CPU based on what CPU a task was running
on when it last was a waker a CPU it was recently using when a task is a
wakee. During SIS, the recently used CPU is used as a target if it's still
allowed by the task and is idle.
The benefit may be non-obvious so consider an example of two tasks
communicating back and forth. Task A may be an application doing IO where
task B is a kworker or kthread like journald. Task A may issue IO, wake
B and B wakes up A on completion. With the existing scheme this may look
like the following (potentially different IDs if SMT is in use but similar
principal applies).
A (cpu 0) wake B (wakes on cpu 1)
B (cpu 1) wake A (wakes on cpu 2)
A (cpu 2) wake B (wakes on cpu 3)
etc.
A careful reader may wonder why CPU 0 was not idle when B wakes A the
first time and it's simply due to the fact that A can be rescheduled to
another CPU and the pattern is that prev == target when B tries to wakeup A
and the information about CPU 0 has been lost.
With this patch, the pattern is more likely to be:
A (cpu 0) wake B (wakes on cpu 1)
B (cpu 1) wake A (wakes on cpu 0)
A (cpu 0) wake B (wakes on cpu 1)
etc
i.e. two communicating casts are more likely to use just two cores instead
of all available cores sharing a LLC.
The most dramatic speedup was noticed on dbench using the XFS filesystem on
UMA as clients interact heavily with workqueues in that configuration. Note
that a similar speedup is not observed on ext4 as the wakeup pattern
is different:
4.15.0-rc9 4.15.0-rc9
waprev-v1 biasancestor-v1
Hmean 1 287.54 ( 0.00%) 817.01 ( 184.14%)
Hmean 2 1268.12 ( 0.00%) 1781.24 ( 40.46%)
Hmean 4 1739.68 ( 0.00%) 1594.47 ( -8.35%)
Hmean 8 2464.12 ( 0.00%) 2479.56 ( 0.63%)
Hmean 64 1455.57 ( 0.00%) 1434.68 ( -1.44%)
The results can be less dramatic on NUMA where automatic balancing interferes
with the test. It's also known that network benchmarks running on localhost
also benefit quite a bit from this patch (roughly 10% on netperf RR for UDP
and TCP depending on the machine). Hackbench also seens small improvements
(6-11% depending on machine and thread count). The facebook schbench was also
tested but in most cases showed little or no different to wakeup latencies.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20180130104555.4125-5-mgorman@techsingularity.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
wake_affine_idle() prefers to move a task to the current CPU if the
wakeup is due to an interrupt. The expectation is that the interrupt
data is cache hot and relevant to the waking task as well as avoiding
a search. However, there is no way to determine if there was cache hot
data on the previous CPU that may exceed the interrupt data. Furthermore,
round-robin delivery of interrupts can migrate tasks around a socket where
each CPU is under-utilised. This can interact badly with cpufreq which
makes decisions based on per-cpu data. It has been observed on machines
with HWP that p-states are not boosted to their maximum levels even though
the workload is latency and throughput sensitive.
This patch uses the previous CPU for the task if it's idle and cache-affine
with the current CPU even if the current CPU is idle due to the wakup
being related to the interrupt. This reduces migrations at the cost of
the interrupt data not being cache hot when the task wakes.
A variety of workloads were tested on various machines and no adverse
impact was noticed that was outside noise. dbench on ext4 on UMA showed
roughly 10% reduction in the number of CPU migrations and it is a case
where interrupts are frequent for IO competions. In most cases, the
difference in performance is quite small but variability is often
reduced. For example, this is the result for pgbench running on a UMA
machine with different numbers of clients.
4.15.0-rc9 4.15.0-rc9
baseline waprev-v1
Hmean 1 22096.28 ( 0.00%) 22734.86 ( 2.89%)
Hmean 4 74633.42 ( 0.00%) 75496.77 ( 1.16%)
Hmean 7 115017.50 ( 0.00%) 113030.81 ( -1.73%)
Hmean 12 126209.63 ( 0.00%) 126613.40 ( 0.32%)
Hmean 16 131886.91 ( 0.00%) 130844.35 ( -0.79%)
Stddev 1 636.38 ( 0.00%) 417.11 ( 34.46%)
Stddev 4 614.64 ( 0.00%) 583.24 ( 5.11%)
Stddev 7 542.46 ( 0.00%) 435.45 ( 19.73%)
Stddev 12 173.93 ( 0.00%) 171.50 ( 1.40%)
Stddev 16 671.42 ( 0.00%) 680.30 ( -1.32%)
CoeffVar 1 2.88 ( 0.00%) 1.83 ( 36.26%)
Note that the different in performance is marginal but for low utilisation,
there is less variability.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20180130104555.4125-4-mgorman@techsingularity.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This is a preparation patch that has wake_affine*() return a CPU ID instead of
a boolean. The intent is to allow the wake_affine() helpers to be avoided
if a decision is already made. This patch has no functional change.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20180130104555.4125-3-mgorman@techsingularity.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
wake_affine_idle() takes parameters it never uses so clean it up.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20180130104555.4125-2-mgorman@techsingularity.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
These functions are already gated by schedstats_enabled(), there is no
point in then issuing another static_branch for every individual
update in them.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull scheduler updates from Ingo Molnar:
"The main changes in this cycle were:
- Implement frequency/CPU invariance and OPP selection for
SCHED_DEADLINE (Juri Lelli)
- Tweak the task migration logic for better multi-tasking
workload scalability (Mel Gorman)
- Misc cleanups, fixes and improvements"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/deadline: Make bandwidth enforcement scale-invariant
sched/cpufreq: Move arch_scale_{freq,cpu}_capacity() outside of #ifdef CONFIG_SMP
sched/cpufreq: Remove arch_scale_freq_capacity()'s 'sd' parameter
sched/cpufreq: Always consider all CPUs when deciding next freq
sched/cpufreq: Split utilization signals
sched/cpufreq: Change the worker kthread to SCHED_DEADLINE
sched/deadline: Move CPU frequency selection triggering points
sched/cpufreq: Use the DEADLINE utilization signal
sched/deadline: Implement "runtime overrun signal" support
sched/fair: Only immediately migrate tasks due to interrupts if prev and target CPUs share cache
sched/fair: Correct obsolete comment about cpufreq_update_util()
sched/fair: Remove impossible condition from find_idlest_group_cpu()
sched/cpufreq: Don't pass flags to sugov_set_iowait_boost()
sched/cpufreq: Initialize sg_cpu->flags to 0
sched/fair: Consider RT/IRQ pressure in capacity_spare_wake()
sched/fair: Use 'unsigned long' for utilization, consistently
sched/core: Rework and clarify prepare_lock_switch()
sched/fair: Remove unused 'curr' parameter from wakeup_gran
sched/headers: Constify object_is_on_stack()
If waking from an idle CPU due to an interrupt then it's possible that
the waker task will be pulled to wake on the current CPU. Unfortunately,
depending on the type of interrupt and IRQ configuration, there may not
be a strong relationship between the CPU an interrupt was delivered on
and the CPU a task was running on. For example, the interrupts could all
be delivered to CPUs on one particular node due to the machine topology
or IRQ affinity configuration. Another example is an interrupt for an IO
completion which can be delivered to any CPU where there is no guarantee
the data is either cache hot or even local.
This patch was motivated by the observation that an IO workload was
being pulled cross-node on a frequent basis when IO completed. From a
wakeup latency perspective, it's still useful to know that an idle CPU is
immediately available for use but lets only consider an automatic migration
if the CPUs share cache to limit damage due to NUMA migrations. Migrations
may still occur if wake_affine_weight determines it's appropriate.
These are the throughput results for dbench running on ext4 comparing
4.15-rc3 and this patch on a 2-socket machine where interrupts due to IO
completions can happen on any CPU.
4.15.0-rc3 4.15.0-rc3
vanilla lessmigrate
Hmean 1 854.64 ( 0.00%) 865.01 ( 1.21%)
Hmean 2 1229.60 ( 0.00%) 1274.44 ( 3.65%)
Hmean 4 1591.81 ( 0.00%) 1628.08 ( 2.28%)
Hmean 8 1845.04 ( 0.00%) 1831.80 ( -0.72%)
Hmean 16 2038.61 ( 0.00%) 2091.44 ( 2.59%)
Hmean 32 2327.19 ( 0.00%) 2430.29 ( 4.43%)
Hmean 64 2570.61 ( 0.00%) 2568.54 ( -0.08%)
Hmean 128 2481.89 ( 0.00%) 2499.28 ( 0.70%)
Stddev 1 14.31 ( 0.00%) 5.35 ( 62.65%)
Stddev 2 21.29 ( 0.00%) 11.09 ( 47.92%)
Stddev 4 7.22 ( 0.00%) 6.80 ( 5.92%)
Stddev 8 26.70 ( 0.00%) 9.41 ( 64.76%)
Stddev 16 22.40 ( 0.00%) 20.01 ( 10.70%)
Stddev 32 45.13 ( 0.00%) 44.74 ( 0.85%)
Stddev 64 93.10 ( 0.00%) 93.18 ( -0.09%)
Stddev 128 184.28 ( 0.00%) 177.85 ( 3.49%)
Note the small increase in throughput for low thread counts but also
note that the standard deviation for each sample during the test run is
lower. The throughput figures for dbench can be misleading so the benchmark
is actually modified to time the latency of the processing of one load
file with many samples taken. The difference in latency is
4.15.0-rc3 4.15.0-rc3
vanilla lessmigrate
Amean 1 21.71 ( 0.00%) 21.47 ( 1.08%)
Amean 2 30.89 ( 0.00%) 29.58 ( 4.26%)
Amean 4 47.54 ( 0.00%) 46.61 ( 1.97%)
Amean 8 82.71 ( 0.00%) 82.81 ( -0.12%)
Amean 16 149.45 ( 0.00%) 145.01 ( 2.97%)
Amean 32 265.49 ( 0.00%) 248.43 ( 6.42%)
Amean 64 463.23 ( 0.00%) 463.55 ( -0.07%)
Amean 128 933.97 ( 0.00%) 935.50 ( -0.16%)
Stddev 1 1.58 ( 0.00%) 1.54 ( 2.26%)
Stddev 2 2.84 ( 0.00%) 2.95 ( -4.15%)
Stddev 4 6.78 ( 0.00%) 6.85 ( -0.99%)
Stddev 8 16.85 ( 0.00%) 16.37 ( 2.85%)
Stddev 16 41.59 ( 0.00%) 41.04 ( 1.32%)
Stddev 32 111.05 ( 0.00%) 105.11 ( 5.35%)
Stddev 64 285.94 ( 0.00%) 288.01 ( -0.72%)
Stddev 128 803.39 ( 0.00%) 809.73 ( -0.79%)
It's a small improvement which is not surprising given that migrations that
migrate to a different node as not that common. However, it is noticeable
in the CPU migration statistics which are reduced by 24%.
There was a query for v1 of this patch about NAS so here are the results
for C-class using MPI for parallelisation on the same machine
nas-mpi
4.15.0-rc3 4.15.0-rc3
vanilla noirq
Time cg.C 24.25 ( 0.00%) 23.17 ( 4.45%)
Time ep.C 8.22 ( 0.00%) 8.29 ( -0.85%)
Time ft.C 22.67 ( 0.00%) 20.34 ( 10.28%)
Time is.C 1.42 ( 0.00%) 1.47 ( -3.52%)
Time lu.C 55.62 ( 0.00%) 54.81 ( 1.46%)
Time mg.C 7.93 ( 0.00%) 7.91 ( 0.25%)
4.15.0-rc3 4.15.0-rc3
vanilla noirq-v1r1
User 3799.96 3748.34
System 672.10 626.15
Elapsed 91.91 79.49
lu.C sees a small gain, ft.C a large gain and ep.C and is.C see small
regressions but in terms of absolute time, the difference is small and
likely within run-to-run variance. System CPU usage is slightly reduced.
schbench from Facebook was also requested. This is a bit of a mixed bag but
it's important to note that this workload should not be heavily impacted
by wakeups from interrupt context.
4.15.0-rc3 4.15.0-rc3
vanilla noirq-v1r1
Lat 50.00th-qrtle-1 41.00 ( 0.00%) 41.00 ( 0.00%)
Lat 75.00th-qrtle-1 42.00 ( 0.00%) 42.00 ( 0.00%)
Lat 90.00th-qrtle-1 43.00 ( 0.00%) 44.00 ( -2.33%)
Lat 95.00th-qrtle-1 44.00 ( 0.00%) 46.00 ( -4.55%)
Lat 99.00th-qrtle-1 57.00 ( 0.00%) 58.00 ( -1.75%)
Lat 99.50th-qrtle-1 59.00 ( 0.00%) 59.00 ( 0.00%)
Lat 99.90th-qrtle-1 67.00 ( 0.00%) 78.00 ( -16.42%)
Lat 50.00th-qrtle-2 40.00 ( 0.00%) 51.00 ( -27.50%)
Lat 75.00th-qrtle-2 45.00 ( 0.00%) 56.00 ( -24.44%)
Lat 90.00th-qrtle-2 53.00 ( 0.00%) 59.00 ( -11.32%)
Lat 95.00th-qrtle-2 57.00 ( 0.00%) 61.00 ( -7.02%)
Lat 99.00th-qrtle-2 67.00 ( 0.00%) 71.00 ( -5.97%)
Lat 99.50th-qrtle-2 69.00 ( 0.00%) 74.00 ( -7.25%)
Lat 99.90th-qrtle-2 83.00 ( 0.00%) 77.00 ( 7.23%)
Lat 50.00th-qrtle-4 51.00 ( 0.00%) 51.00 ( 0.00%)
Lat 75.00th-qrtle-4 57.00 ( 0.00%) 56.00 ( 1.75%)
Lat 90.00th-qrtle-4 60.00 ( 0.00%) 59.00 ( 1.67%)
Lat 95.00th-qrtle-4 62.00 ( 0.00%) 62.00 ( 0.00%)
Lat 99.00th-qrtle-4 73.00 ( 0.00%) 72.00 ( 1.37%)
Lat 99.50th-qrtle-4 76.00 ( 0.00%) 74.00 ( 2.63%)
Lat 99.90th-qrtle-4 85.00 ( 0.00%) 78.00 ( 8.24%)
Lat 50.00th-qrtle-8 54.00 ( 0.00%) 58.00 ( -7.41%)
Lat 75.00th-qrtle-8 59.00 ( 0.00%) 62.00 ( -5.08%)
Lat 90.00th-qrtle-8 65.00 ( 0.00%) 66.00 ( -1.54%)
Lat 95.00th-qrtle-8 67.00 ( 0.00%) 70.00 ( -4.48%)
Lat 99.00th-qrtle-8 78.00 ( 0.00%) 79.00 ( -1.28%)
Lat 99.50th-qrtle-8 81.00 ( 0.00%) 80.00 ( 1.23%)
Lat 99.90th-qrtle-8 116.00 ( 0.00%) 83.00 ( 28.45%)
Lat 50.00th-qrtle-16 65.00 ( 0.00%) 64.00 ( 1.54%)
Lat 75.00th-qrtle-16 77.00 ( 0.00%) 71.00 ( 7.79%)
Lat 90.00th-qrtle-16 83.00 ( 0.00%) 82.00 ( 1.20%)
Lat 95.00th-qrtle-16 87.00 ( 0.00%) 87.00 ( 0.00%)
Lat 99.00th-qrtle-16 95.00 ( 0.00%) 96.00 ( -1.05%)
Lat 99.50th-qrtle-16 99.00 ( 0.00%) 103.00 ( -4.04%)
Lat 99.90th-qrtle-16 104.00 ( 0.00%) 122.00 ( -17.31%)
Lat 50.00th-qrtle-32 71.00 ( 0.00%) 73.00 ( -2.82%)
Lat 75.00th-qrtle-32 91.00 ( 0.00%) 92.00 ( -1.10%)
Lat 90.00th-qrtle-32 108.00 ( 0.00%) 107.00 ( 0.93%)
Lat 95.00th-qrtle-32 118.00 ( 0.00%) 115.00 ( 2.54%)
Lat 99.00th-qrtle-32 134.00 ( 0.00%) 129.00 ( 3.73%)
Lat 99.50th-qrtle-32 138.00 ( 0.00%) 133.00 ( 3.62%)
Lat 99.90th-qrtle-32 149.00 ( 0.00%) 146.00 ( 2.01%)
Lat 50.00th-qrtle-39 83.00 ( 0.00%) 81.00 ( 2.41%)
Lat 75.00th-qrtle-39 105.00 ( 0.00%) 102.00 ( 2.86%)
Lat 90.00th-qrtle-39 120.00 ( 0.00%) 119.00 ( 0.83%)
Lat 95.00th-qrtle-39 129.00 ( 0.00%) 128.00 ( 0.78%)
Lat 99.00th-qrtle-39 153.00 ( 0.00%) 149.00 ( 2.61%)
Lat 99.50th-qrtle-39 166.00 ( 0.00%) 156.00 ( 6.02%)
Lat 99.90th-qrtle-39 12304.00 ( 0.00%) 12848.00 ( -4.42%)
When heavily loaded (e.g. 99.50th-qrtle-39 indicates 39 threads), there
are small gains in many cases. Otherwise it depends on the quartile used
where it can be bad -- e.g. 75.00th-qrtle-2. However, even these results
are probably a co-incidence. For this workload, much depends on what node
the threads get placed on and their relative locality and not wakeups from
interrupt context. A larger component on how it behaves would be automatic
NUMA balancing where a fault incurred to measure locality would be a much
larger contributer to latency than the wakeup path.
This is the results from an almost identical machine that happened to run
the same test. They only differ in terms of storage which is irrelevant
for this test.
4.15.0-rc3 4.15.0-rc3
vanilla noirq-v1r1
Lat 50.00th-qrtle-1 41.00 ( 0.00%) 41.00 ( 0.00%)
Lat 75.00th-qrtle-1 42.00 ( 0.00%) 42.00 ( 0.00%)
Lat 90.00th-qrtle-1 44.00 ( 0.00%) 43.00 ( 2.27%)
Lat 95.00th-qrtle-1 53.00 ( 0.00%) 45.00 ( 15.09%)
Lat 99.00th-qrtle-1 59.00 ( 0.00%) 58.00 ( 1.69%)
Lat 99.50th-qrtle-1 60.00 ( 0.00%) 59.00 ( 1.67%)
Lat 99.90th-qrtle-1 86.00 ( 0.00%) 61.00 ( 29.07%)
Lat 50.00th-qrtle-2 52.00 ( 0.00%) 41.00 ( 21.15%)
Lat 75.00th-qrtle-2 57.00 ( 0.00%) 46.00 ( 19.30%)
Lat 90.00th-qrtle-2 60.00 ( 0.00%) 53.00 ( 11.67%)
Lat 95.00th-qrtle-2 62.00 ( 0.00%) 57.00 ( 8.06%)
Lat 99.00th-qrtle-2 73.00 ( 0.00%) 68.00 ( 6.85%)
Lat 99.50th-qrtle-2 74.00 ( 0.00%) 71.00 ( 4.05%)
Lat 99.90th-qrtle-2 90.00 ( 0.00%) 75.00 ( 16.67%)
Lat 50.00th-qrtle-4 57.00 ( 0.00%) 52.00 ( 8.77%)
Lat 75.00th-qrtle-4 60.00 ( 0.00%) 58.00 ( 3.33%)
Lat 90.00th-qrtle-4 62.00 ( 0.00%) 62.00 ( 0.00%)
Lat 95.00th-qrtle-4 65.00 ( 0.00%) 65.00 ( 0.00%)
Lat 99.00th-qrtle-4 76.00 ( 0.00%) 75.00 ( 1.32%)
Lat 99.50th-qrtle-4 77.00 ( 0.00%) 77.00 ( 0.00%)
Lat 99.90th-qrtle-4 87.00 ( 0.00%) 81.00 ( 6.90%)
Lat 50.00th-qrtle-8 59.00 ( 0.00%) 57.00 ( 3.39%)
Lat 75.00th-qrtle-8 63.00 ( 0.00%) 62.00 ( 1.59%)
Lat 90.00th-qrtle-8 66.00 ( 0.00%) 67.00 ( -1.52%)
Lat 95.00th-qrtle-8 68.00 ( 0.00%) 70.00 ( -2.94%)
Lat 99.00th-qrtle-8 79.00 ( 0.00%) 80.00 ( -1.27%)
Lat 99.50th-qrtle-8 80.00 ( 0.00%) 84.00 ( -5.00%)
Lat 99.90th-qrtle-8 84.00 ( 0.00%) 90.00 ( -7.14%)
Lat 50.00th-qrtle-16 65.00 ( 0.00%) 65.00 ( 0.00%)
Lat 75.00th-qrtle-16 77.00 ( 0.00%) 75.00 ( 2.60%)
Lat 90.00th-qrtle-16 84.00 ( 0.00%) 83.00 ( 1.19%)
Lat 95.00th-qrtle-16 88.00 ( 0.00%) 87.00 ( 1.14%)
Lat 99.00th-qrtle-16 97.00 ( 0.00%) 96.00 ( 1.03%)
Lat 99.50th-qrtle-16 100.00 ( 0.00%) 104.00 ( -4.00%)
Lat 99.90th-qrtle-16 110.00 ( 0.00%) 126.00 ( -14.55%)
Lat 50.00th-qrtle-32 70.00 ( 0.00%) 71.00 ( -1.43%)
Lat 75.00th-qrtle-32 92.00 ( 0.00%) 94.00 ( -2.17%)
Lat 90.00th-qrtle-32 110.00 ( 0.00%) 110.00 ( 0.00%)
Lat 95.00th-qrtle-32 121.00 ( 0.00%) 118.00 ( 2.48%)
Lat 99.00th-qrtle-32 135.00 ( 0.00%) 137.00 ( -1.48%)
Lat 99.50th-qrtle-32 140.00 ( 0.00%) 146.00 ( -4.29%)
Lat 99.90th-qrtle-32 150.00 ( 0.00%) 160.00 ( -6.67%)
Lat 50.00th-qrtle-39 80.00 ( 0.00%) 71.00 ( 11.25%)
Lat 75.00th-qrtle-39 102.00 ( 0.00%) 91.00 ( 10.78%)
Lat 90.00th-qrtle-39 118.00 ( 0.00%) 108.00 ( 8.47%)
Lat 95.00th-qrtle-39 128.00 ( 0.00%) 117.00 ( 8.59%)
Lat 99.00th-qrtle-39 149.00 ( 0.00%) 133.00 ( 10.74%)
Lat 99.50th-qrtle-39 160.00 ( 0.00%) 139.00 ( 13.12%)
Lat 99.90th-qrtle-39 13808.00 ( 0.00%) 4920.00 ( 64.37%)
Despite being nearly identical, it showed a variety of major gains so
I'm not convinced that heavy emphasis should be placed on this particular
workload in terms of evaluating this particular patch. Further evidence of
this is the fact that testing on a UMA machine showed small gains/losses
even though the patch should be a no-op on UMA.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20171219085947.13136-2-mgorman@techsingularity.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Since the remote cpufreq callback work, the cpufreq_update_util() call can happen
from remote CPUs. The comment about local CPUs is thus obsolete. Update it
accordingly.
Signed-off-by: Joel Fernandes <joelaf@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Android Kernel <kernel-team@android.com>
Cc: Atish Patra <atish.patra@oracle.com>
Cc: Chris Redpath <Chris.Redpath@arm.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: EAS Dev <eas-dev@lists.linaro.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Josef Bacik <jbacik@fb.com>
Cc: Juri Lelli <juri.lelli@arm.com>
Cc: Len Brown <lenb@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Ramussen <morten.rasmussen@arm.com>
Cc: Patrick Bellasi <patrick.bellasi@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rafael J. Wysocki <rjw@rjwysocki.net>
Cc: Rohit Jain <rohit.k.jain@oracle.com>
Cc: Saravana Kannan <skannan@quicinc.com>
Cc: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Cc: Steve Muckle <smuckle@google.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vikram Mulukutla <markivx@codeaurora.org>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Link: http://lkml.kernel.org/r/20171215153944.220146-2-joelaf@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
find_idlest_group_cpu() goes through CPUs of a group previous selected by
find_idlest_group(). find_idlest_group() returns NULL if the local group is the
selected one and doesn't execute find_idlest_group_cpu if the group to which
'cpu' belongs to is chosen. So we're always guaranteed to call
find_idlest_group_cpu() with a group to which 'cpu' is non-local.
This makes one of the conditions in find_idlest_group_cpu() an impossible one,
which we can get rid off.
Signed-off-by: Joel Fernandes <joelaf@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Brendan Jackman <brendan.jackman@arm.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Android Kernel <kernel-team@android.com>
Cc: Atish Patra <atish.patra@oracle.com>
Cc: Chris Redpath <Chris.Redpath@arm.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: EAS Dev <eas-dev@lists.linaro.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Josef Bacik <jbacik@fb.com>
Cc: Juri Lelli <juri.lelli@arm.com>
Cc: Len Brown <lenb@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Ramussen <morten.rasmussen@arm.com>
Cc: Patrick Bellasi <patrick.bellasi@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rafael J. Wysocki <rjw@rjwysocki.net>
Cc: Rohit Jain <rohit.k.jain@oracle.com>
Cc: Saravana Kannan <skannan@quicinc.com>
Cc: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Cc: Steve Muckle <smuckle@google.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vikram Mulukutla <markivx@codeaurora.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Link: http://lkml.kernel.org/r/20171215153944.220146-3-joelaf@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
capacity_spare_wake() in the slow path influences choice of idlest groups,
as we search for groups with maximum spare capacity. In scenarios where
RT pressure is high, a sub optimal group can be chosen and hurt
performance of the task being woken up.
Fix this by using capacity_of() instead of capacity_orig_of() in capacity_spare_wake().
Tests results from improvements with this change are below. More tests
were also done by myself and Matt Fleming to ensure no degradation in
different benchmarks.
1) Rohit ran barrier.c test (details below) with following improvements:
------------------------------------------------------------------------
This was Rohit's original use case for a patch he posted at [1] however
from his recent tests he showed my patch can replace his slow path
changes [1] and there's no need to selectively scan/skip CPUs in
find_idlest_group_cpu in the slow path to get the improvement he sees.
barrier.c (open_mp code) as a micro-benchmark. It does a number of
iterations and barrier sync at the end of each for loop.
Here barrier,c is running in along with ping on CPU 0 and 1 as:
'ping -l 10000 -q -s 10 -f hostX'
barrier.c can be found at:
http://www.spinics.net/lists/kernel/msg2506955.html
Following are the results for the iterations per second with this
micro-benchmark (higher is better), on a 44 core, 2 socket 88 Threads
Intel x86 machine:
+--------+------------------+---------------------------+
|Threads | Without patch | With patch |
| | | |
+--------+--------+---------+-----------------+---------+
| | Mean | Std Dev | Mean | Std Dev |
+--------+--------+---------+-----------------+---------+
|1 | 539.36 | 60.16 | 572.54 (+6.15%) | 40.95 |
|2 | 481.01 | 19.32 | 530.64 (+10.32%)| 56.16 |
|4 | 474.78 | 22.28 | 479.46 (+0.99%) | 18.89 |
|8 | 450.06 | 24.91 | 447.82 (-0.50%) | 12.36 |
|16 | 436.99 | 22.57 | 441.88 (+1.12%) | 7.39 |
|32 | 388.28 | 55.59 | 429.4 (+10.59%)| 31.14 |
|64 | 314.62 | 6.33 | 311.81 (-0.89%) | 11.99 |
+--------+--------+---------+-----------------+---------+
2) ping+hackbench test on bare-metal sever (by Rohit)
-----------------------------------------------------
Here hackbench is running in threaded mode along
with, running ping on CPU 0 and 1 as:
'ping -l 10000 -q -s 10 -f hostX'
This test is running on 2 socket, 20 core and 40 threads Intel x86
machine:
Number of loops is 10000 and runtime is in seconds (Lower is better).
+--------------+-----------------+--------------------------+
|Task Groups | Without patch | With patch |
| +-------+---------+----------------+---------+
|(Groups of 40)| Mean | Std Dev | Mean | Std Dev |
+--------------+-------+---------+----------------+---------+
|1 | 0.851 | 0.007 | 0.828 (+2.77%)| 0.032 |
|2 | 1.083 | 0.203 | 1.087 (-0.37%)| 0.246 |
|4 | 1.601 | 0.051 | 1.611 (-0.62%)| 0.055 |
|8 | 2.837 | 0.060 | 2.827 (+0.35%)| 0.031 |
|16 | 5.139 | 0.133 | 5.107 (+0.63%)| 0.085 |
|25 | 7.569 | 0.142 | 7.503 (+0.88%)| 0.143 |
+--------------+-------+---------+----------------+---------+
[1] https://patchwork.kernel.org/patch/9991635/
Matt Fleming also ran several different hackbench tests and cyclic test
to santiy-check that the patch doesn't harm other usecases.
Tested-by: Matt Fleming <matt@codeblueprint.co.uk>
Tested-by: Rohit Jain <rohit.k.jain@oracle.com>
Signed-off-by: Joel Fernandes <joelaf@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Atish Patra <atish.patra@oracle.com>
Cc: Brendan Jackman <brendan.jackman@arm.com>
Cc: Chris Redpath <Chris.Redpath@arm.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Juri Lelli <juri.lelli@arm.com>
Cc: Len Brown <lenb@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Ramussen <morten.rasmussen@arm.com>
Cc: Patrick Bellasi <patrick.bellasi@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rafael J. Wysocki <rjw@rjwysocki.net>
Cc: Saravana Kannan <skannan@quicinc.com>
Cc: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Cc: Steve Muckle <smuckle@google.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vikram Mulukutla <markivx@codeaurora.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Link: http://lkml.kernel.org/r/20171214212158.188190-1-joelaf@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Utilization and capacity are tracked as 'unsigned long', however some
functions using them return an 'int' which is ultimately assigned back to
'unsigned long' variables.
Since there is not scope on using a different and signed type,
consolidate the signature of functions returning utilization to always
use the native type.
This change improves code consistency, and it also benefits
code paths where utilizations should be clamped by avoiding
further type conversions or ugly type casts.
Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Chris Redpath <chris.redpath@arm.com>
Reviewed-by: Brendan Jackman <brendan.jackman@arm.com>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Todd Kjos <tkjos@android.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Link: http://lkml.kernel.org/r/20171205171018.9203-2-patrick.bellasi@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Unlike running, the runnable part can't be directly propagated through
the hierarchy when we migrate a task. The main reason is that runnable
time can be shared with other sched_entities that stay on the rq and
this runnable time will also remain on prev cfs_rq and must not be
removed.
Instead, we can estimate what should be the new runnable of the prev
cfs_rq and check that this estimation stay in a possible range. The
prop_runnable_sum is a good estimation when adding runnable_sum but
fails most often when we remove it. Instead, we could use the formula
below instead:
gcfs_rq's runnable_sum = gcfs_rq->avg.load_sum / gcfs_rq->load.weight
which assumes that tasks are equally runnable which is not true but
easy to compute.
Beside these estimates, we have several simple rules that help us to filter
out wrong ones:
- ge->avg.runnable_sum <= than LOAD_AVG_MAX
- ge->avg.runnable_sum >= ge->avg.running_sum (ge->avg.util_sum << LOAD_AVG_MAX)
- ge->avg.runnable_sum can't increase when we detach a task
The effect of these fixes is better cgroups balancing.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Ben Segall <bsegall@google.com>
Cc: Chris Mason <clm@fb.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Josef Bacik <josef@toxicpanda.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Yuyang Du <yuyang.du@intel.com>
Link: http://lkml.kernel.org/r/1510842112-21028-1-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull cgroup updates from Tejun Heo:
"Cgroup2 cpu controller support is finally merged.
- Basic cpu statistics support to allow monitoring by default without
the CPU controller enabled.
- cgroup2 cpu controller support.
- /sys/kernel/cgroup files to help dealing with new / optional
features"
* 'for-4.15' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup:
cgroup: export list of cgroups v2 features using sysfs
cgroup: export list of delegatable control files using sysfs
cgroup: mark @cgrp __maybe_unused in cpu_stat_show()
MAINTAINERS: relocate cpuset.c
cgroup, sched: Move basic cpu stats from cgroup.stat to cpu.stat
sched: Implement interface for cgroup unified hierarchy
sched: Misc preps for cgroup unified hierarchy interface
sched/cputime: Add dummy cputime_adjust() implementation for CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
cgroup: statically initialize init_css_set->dfl_cgrp
cgroup: Implement cgroup2 basic CPU usage accounting
cpuacct: Introduce cgroup_account_cputime[_field]()
sched/cputime: Expose cputime_adjust()
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Before we implement isolcpus under housekeeping, we need the isolation
features to be more finegrained. For example some people want NOHZ_FULL
without the full scheduler isolation, others want full scheduler
isolation without NOHZ_FULL.
So let's cut all these isolation features piecewise, at the risk of
overcutting it right now. We can still merge some flags later if they
always make sense together.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Chris Metcalf <cmetcalf@mellanox.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Wanpeng Li <kernellwp@gmail.com>
Link: http://lkml.kernel.org/r/1509072159-31808-9-git-send-email-frederic@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Fit it into the housekeeping_*() namespace.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Chris Metcalf <cmetcalf@mellanox.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Wanpeng Li <kernellwp@gmail.com>
Link: http://lkml.kernel.org/r/1509072159-31808-7-git-send-email-frederic@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The housekeeping code is currently tied to the NOHZ code. As we are
planning to make housekeeping independent from it, start with moving
the relevant code to its own file.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Chris Metcalf <cmetcalf@mellanox.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Wanpeng Li <kernellwp@gmail.com>
Link: http://lkml.kernel.org/r/1509072159-31808-2-git-send-email-frederic@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
find_idlest_group() returns NULL when the local group is idlest. The
caller then continues the find_idlest_group() search at a lower level
of the current CPU's sched_domain hierarchy. find_idlest_group_cpu() is
not consulted and, crucially, @new_cpu is not updated. This means the
search is pointless and we return @prev_cpu from select_task_rq_fair().
This is fixed by initialising @new_cpu to @cpu instead of @prev_cpu.
Signed-off-by: Brendan Jackman <brendan.jackman@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Josef Bacik <jbacik@fb.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Josef Bacik <josef@toxicpanda.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20171005114516.18617-6-brendan.jackman@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When 'p' is not allowed on any of the CPUs in the sched_domain, we
currently return NULL from find_idlest_group(), and pointlessly
continue the search on lower sched_domain levels (where 'p' is also not
allowed) before returning prev_cpu regardless (as we have not updated
new_cpu).
Add an explicit check for this case, and add a comment to
find_idlest_group(). Now when find_idlest_group() returns NULL, it always
means that the local group is allowed and idlest.
Signed-off-by: Brendan Jackman <brendan.jackman@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Reviewed-by: Josef Bacik <jbacik@fb.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Josef Bacik <josef@toxicpanda.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20171005114516.18617-5-brendan.jackman@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When the local group is not allowed we do not modify this_*_load from
their initial value of 0. That means that the load checks at the end
of find_idlest_group cause us to incorrectly return NULL. Fixing the
initial values to ULONG_MAX means we will instead return the idlest
remote group in that case.
Signed-off-by: Brendan Jackman <brendan.jackman@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Reviewed-by: Josef Bacik <jbacik@fb.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Josef Bacik <josef@toxicpanda.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20171005114516.18617-4-brendan.jackman@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Since commit:
83a0a96a5f ("sched/fair: Leverage the idle state info when choosing the "idlest" cpu")
find_idlest_group_cpu() (formerly find_idlest_cpu) no longer returns -1,
so we can simplify the checking of the return value in find_idlest_cpu().
Signed-off-by: Brendan Jackman <brendan.jackman@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Josef Bacik <jbacik@fb.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Josef Bacik <josef@toxicpanda.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20171005114516.18617-3-brendan.jackman@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In preparation for changes that would otherwise require adding a new
level of indentation to the while(sd) loop, create a new function
find_idlest_cpu() which contains this loop, and rename the existing
find_idlest_cpu() to find_idlest_group_cpu().
Code inside the while(sd) loop is unchanged. @new_cpu is added as a
variable in the new function, with the same initial value as the
@new_cpu in select_task_rq_fair().
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Brendan Jackman <brendan.jackman@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Josef Bacik <jbacik@fb.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Josef Bacik <josef@toxicpanda.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20171005114516.18617-2-brendan.jackman@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The "goto force_balance" here is intended to mitigate the fact that
avg_load calculations can result in bad placement decisions when
priority is asymmetrical.
The original commit that adds it:
fab476228b ("sched: Force balancing on newidle balance if local group has capacity")
explains:
Under certain situations, such as a niced down task (i.e. nice =
-15) in the presence of nr_cpus NICE0 tasks, the niced task lands
on a sched group and kicks away other tasks because of its large
weight. This leads to sub-optimal utilization of the
machine. Even though the sched group has capacity, it does not
pull tasks because sds.this_load >> sds.max_load, and f_b_g()
returns NULL.
A similar but inverted issue also affects ARM big.LITTLE (asymmetrical CPU
capacity) systems - consider 8 always-running, same-priority tasks on a
system with 4 "big" and 4 "little" CPUs. Suppose that 5 of them end up on
the "big" CPUs (which will be represented by one sched_group in the DIE
sched_domain) and 3 on the "little" (the other sched_group in DIE), leaving
one CPU unused. Because the "big" group has a higher group_capacity its
avg_load may not present an imbalance that would cause migrating a
task to the idle "little".
The force_balance case here solves the problem but currently only for
CPU_NEWLY_IDLE balances, which in theory might never happen on the
unused CPU. Including CPU_IDLE in the force_balance case means
there's an upper bound on the time before we can attempt to solve the
underutilization: after DIE's sd->balance_interval has passed the
next nohz balance kick will help us out.
Signed-off-by: Brendan Jackman <brendan.jackman@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20170807163900.25180-1-brendan.jackman@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We use task_util() in find_idlest_group() via capacity_spare_wake().
This task_util() updated in wake_cap(). However wake_cap() is not the
only reason for ending up in find_idlest_group() - we could have been sent
there by wake_wide(). So explicitly sync the task util with prev_cpu
when we are about to head to find_idlest_group().
We could simply do this at the beginning of
select_task_rq_fair() (i.e. irrespective of whether we're heading to
select_idle_sibling() or find_idlest_group() & co), but I didn't want to
slow down the select_idle_sibling() path more than necessary.
Don't do this during fork balancing, we won't need the task_util and
we'd just clobber the last_update_time, which is supposed to be 0.
Signed-off-by: Brendan Jackman <brendan.jackman@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andres Oportus <andresoportus@google.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Josef Bacik <josef@toxicpanda.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Link: http://lkml.kernel.org/r/20170808095519.10077-1-brendan.jackman@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
As a first step this patch makes cfs_tasks list as MRU one.
It means, that when a next task is picked to run on physical
CPU it is moved to the front of the list.
Therefore, the cfs_tasks list is more or less sorted (except
woken tasks) starting from recently given CPU time tasks toward
tasks with max wait time in a run-queue, i.e. MRU list.
Second, as part of the load balance operation, this approach
starts detach_tasks()/detach_one_task() from the tail of the
queue instead of the head, giving some advantages:
- tends to pick a task with highest wait time;
- tasks located in the tail are less likely cache-hot,
therefore the can_migrate_task() decision is higher.
hackbench illustrates slightly better performance. For example
doing 1000 samples and 40 groups on i5-3320M CPU, it shows below
figures:
default: 0.657 avg
patched: 0.646 avg
Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Kirill Tkhai <tkhai@yandex.ru>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: Nicolas Pitre <nicolas.pitre@linaro.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Oleksiy Avramchenko <oleksiy.avramchenko@sonymobile.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Link: http://lkml.kernel.org/r/20170913102430.8985-2-urezki@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
While load_balance() masks the source CPUs against active_mask, it had
a hole against the destination CPU. Ensure the destination CPU is also
part of the 'domain-mask & active-mask' set.
Reported-by: Levin, Alexander (Sasha Levin) <alexander.levin@verizon.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 77d1dfda0e ("sched/topology, cpuset: Avoid spurious/wrong domain rebuilds")
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The trivial wake_affine_idle() implementation is very good for a
number of workloads, but it comes apart at the moment there are no
idle CPUs left, IOW. the overloaded case.
hackbench:
NO_WA_WEIGHT WA_WEIGHT
hackbench-20 : 7.362717561 seconds 6.450509391 seconds
(win)
netperf:
NO_WA_WEIGHT WA_WEIGHT
TCP_SENDFILE-1 : Avg: 54524.6 Avg: 52224.3
TCP_SENDFILE-10 : Avg: 48185.2 Avg: 46504.3
TCP_SENDFILE-20 : Avg: 29031.2 Avg: 28610.3
TCP_SENDFILE-40 : Avg: 9819.72 Avg: 9253.12
TCP_SENDFILE-80 : Avg: 5355.3 Avg: 4687.4
TCP_STREAM-1 : Avg: 41448.3 Avg: 42254
TCP_STREAM-10 : Avg: 24123.2 Avg: 25847.9
TCP_STREAM-20 : Avg: 15834.5 Avg: 18374.4
TCP_STREAM-40 : Avg: 5583.91 Avg: 5599.57
TCP_STREAM-80 : Avg: 2329.66 Avg: 2726.41
TCP_RR-1 : Avg: 80473.5 Avg: 82638.8
TCP_RR-10 : Avg: 72660.5 Avg: 73265.1
TCP_RR-20 : Avg: 52607.1 Avg: 52634.5
TCP_RR-40 : Avg: 57199.2 Avg: 56302.3
TCP_RR-80 : Avg: 25330.3 Avg: 26867.9
UDP_RR-1 : Avg: 108266 Avg: 107844
UDP_RR-10 : Avg: 95480 Avg: 95245.2
UDP_RR-20 : Avg: 68770.8 Avg: 68673.7
UDP_RR-40 : Avg: 76231 Avg: 75419.1
UDP_RR-80 : Avg: 34578.3 Avg: 35639.1
UDP_STREAM-1 : Avg: 64684.3 Avg: 66606
UDP_STREAM-10 : Avg: 52701.2 Avg: 52959.5
UDP_STREAM-20 : Avg: 30376.4 Avg: 29704
UDP_STREAM-40 : Avg: 15685.8 Avg: 15266.5
UDP_STREAM-80 : Avg: 8415.13 Avg: 7388.97
(wins and losses)
sysbench:
NO_WA_WEIGHT WA_WEIGHT
sysbench-mysql-2 : 2135.17 per sec. 2142.51 per sec.
sysbench-mysql-5 : 4809.68 per sec. 4800.19 per sec.
sysbench-mysql-10 : 9158.59 per sec. 9157.05 per sec.
sysbench-mysql-20 : 14570.70 per sec. 14543.55 per sec.
sysbench-mysql-40 : 22130.56 per sec. 22184.82 per sec.
sysbench-mysql-80 : 20995.56 per sec. 21904.18 per sec.
sysbench-psql-2 : 1679.58 per sec. 1705.06 per sec.
sysbench-psql-5 : 3797.69 per sec. 3879.93 per sec.
sysbench-psql-10 : 7253.22 per sec. 7258.06 per sec.
sysbench-psql-20 : 11166.75 per sec. 11220.00 per sec.
sysbench-psql-40 : 17277.28 per sec. 17359.78 per sec.
sysbench-psql-80 : 17112.44 per sec. 17221.16 per sec.
(increase on the top end)
tbench:
NO_WA_WEIGHT
Throughput 685.211 MB/sec 2 clients 2 procs max_latency=0.123 ms
Throughput 1596.64 MB/sec 5 clients 5 procs max_latency=0.119 ms
Throughput 2985.47 MB/sec 10 clients 10 procs max_latency=0.262 ms
Throughput 4521.15 MB/sec 20 clients 20 procs max_latency=0.506 ms
Throughput 9438.1 MB/sec 40 clients 40 procs max_latency=2.052 ms
Throughput 8210.5 MB/sec 80 clients 80 procs max_latency=8.310 ms
WA_WEIGHT
Throughput 697.292 MB/sec 2 clients 2 procs max_latency=0.127 ms
Throughput 1596.48 MB/sec 5 clients 5 procs max_latency=0.080 ms
Throughput 2975.22 MB/sec 10 clients 10 procs max_latency=0.254 ms
Throughput 4575.14 MB/sec 20 clients 20 procs max_latency=0.502 ms
Throughput 9468.65 MB/sec 40 clients 40 procs max_latency=2.069 ms
Throughput 8631.73 MB/sec 80 clients 80 procs max_latency=8.605 ms
(increase on the top end)
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Eric reported a sysbench regression against commit:
3fed382b46 ("sched/numa: Implement NUMA node level wake_affine()")
Similarly, Rik was looking at the NAS-lu.C benchmark, which regressed
against his v3.10 enterprise kernel.
PRE (current tip/master):
ivb-ep sysbench:
2: [30 secs] transactions: 64110 (2136.94 per sec.)
5: [30 secs] transactions: 143644 (4787.99 per sec.)
10: [30 secs] transactions: 274298 (9142.93 per sec.)
20: [30 secs] transactions: 418683 (13955.45 per sec.)
40: [30 secs] transactions: 320731 (10690.15 per sec.)
80: [30 secs] transactions: 355096 (11834.28 per sec.)
hsw-ex NAS:
OMP_PROC_BIND/lu.C.x_threads_144_run_1.log: Time in seconds = 18.01
OMP_PROC_BIND/lu.C.x_threads_144_run_2.log: Time in seconds = 17.89
OMP_PROC_BIND/lu.C.x_threads_144_run_3.log: Time in seconds = 17.93
lu.C.x_threads_144_run_1.log: Time in seconds = 434.68
lu.C.x_threads_144_run_2.log: Time in seconds = 405.36
lu.C.x_threads_144_run_3.log: Time in seconds = 433.83
POST (+patch):
ivb-ep sysbench:
2: [30 secs] transactions: 64494 (2149.75 per sec.)
5: [30 secs] transactions: 145114 (4836.99 per sec.)
10: [30 secs] transactions: 278311 (9276.69 per sec.)
20: [30 secs] transactions: 437169 (14571.60 per sec.)
40: [30 secs] transactions: 669837 (22326.73 per sec.)
80: [30 secs] transactions: 631739 (21055.88 per sec.)
hsw-ex NAS:
lu.C.x_threads_144_run_1.log: Time in seconds = 23.36
lu.C.x_threads_144_run_2.log: Time in seconds = 22.96
lu.C.x_threads_144_run_3.log: Time in seconds = 22.52
This patch takes out all the shiny wake_affine() stuff and goes back to
utter basics. Between the two CPUs involved with the wakeup (the CPU
doing the wakeup and the CPU we ran on previously) pick the CPU we can
run on _now_.
This restores much of the regressions against the older kernels,
but leaves some ground in the overloaded case. The default-enabled
WA_WEIGHT (which will be introduced in the next patch) is an attempt
to address the overloaded situation.
Reported-by: Eric Farman <farman@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matthew Rosato <mjrosato@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: jinpuwang@gmail.com
Cc: vcaputo@pengaru.com
Fixes: 3fed382b46 ("sched/numa: Implement NUMA node level wake_affine()")
Signed-off-by: Ingo Molnar <mingo@kernel.org>
I had a wee bit of trouble recalling how the calc_group_runnable()
stuff worked.. add hopefully better comments.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Our runnable_weight currently looks like this
runnable_weight = shares * runnable_load_avg / load_avg
The goal is to scale the runnable weight for the group based on its runnable to
load_avg ratio. The problem with this is it biases us towards tasks that never
go to sleep. Tasks that go to sleep are going to have their runnable_load_avg
decayed pretty hard, which will drastically reduce the runnable weight of groups
with interactive tasks. To solve this imbalance we tweak this slightly, so in
the ideal case it is still the above, but in the interactive case it is
runnable_weight = shares * runnable_weight / load_weight
which will make the weight distribution fairer between interactive and
non-interactive groups.
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: kernel-team@fb.com
Cc: linux-kernel@vger.kernel.org
Cc: riel@redhat.com
Cc: tj@kernel.org
Link: http://lkml.kernel.org/r/1501773219-18774-2-git-send-email-jbacik@fb.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The problem with the overestimate is that it will subtract too big a
value from the load_sum, thereby pushing it down further than it ought
to go. Since runnable_load_avg is not subject to a similar 'force',
this results in the occasional 'runnable_load > load' situation.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The PELT _sum values are a saw-tooth function, dropping on the decay
edge and then growing back up again during the window.
When these window-edges are not aligned between cfs_rq and se, we can
have the situation where, for example, on dequeue, the se decays
first.
Its _sum values will be small(er), while the cfs_rq _sum values will
still be on their way up. Because of this, the subtraction:
cfs_rq->avg._sum -= se->avg._sum will result in a positive value. This
will then, once the cfs_rq reaches an edge, translate into its _avg
value jumping up.
This is especially visible with the runnable_load bits, since they get
added/subtracted a lot.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Vincent wondered why his self migrating task had a roughly 50% dip in
load_avg when landing on the new CPU. This is because we uncondionally
take the asynchronous detatch_entity route, which can lead to the
attach on the new CPU still seeing the old CPU's contribution to
tg->load_avg, effectively halving the new CPU's shares.
While in general this is something we have to live with, there is the
special case of runnable migration where we can do better.
Tested-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The load balancer uses runnable_load_avg as load indicator. For
!cgroup this is:
runnable_load_avg = \Sum se->avg.load_avg ; where se->on_rq
That is, a direct sum of all runnable tasks on that runqueue. As
opposed to load_avg, which is a sum of all tasks on the runqueue,
which includes a blocked component.
However, in the cgroup case, this comes apart since the group entities
are always runnable, even if most of their constituent entities are
blocked.
Therefore introduce a runnable_weight which for task entities is the
same as the regular weight, but for group entities is a fraction of
the entity weight and represents the runnable part of the group
runqueue.
Then propagate this load through the PELT hierarchy to arrive at an
effective runnable load avgerage -- which we should not confuse with
the canonical runnable load average.
Suggested-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When an entity migrates in (or out) of a runqueue, we need to add (or
remove) its contribution from the entire PELT hierarchy, because even
non-runnable entities are included in the load average sums.
In order to do this we have some propagation logic that updates the
PELT tree, however the way it 'propagates' the runnable (or load)
change is (more or less):
tg->weight * grq->avg.load_avg
ge->avg.load_avg = ------------------------------
tg->load_avg
But that is the expression for ge->weight, and per the definition of
load_avg:
ge->avg.load_avg := ge->weight * ge->avg.runnable_avg
That destroys the runnable_avg (by setting it to 1) we wanted to
propagate.
Instead directly propagate runnable_sum.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Since on wakeup migration we don't hold the rq->lock for the old CPU
we cannot update its state. Instead we add the removed 'load' to an
atomic variable and have the next update on that CPU collect and
process it.
Currently we have 2 atomic variables; which already have the issue
that they can be read out-of-sync. Also, two atomic ops on a single
cacheline is already more expensive than an uncontended lock.
Since we want to add more, convert the thing over to an explicit
cacheline with a lock in.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Now that we directly change load_avg and propagate that change into
the sums, sys_nice() and co should do the same, otherwise its possible
to confuse load accounting when we migrate near the weight change.
Fixes-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
[ Added changelog, fixed the call condition. ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/r/20170517095045.GA8420@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When a (group) entity changes it's weight we should instantly change
its load_avg and propagate that change into the sums it is part of.
Because we use these values to predict future behaviour and are not
interested in its historical value.
Without this change, the change in load would need to propagate
through the average, by which time it could again have changed etc..
always chasing itself.
With this change, the cfs_rq load_avg sum will more accurately reflect
the current runnable and expected return of blocked load.
Reported-by: Paul Turner <pjt@google.com>
[josef: compile fix !SMP || !FAIR_GROUP]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Analogous to the existing {en,de}queue_runnable_load_avg() add helpers
for {en,de}queue_load_avg(). More users will follow.
Includes some code movement to avoid fwd declarations.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Move the entity migrate handling from enqueue_entity_load_avg() to
update_load_avg(). This has two benefits:
- {en,de}queue_entity_load_avg() will become purely about managing
runnable_load
- we can avoid a double update_tg_load_avg() and reduce pressure on
the global tg->shares cacheline
The reason we do this is so that we can change update_cfs_shares() to
change both weight and (future) runnable_weight. For this to work we
need to have the cfs_rq averages up-to-date (which means having done
the attach), but we need the cfs_rq->avg.runnable_avg to not yet
include the se's contribution (since se->on_rq == 0).
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Most call sites of update_load_avg() already have cfs_rq_of(se)
available, pass it down instead of recomputing it.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Remove the load from the load_sum for sched_entities, basically
turning load_sum into runnable_sum. This prepares for better
reweighting of group entities.
Since we now have different rules for computing load_avg, split
___update_load_avg() into two parts, ___update_load_sum() and
___update_load_avg().
So for se:
___update_load_sum(.weight = 1)
___upate_load_avg(.weight = se->load.weight)
and for cfs_rq:
___update_load_sum(.weight = cfs_rq->load.weight)
___upate_load_avg(.weight = 1)
Since the primary consumable is load_avg, most things will not be
affected. Only those few sites that initialize/modify load_sum need
attention.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Vincent reported that when running in a cgroup, his root
cfs_rq->avg.load_avg dropped to 0 on task idle.
This is because reweight_entity() will now immediately propagate the
weight change of the group entity to its cfs_rq, and as it happens,
our approxmation (5) for calc_cfs_shares() results in 0 when the group
is idle.
Avoid this by using the correct (3) as a lower bound on (5). This way
the empty cgroup will slowly decay instead of instantly drop to 0.
Reported-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Explain the magic equation in calc_cfs_shares() a bit better.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
For consistencies sake, we should have only a single reading of tg->shares.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Introduce cgroup_account_cputime[_field]() which wrap cpuacct_charge()
and cgroup_account_field(). This doesn't introduce any functional
changes and will be used to add cgroup basic resource accounting.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@redhat.com>
Pull scheduler fixes from Ingo Molnar:
"Three CPU hotplug related fixes and a debugging improvement"
* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/debug: Add debugfs knob for "sched_debug"
sched/core: WARN() when migrating to an offline CPU
sched/fair: Plug hole between hotplug and active_load_balance()
sched/fair: Avoid newidle balance for !active CPUs
The load balancer applies cpu_active_mask to whatever sched_domains it
finds, however in the case of active_balance there is a hole between
setting rq->{active_balance,push_cpu} and running the stop_machine
work doing the actual migration.
The @push_cpu can go offline in this window, which would result in us
moving a task onto a dead cpu, which is a fairly bad thing.
Double check the active mask before the stop work does the migration.
CPU0 CPU1
<SoftIRQ>
stop_machine(takedown_cpu)
load_balance() cpu_stopper_thread()
... work = multi_cpu_stop
stop_one_cpu_nowait( /* wait for CPU0 */
.func = active_load_balance_cpu_stop
);
</SoftIRQ>
cpu_stopper_thread()
work = multi_cpu_stop
/* sync with CPU1 */
take_cpu_down()
<idle>
play_dead();
work = active_load_balance_cpu_stop
set_task_cpu(p, CPU1); /* oops!! */
Reported-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20170907150614.044460912@infradead.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
On CPU hot unplug, when parking the last kthread we'll try and
schedule into idle to kill the CPU. This last schedule can (and does)
trigger newidle balance because at this point the sched domains are
still up because of commit:
77d1dfda0e ("sched/topology, cpuset: Avoid spurious/wrong domain rebuilds")
Obviously pulling tasks to an already offline CPU is a bad idea, and
all balancing operations _should_ be subject to cpu_active_mask, make
it so.
Reported-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Fixes: 77d1dfda0e ("sched/topology, cpuset: Avoid spurious/wrong domain rebuilds")
Link: http://lkml.kernel.org/r/20170907150613.994135806@infradead.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Work around kernel-doc warning ('*' in Sphinx doc means "emphasis"):
../kernel/sched/fair.c:7584: WARNING: Inline emphasis start-string without end-string.
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/f18b30f9-6251-6d86-9d44-16501e386891@infradead.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Chris Wilson reported that the SMT balance rules got the +1 on the
wrong side, resulting in a bias towards the current LLC; which the
load-balancer would then try and undo.
Reported-by: Chris Wilson <chris@chris-wilson.co.uk>
Tested-by: Chris Wilson <chris@chris-wilson.co.uk>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Fixes: 90001d67be ("sched/fair: Fix wake_affine() for !NUMA_BALANCING")
Link: http://lkml.kernel.org/r/20170906105131.gqjmaextmn3u6tj2@hirez.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
- Drop the P-state selection algorithm based on a PID controller
from intel_pstate and make it use the same P-state selection
method (based on the CPU load) for all types of systems in the
active mode (Rafael Wysocki, Srinivas Pandruvada).
- Rework the cpufreq core and governors to make it possible to
take cross-CPU utilization updates into account and modify the
schedutil governor to actually do so (Viresh Kumar).
- Clean up the handling of transition latency information in the
cpufreq core and untangle it from the information on which drivers
cannot do dynamic frequency switching (Viresh Kumar).
- Add support for new SoCs (MT2701/MT7623 and MT7622) to the
mediatek cpufreq driver and update its DT bindings (Sean Wang).
- Modify the cpufreq dt-platdev driver to autimatically create
cpufreq devices for the new (v2) Operating Performance Points
(OPP) DT bindings and update its whitelist of supported systems
(Viresh Kumar, Shubhrajyoti Datta, Marc Gonzalez, Khiem Nguyen,
Finley Xiao).
- Add support for Ux500 to the cpufreq-dt driver and drop the
obsolete dbx500 cpufreq driver (Linus Walleij, Arnd Bergmann).
- Add new SoC (R8A7795) support to the cpufreq rcar driver (Khiem
Nguyen).
- Fix and clean up assorted issues in the cpufreq drivers and core
(Arvind Yadav, Christophe Jaillet, Colin Ian King, Gustavo Silva,
Julia Lawall, Leonard Crestez, Rob Herring, Sudeep Holla).
- Update the IO-wait boost handling in the schedutil governor to
make it less aggressive (Joel Fernandes).
- Rework system suspend diagnostics to make it print fewer messages
to the kernel log by default, add a sysfs knob to allow more
suspend-related messages to be printed and add Low Power S0 Idle
constraints checks to the ACPI suspend-to-idle code (Rafael
Wysocki, Srinivas Pandruvada).
- Prefer suspend-to-idle over S3 on ACPI-based systems with the
ACPI_FADT_LOW_POWER_S0 flag set and the Low Power Idle S0 _DSM
interface present in the ACPI tables (Rafael Wysocki).
- Update documentation related to system sleep and rename a number
of items in the code to make it cleare that they are related to
suspend-to-idle (Rafael Wysocki).
- Export a variable allowing device drivers to check the target
system sleep state from the core system suspend code (Florian
Fainelli).
- Clean up the cpuidle subsystem to handle the polling state on
x86 in a more straightforward way and to use %pOF instead of
full_name (Rafael Wysocki, Rob Herring).
- Update the devfreq framework to fix and clean up a few minor
issues (Chanwoo Choi, Rob Herring).
- Extend diagnostics in the generic power domains (genpd) framework
and clean it up slightly (Thara Gopinath, Rob Herring).
- Fix and clean up a couple of issues in the operating performance
points (OPP) framework (Viresh Kumar, Waldemar Rymarkiewicz).
- Add support for RV1108 to the rockchip-io Adaptive Voltage Scaling
(AVS) driver (David Wu).
- Fix the usage of notifiers in CPU power management on some
platforms (Alex Shi).
- Update the pm-graph system suspend/hibernation and boot profiling
utility (Todd Brandt).
- Make it possible to run the cpupower utility without CPU0 (Prarit
Bhargava).
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iQIcBAABCAAGBQJZrcDJAAoJEILEb/54YlRx9FUQAIUKvWBAARc61ZIZXjbqZF1v
aEMOBuksFns0CMekdptSic6n4wc81E/XYMS8yDhOOMpyDzfAZsTWjmu+gKwN7w3l
E/yf/NVlhob9JZ7MqGgqD4EUFfFIaKBXPlWFdDi2rdCUXE2L8xJ7rla8i7zyZlc5
pYHfAppBbF4qUcEY4OoOVOOGRZCfMdiLXj0iZOhMX8Y6yLBRk/AjnVADYsF33hoj
gBEfomU+H0K5V8nQEp0ZFKDArPwL+oElHQj6i+nxBpGfPM5evvLXhHOyR6AsldJ5
J4YI1kMuQNSCmvHMqOTxTYyJf8Jcf3Fj4wcjwaVMVGceY1lz6McAKknnFnCqCvz+
mskn84gFCBCM8EoJDqRf0b9MQHcuRyQKM+yw4tjnR9r8yd32erb85ZWFHcPWYhCT
fZatNOwFFv2MU+2vo5J3yeUNSWIKT+uBjy+tKPbrDkUwpKZVRj3Oj+hP3Mq9NE8U
YBqltsj7tmrdA634zI8C7jfS6wF221S0fId/iPszwmPJaVn/lq8Ror7pWL5YI8U7
SCJFjiqDiGmAcQEkuWwFAQnscZkyHpO+Y3A+jfXl/izoaZETaI5+ceIHBaocm3+5
XrOOpHS3ik8EHf9ji0KFCKZ/pYDwllday3cBQPWo3sMIzpQ2lrjbqdnE1cVnBrld
OtHZAeD/jLUXuY6XW2jN
=mAiV
-----END PGP SIGNATURE-----
Merge tag 'pm-4.14-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull power management updates from Rafael Wysocki:
"This time (again) cpufreq gets the majority of changes which mostly
are driver updates (including a major consolidation of intel_pstate),
some schedutil governor modifications and core cleanups.
There also are some changes in the system suspend area, mostly related
to diagnostics and debug messages plus some renames of things related
to suspend-to-idle. One major change here is that suspend-to-idle is
now going to be preferred over S3 on systems where the ACPI tables
indicate to do so and provide requsite support (the Low Power Idle S0
_DSM in particular). The system sleep documentation and the tools
related to it are updated too.
The rest is a few cpuidle changes (nothing major), devfreq updates,
generic power domains (genpd) framework updates and a few assorted
modifications elsewhere.
Specifics:
- Drop the P-state selection algorithm based on a PID controller from
intel_pstate and make it use the same P-state selection method
(based on the CPU load) for all types of systems in the active mode
(Rafael Wysocki, Srinivas Pandruvada).
- Rework the cpufreq core and governors to make it possible to take
cross-CPU utilization updates into account and modify the schedutil
governor to actually do so (Viresh Kumar).
- Clean up the handling of transition latency information in the
cpufreq core and untangle it from the information on which drivers
cannot do dynamic frequency switching (Viresh Kumar).
- Add support for new SoCs (MT2701/MT7623 and MT7622) to the mediatek
cpufreq driver and update its DT bindings (Sean Wang).
- Modify the cpufreq dt-platdev driver to autimatically create
cpufreq devices for the new (v2) Operating Performance Points (OPP)
DT bindings and update its whitelist of supported systems (Viresh
Kumar, Shubhrajyoti Datta, Marc Gonzalez, Khiem Nguyen, Finley
Xiao).
- Add support for Ux500 to the cpufreq-dt driver and drop the
obsolete dbx500 cpufreq driver (Linus Walleij, Arnd Bergmann).
- Add new SoC (R8A7795) support to the cpufreq rcar driver (Khiem
Nguyen).
- Fix and clean up assorted issues in the cpufreq drivers and core
(Arvind Yadav, Christophe Jaillet, Colin Ian King, Gustavo Silva,
Julia Lawall, Leonard Crestez, Rob Herring, Sudeep Holla).
- Update the IO-wait boost handling in the schedutil governor to make
it less aggressive (Joel Fernandes).
- Rework system suspend diagnostics to make it print fewer messages
to the kernel log by default, add a sysfs knob to allow more
suspend-related messages to be printed and add Low Power S0 Idle
constraints checks to the ACPI suspend-to-idle code (Rafael
Wysocki, Srinivas Pandruvada).
- Prefer suspend-to-idle over S3 on ACPI-based systems with the
ACPI_FADT_LOW_POWER_S0 flag set and the Low Power Idle S0 _DSM
interface present in the ACPI tables (Rafael Wysocki).
- Update documentation related to system sleep and rename a number of
items in the code to make it cleare that they are related to
suspend-to-idle (Rafael Wysocki).
- Export a variable allowing device drivers to check the target
system sleep state from the core system suspend code (Florian
Fainelli).
- Clean up the cpuidle subsystem to handle the polling state on x86
in a more straightforward way and to use %pOF instead of full_name
(Rafael Wysocki, Rob Herring).
- Update the devfreq framework to fix and clean up a few minor issues
(Chanwoo Choi, Rob Herring).
- Extend diagnostics in the generic power domains (genpd) framework
and clean it up slightly (Thara Gopinath, Rob Herring).
- Fix and clean up a couple of issues in the operating performance
points (OPP) framework (Viresh Kumar, Waldemar Rymarkiewicz).
- Add support for RV1108 to the rockchip-io Adaptive Voltage Scaling
(AVS) driver (David Wu).
- Fix the usage of notifiers in CPU power management on some
platforms (Alex Shi).
- Update the pm-graph system suspend/hibernation and boot profiling
utility (Todd Brandt).
- Make it possible to run the cpupower utility without CPU0 (Prarit
Bhargava)"
* tag 'pm-4.14-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (87 commits)
cpuidle: Make drivers initialize polling state
cpuidle: Move polling state initialization code to separate file
cpuidle: Eliminate the CPUIDLE_DRIVER_STATE_START symbol
cpufreq: imx6q: Fix imx6sx low frequency support
cpufreq: speedstep-lib: make several arrays static, makes code smaller
PM: docs: Delete the obsolete states.txt document
PM: docs: Describe high-level PM strategies and sleep states
PM / devfreq: Fix memory leak when fail to register device
PM / devfreq: Add dependency on PM_OPP
PM / devfreq: Move private devfreq_update_stats() into devfreq
PM / devfreq: Convert to using %pOF instead of full_name
PM / AVS: rockchip-io: add io selectors and supplies for RV1108
cpufreq: ti: Fix 'of_node_put' being called twice in error handling path
cpufreq: dt-platdev: Drop few entries from whitelist
cpufreq: dt-platdev: Automatically create cpufreq device with OPP v2
ARM: ux500: don't select CPUFREQ_DT
cpuidle: Convert to using %pOF instead of full_name
cpufreq: Convert to using %pOF instead of full_name
PM / Domains: Convert to using %pOF instead of full_name
cpufreq: Cap the default transition delay value to 10 ms
...
In commit:
3fed382b46 ("sched/numa: Implement NUMA node level wake_affine()")
Rik changed wake_affine to consider NUMA information when balancing
between LLC domains.
There are a number of problems here which this patch tries to address:
- LLC < NODE; in this case we'd use the wrong information to balance
- !NUMA_BALANCING: in this case, the new code doesn't do any
balancing at all
- re-computes the NUMA data for every wakeup, this can mean iterating
up to 64 CPUs for every wakeup.
- default affine wakeups inside a cache
We address these by saving the load/capacity values for each
sched_domain during regular load-balance and using these values in
wake_affine_llc(). The obvious down-side to using cached values is
that they can be too old and poorly reflect reality.
But this way we can use LLC wide information and thus not rely on
assuming LLC matches NODE. We also don't rely on NUMA_BALANCING nor do
we have to aggegate two nodes (or even cache domains) worth of CPUs
for each wakeup.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Josef Bacik <josef@toxicpanda.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Fixes: 3fed382b46 ("sched/numa: Implement NUMA node level wake_affine()")
[ Minor readability improvements. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Running 80 tasks in the same group, or as threads of the same process,
results in the memory getting scanned 80x as fast as it would be if a
single task was using the memory.
This really hurts some workloads.
Scale the scan period by the number of tasks in the numa group, and
the shared / private ratio, so the average rate at which memory in
the group is scanned corresponds roughly to the rate at which a single
task would scan its memory.
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: jhladky@redhat.com
Cc: lvenanci@redhat.com
Link: http://lkml.kernel.org/r/20170731192847.23050-3-riel@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The comment above update_task_scan_period() says the scan period should
be increased (scanning slows down) if the majority of memory accesses
are on the local node, or if the majority of the page accesses are
shared with other tasks.
However, with the current code, all a high ratio of shared accesses
does is slow down the rate at which scanning is made faster.
This patch changes things so either lots of shared accesses or
lots of local accesses will slow down scanning, and numa scanning
is sped up only when there are lots of private faults on remote
memory pages.
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: jhladky@redhat.com
Cc: lvenanci@redhat.com
Link: http://lkml.kernel.org/r/20170731192847.23050-2-riel@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The running state is a subset of runnable state which means that running
can't be set if runnable (weight) is cleared. There are corner cases
where the current sched_entity has been already dequeued but cfs_rq->curr
has not been updated yet and still points to the dequeued sched_entity.
If ___update_load_avg() is called at that time, weight will be 0 and running
will be set which is not possible.
This case happens during pick_next_task_fair() when a cfs_rq becomes idles.
The current sched_entity has been dequeued so se->on_rq is cleared and
cfs_rq->weight is null. But cfs_rq->curr still points to se (it will be
cleared when picking the idle thread). Because the cfs_rq becomes idle,
idle_balance() is called and ends up to call update_blocked_averages()
with these wrong running and runnable states.
Add a test in ___update_load_avg() to correct the running state in this case.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten.Rasmussen@arm.com
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dietmar.eggemann@arm.com
Link: http://lkml.kernel.org/r/1498885573-18984-1-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
update_freq is always true and there is no need to pass it to
update_cfs_rq_load_avg(). Remove it.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: linaro-kernel@lists.linaro.org
Link: http://lkml.kernel.org/r/2d28d295f3f591ede7e931462bce1bda5aaa4896.1495603536.git.viresh.kumar@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Rearrange pick_next_task_fair() a bit to avoid checking
cfs_rq->nr_running twice for the case where FAIR_GROUP_SCHED is enabled
and the previous task doesn't belong to the fair class.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: linaro-kernel@lists.linaro.org
Link: http://lkml.kernel.org/r/000903ab3df3350943d3271c53615893a230dc95.1495603536.git.viresh.kumar@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
weighted_cpuload() uses the cpu number passed to it get pointer to the
runqueue. Almost all callers of weighted_cpuload() already have the rq
pointer with them and can send that directly to weighted_cpuload(). In
some cases the callers actually get the CPU number by doing cpu_of(rq).
It would be simpler to pass rq to weighted_cpuload().
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: linaro-kernel@lists.linaro.org
Link: http://lkml.kernel.org/r/b7720627e0576dc29b4ba3f9b6edbc913bb4f684.1495603536.git.viresh.kumar@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
For SMP systems, update_load_avg() calls the cpufreq update util
handlers only for the top level cfs_rq (i.e. rq->cfs).
But that is not the case for UP systems. update_load_avg() calls util
handler for any cfs_rq for which it is called. This would result in way
too many calls from the scheduler to the cpufreq governors when
CONFIG_FAIR_GROUP_SCHED is enabled.
Reduce the frequency of these calls by copying the behavior from the SMP
case, i.e. Only call util handlers for the top level cfs_rq.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: linaro-kernel@lists.linaro.org
Fixes: 536bd00cdb ("sched/fair: Fix !CONFIG_SMP kernel cpufreq governor breakage")
Link: http://lkml.kernel.org/r/6abf69a2107525885b616a2c1ec03d9c0946171c.1495603536.git.viresh.kumar@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
With Android UI and benchmarks the latency of cpufreq response to
certain scheduling events can become very critical. Currently, callbacks
into cpufreq governors are only made from the scheduler if the target
CPU of the event is the same as the current CPU. This means there are
certain situations where a target CPU may not run the cpufreq governor
for some time.
One testcase to show this behavior is where a task starts running on
CPU0, then a new task is also spawned on CPU0 by a task on CPU1. If the
system is configured such that the new tasks should receive maximum
demand initially, this should result in CPU0 increasing frequency
immediately. But because of the above mentioned limitation though, this
does not occur.
This patch updates the scheduler core to call the cpufreq callbacks for
remote CPUs as well.
The schedutil, ondemand and conservative governors are updated to
process cpufreq utilization update hooks called for remote CPUs where
the remote CPU is managed by the cpufreq policy of the local CPU.
The intel_pstate driver is updated to always reject remote callbacks.
This is tested with couple of usecases (Android: hackbench, recentfling,
galleryfling, vellamo, Ubuntu: hackbench) on ARM hikey board (64 bit
octa-core, single policy). Only galleryfling showed minor improvements,
while others didn't had much deviation.
The reason being that this patch only targets a corner case, where
following are required to be true to improve performance and that
doesn't happen too often with these tests:
- Task is migrated to another CPU.
- The task has high demand, and should take the target CPU to higher
OPPs.
- And the target CPU doesn't call into the cpufreq governor until the
next tick.
Based on initial work from Steve Muckle.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Acked-by: Saravana Kannan <skannan@codeaurora.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
If load_balance() fails to migrate any tasks because all tasks were
affined, load_balance() removes the source CPU from consideration and
attempts to redo and balance among the new subset of CPUs.
There is a bug in this code path where the algorithm considers all active
CPUs in the system (minus the source that was just masked out). This is
not valid for two reasons: some active CPUs may not be in the current
scheduling domain and one of the active CPUs is dst_cpu. These CPUs should
not be considered, as we cannot pull load from them.
Instead of failing out of load_balance(), we may end up redoing the search
with no valid CPUs and incorrectly concluding the domain is balanced.
Additionally, if the group_imbalance flag was just set, it may also be
incorrectly unset, thus the flag will not be seen by other CPUs in future
load_balance() runs as that algorithm intends.
Fix the check by removing CPUs not in the current domain and the dst_cpu
from considertation, thus limiting the evaluation to valid remaining CPUs
from which load might be migrated.
Co-authored-by: Austin Christ <austinwc@codeaurora.org>
Co-authored-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Tested-by: Tyler Baicar <tbaicar@codeaurora.org>
Signed-off-by: Jeffrey Hugo <jhugo@codeaurora.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Austin Christ <austinwc@codeaurora.org>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Timur Tabi <timur@codeaurora.org>
Link: http://lkml.kernel.org/r/1496863138-11322-2-git-send-email-jhugo@codeaurora.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Stephen reported the following build warning in UP:
kernel/sched/fair.c:2657:9: warning: 'struct sched_domain' declared inside
parameter list
^
/home/sfr/next/next/kernel/sched/fair.c:2657:9: warning: its scope is only this
definition or declaration, which is probably not what you want
Hide the numa_wake_affine() inline stub on UP builds to get rid of it.
Fixes: 3fed382b46 ("sched/numa: Implement NUMA node level wake_affine()")
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
The effective_load() function was only used by the NUMA balancing
code, and not by the regular load balancing code. Now that the
NUMA balancing code no longer uses it either, get rid of it.
Signed-off-by: Rik van Riel <riel@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: jhladky@redhat.com
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/r/20170623165530.22514-5-riel@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Since select_idle_sibling() can place a task anywhere on a socket,
comparing loads between individual CPU cores makes no real sense
for deciding whether to do an affine wakeup across sockets, either.
Instead, compare the load between the sockets in a similar way the
load balancer and the numa balancing code do.
Signed-off-by: Rik van Riel <riel@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: jhladky@redhat.com
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/r/20170623165530.22514-4-riel@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Then 'this_cpu' and 'prev_cpu' are in the same socket, select_idle_sibling()
will do its thing regardless of the return value of wake_affine().
Just return true and don't look at all the other things.
Signed-off-by: Rik van Riel <riel@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: jhladky@redhat.com
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/r/20170623165530.22514-3-riel@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Several tests in the NAS benchmark seem to run a lot slower with
NUMA balancing enabled, than with NUMA balancing disabled. The
slower run time corresponds with increased idle time.
Overriding the final test of migrate_degrades_locality (but still
doing the other NUMA tests first) seems to improve performance
of those benchmarks.
Reported-by: Jirka Hladky <jhladky@redhat.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/r/20170623165530.22514-2-riel@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Although idle load balancing obviously only concerns idle CPUs, it can
be a disturbance on a busy nohz_full CPU. Indeed a CPU can only get rid
of an idle load balancing duty once a tick fires while it runs a task
and this can take a while on a nohz_full CPU.
We could fix that and escape the idle load balancing duty from the very
idle exit path but that would bring unecessary overhead. Lets just not
bother and leave that job to housekeeping CPUs (those outside nohz_full
range). The nohz_full CPUs simply don't want any disturbance.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1497838322-10913-4-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Conflicts:
kernel/sched/Makefile
Pick up the waitqueue related renames - it didn't get much feedback,
so it appears to be uncontroversial. Famous last words? ;-)
Signed-off-by: Ingo Molnar <mingo@kernel.org>
If we set a next or last buddy for a se that is not on_rq, we will
end up taking a NULL pointer dereference in wakeup_preempt_entity
via pick_next_task_fair.
Detect when we would be about to do that, throw a warning and
then refuse to actually set it.
This has been suggested at least twice:
https://marc.info/?l=linux-kernel&m=146651668921468&w=2https://lkml.org/lkml/2016/6/16/663
I recently had to debug a problem with these (we hadn't backported
Konstantin's patches in this area) and this would have saved a lot
of time/pain.
Just do it.
Signed-off-by: Daniel Axtens <dja@axtens.net>
Cc: Ben Segall <bsegall@google.com>
Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20170510201139.16236-1-dja@axtens.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
'schedstats' kernel parameter should be set to enable/disable, so
correct the printk hint saying that it should be set to 'enable'
rather than 'enabled' to enable scheduler tracepoints.
Signed-off-by: Marcin Nowakowski <marcin.nowakowski@imgtec.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1496995229-31245-1-git-send-email-marcin.nowakowski@imgtec.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Hackbench recently suffered a bunch of pain, first by commit:
4c77b18cf8 ("sched/fair: Make select_idle_cpu() more aggressive")
and then by commit:
c743f0a5c5 ("sched/fair, cpumask: Export for_each_cpu_wrap()")
which fixed a bug in the initial for_each_cpu_wrap() implementation
that made select_idle_cpu() even more expensive. The bug was that it
would skip over CPUs when bits were consequtive in the bitmask.
This however gave me an idea to fix select_idle_cpu(); where the old
scheme was a cliff-edge throttle on idle scanning, this introduces a
more gradual approach. Instead of stopping to scan entirely, we limit
how many CPUs we scan.
Initial benchmarks show that it mostly recovers hackbench while not
hurting anything else, except Mason's schbench, but not as bad as the
old thing.
It also appears to recover the tbench high-end, which also suffered like
hackbench.
Tested-by: Matt Fleming <matt@codeblueprint.co.uk>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Chris Mason <clm@fb.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: hpa@zytor.com
Cc: kitsunyan <kitsunyan@inbox.ru>
Cc: linux-kernel@vger.kernel.org
Cc: lvenanci@redhat.com
Cc: riel@redhat.com
Cc: xiaolong.ye@intel.com
Link: http://lkml.kernel.org/r/20170517105350.hk5m4h4jb6dfr65a@hirez.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
A customer has reported a soft-lockup when running an intensive
memory stress test, where the trace on multiple CPU's looks like this:
RIP: 0010:[<ffffffff810c53fe>]
[<ffffffff810c53fe>] native_queued_spin_lock_slowpath+0x10e/0x190
...
Call Trace:
[<ffffffff81182d07>] queued_spin_lock_slowpath+0x7/0xa
[<ffffffff811bc331>] change_protection_range+0x3b1/0x930
[<ffffffff811d4be8>] change_prot_numa+0x18/0x30
[<ffffffff810adefe>] task_numa_work+0x1fe/0x310
[<ffffffff81098322>] task_work_run+0x72/0x90
Further investigation showed that the lock contention here is pmd_lock().
The task_numa_work() function makes sure that only one thread is let to perform
the work in a single scan period (via cmpxchg), but if there's a thread with
mmap_sem locked for writing for several periods, multiple threads in
task_numa_work() can build up a convoy waiting for mmap_sem for read and then
all get unblocked at once.
This patch changes the down_read() to the trylock version, which prevents the
build up. For a workload experiencing mmap_sem contention, it's probably better
to postpone the NUMA balancing work anyway. This seems to have fixed the soft
lockups involving pmd_lock(), which is in line with the convoy theory.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20170515131316.21909-1-vbabka@suse.cz
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently, rq->leaf_cfs_rq_list is a traversal ordered list of all
live cfs_rqs which have ever been active on the CPU; unfortunately,
this makes update_blocked_averages() O(# total cgroups) which isn't
scalable at all.
This shows up as a small CPU consumption and scheduling latency
increase in the load balancing path in systems with CPU controller
enabled across most cgroups. In an edge case where temporary cgroups
were leaking, this caused the kernel to consume good several tens of
percents of CPU cycles running update_blocked_averages(), each run
taking multiple millisecs.
This patch fixes the issue by taking empty and fully decayed cfs_rqs
off the rq->leaf_cfs_rq_list.
Signed-off-by: Tejun Heo <tj@kernel.org>
[ Added cfs_rq_is_decayed() ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Chris Mason <clm@fb.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20170426004350.GB3222@wtj.duckdns.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In order to allow leaf_cfs_rq_list to remove entries switch the
bandwidth hotplug code over to the task_groups list.
Suggested-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Chris Mason <clm@fb.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20170504133122.a6qjlj3hlblbjxux@hirez.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There's a discrepancy in naming between the sched_domain and
sched_group cpumask accessor. Since we're doing changes, fix it.
$ git grep sched_group_cpus | wc -l
28
$ git grep sched_domain_span | wc -l
38
Suggests changing sched_group_cpus() into sched_group_span():
for i in `git grep -l sched_group_cpus`
do
sed -ie 's/sched_group_cpus/sched_group_span/g' $i
done
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Since sched_group_mask() is now an independent cpumask (it no longer
masks sched_group_cpus()), rename the thing.
Suggested-by: Lauro Ramos Venancio <lvenanci@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
While writing the comments, it occurred to me that:
sg_cpus & sg_mask == sg_mask
at least conceptually; the !overlap case sets the all 1s mask. If we
correct that we can simplify things and directly use sg_mask.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
More users for for_each_cpu_wrap() have appeared. Promote the construct
to generic cpumask interface.
The implementation is slightly modified to reduce arguments.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Lauro Ramos Venancio <lvenanci@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: lwang@redhat.com
Link: http://lkml.kernel.org/r/20170414122005.o35me2h5nowqkxbv@hirez.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In the current implementation of load/util_avg, we assume that the
ongoing time segment has fully elapsed, and util/load_sum is divided
by LOAD_AVG_MAX, even if part of the time segment still remains to
run. As a consequence, this remaining part is considered as idle time
and generates unexpected variations of util_avg of a busy CPU in the
range [1002..1024[ whereas util_avg should stay at 1023.
In order to keep the metric stable, we should not consider the ongoing
time segment when computing load/util_avg but only the segments that
have already fully elapsed. But to not consider the current time
segment adds unwanted latency in the load/util_avg responsivness
especially when the time is scaled instead of the contribution.
Instead of waiting for the current time segment to have fully elapsed
before accounting it in load/util_avg, we can already account the
elapsed part but change the range used to compute load/util_avg
accordingly.
At the very beginning of a new time segment, the past segments have
been decayed and the max value is LOAD_AVG_MAX*y. At the very end of
the current time segment, the max value becomes:
LOAD_AVG_MAX*y + 1024(us) (== LOAD_AVG_MAX)
In fact, the max value is:
LOAD_AVG_MAX*y + sa->period_contrib
at any time in the time segment.
Taking advantage of the fact that:
LOAD_AVG_MAX*y == LOAD_AVG_MAX-1024
the range becomes [0..LOAD_AVG_MAX-1024+sa->period_contrib].
As the elapsed part is already accounted in load/util_sum, we update
the max value according to the current position in the time segment
instead of removing its contribution.
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Morten.Rasmussen@arm.com
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bsegall@google.com
Cc: dietmar.eggemann@arm.com
Cc: pjt@google.com
Cc: yuyang.du@intel.com
Link: http://lkml.kernel.org/r/1493188076-2767-1-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Now that we have a tool to generate the PELT constants in C form,
use its output as a separate header.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We truncate (and loose) the lower 10 bits of runtime in
___update_load_avg(), this means there's a consistent bias to
under-account tasks. This is esp. significant for small tasks.
Cure this by only forwarding last_update_time to the point we've
actually accounted for, leaving the remainder for the next time.
Reported-by: Morten Rasmussen <morten.rasmussen@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Historically our periods (or p) argument in PELT denoted the number of
full periods (what is now d2). However recent patches have changed
this to the total decay (previously p+1), leading to a confusing
discrepancy between comments and code.
Try and clarify things by making periods (in code) and p (in comments)
be the same thing (again).
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Paul noticed that in the (periods >= LOAD_AVG_MAX_N) case in
__accumulate_sum(), the returned contribution value (LOAD_AVG_MAX) is
incorrect.
This is because at this point, the decay_load() on the old state --
the first step in accumulate_sum() -- will not have resulted in 0, and
will therefore result in a sum larger than the maximum value of our
series. Obviously broken.
Note that:
decay_load(LOAD_AVG_MAX, LOAD_AVG_MAX_N) =
1 (345 / 32)
47742 * - ^ = ~27
2
Not to mention that any further contribution from the d3 segment (our
new period) would also push it over the maximum.
Solve this by noting that we can write our c2 term:
p
c2 = 1024 \Sum y^n
n=1
In terms of our maximum value:
inf inf p
max = 1024 \Sum y^n = 1024 ( \Sum y^n + \Sum y^n + y^0 )
n=0 n=p+1 n=1
Further note that:
inf inf inf
( \Sum y^n ) y^p = \Sum y^(n+p) = \Sum y^n
n=0 n=0 n=p
Combined that gives us:
p
c2 = 1024 \Sum y^n
n=1
inf inf
= 1024 ( \Sum y^n - \Sum y^n - y^0 )
n=0 n=p+1
= max - (max y^(p+1)) - 1024
Further simplify things by dealing with p=0 early on.
Reported-by: Paul Turner <pjt@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Yuyang Du <yuyang.du@intel.com>
Cc: linux-kernel@vger.kernel.org
Fixes: a481db34b9 ("sched/fair: Optimize ___update_sched_avg()")
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The main PELT function ___update_load_avg(), which implements the
accumulation and progression of the geometric average series, is
implemented along the following lines for the scenario where the time
delta spans all 3 possible sections (see figure below):
1. add the remainder of the last incomplete period
2. decay old sum
3. accumulate new sum in full periods since last_update_time
4. accumulate the current incomplete period
5. update averages
Or:
d1 d2 d3
^ ^ ^
| | |
|<->|<----------------->|<--->|
... |---x---|------| ... |------|-----x (now)
load_sum' = (load_sum + weight * scale * d1) * y^(p+1) + (1,2)
p
weight * scale * 1024 * \Sum y^n + (3)
n=1
weight * scale * d3 * y^0 (4)
load_avg' = load_sum' / LOAD_AVG_MAX (5)
Where:
d1 - is the delta part completing the remainder of the last
incomplete period,
d2 - is the delta part spannind complete periods, and
d3 - is the delta part starting the current incomplete period.
We can simplify the code in two steps; the first step is to separate
the first term into new and old parts like:
(load_sum + weight * scale * d1) * y^(p+1) = load_sum * y^(p+1) +
weight * scale * d1 * y^(p+1)
Once we've done that, its easy to see that all new terms carry the
common factors:
weight * scale
If we factor those out, we arrive at the form:
load_sum' = load_sum * y^(p+1) +
weight * scale * (d1 * y^(p+1) +
p
1024 * \Sum y^n +
n=1
d3 * y^0)
Which results in a simpler, smaller and faster implementation.
Signed-off-by: Yuyang Du <yuyang.du@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bsegall@google.com
Cc: dietmar.eggemann@arm.com
Cc: matt@codeblueprint.co.uk
Cc: morten.rasmussen@arm.com
Cc: pjt@google.com
Cc: umgwanakikbuti@gmail.com
Cc: vincent.guittot@linaro.org
Link: http://lkml.kernel.org/r/1486935863-25251-3-git-send-email-yuyang.du@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The __update_load_avg() function is an __always_inline because its
used with constant propagation to generate different variants of the
code without having to duplicate it (which would be prone to bugs).
Explicitly instantiate the 3 variants.
Note that most of this is called from rather hot paths, so reducing
branches is good.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
If the child domain prefers tasks to go siblings, the local group could
end up pulling tasks to itself even if the local group is almost equally
loaded as the source group.
Lets assume a 4 core,smt==2 machine running 5 thread ebizzy workload.
Everytime, local group has capacity and source group has atleast 2 threads,
local group tries to pull the task. This causes the threads to constantly
move between different cores. This is even more profound if the cores have
more threads, like in Power 8, smt 8 mode.
Fix this by only allowing local group to pull a task, if the source group
has more number of tasks than the local group.
Here are the relevant perf stat numbers of a 22 core,smt 8 Power 8 machine.
Without patch:
Performance counter stats for 'ebizzy -t 22 -S 100' (5 runs):
1,440 context-switches # 0.001 K/sec ( +- 1.26% )
366 cpu-migrations # 0.000 K/sec ( +- 5.58% )
3,933 page-faults # 0.002 K/sec ( +- 11.08% )
Performance counter stats for 'ebizzy -t 48 -S 100' (5 runs):
6,287 context-switches # 0.001 K/sec ( +- 3.65% )
3,776 cpu-migrations # 0.001 K/sec ( +- 4.84% )
5,702 page-faults # 0.001 K/sec ( +- 9.36% )
Performance counter stats for 'ebizzy -t 96 -S 100' (5 runs):
8,776 context-switches # 0.001 K/sec ( +- 0.73% )
2,790 cpu-migrations # 0.000 K/sec ( +- 0.98% )
10,540 page-faults # 0.001 K/sec ( +- 3.12% )
With patch:
Performance counter stats for 'ebizzy -t 22 -S 100' (5 runs):
1,133 context-switches # 0.001 K/sec ( +- 4.72% )
123 cpu-migrations # 0.000 K/sec ( +- 3.42% )
3,858 page-faults # 0.002 K/sec ( +- 8.52% )
Performance counter stats for 'ebizzy -t 48 -S 100' (5 runs):
2,169 context-switches # 0.000 K/sec ( +- 6.19% )
189 cpu-migrations # 0.000 K/sec ( +- 12.75% )
5,917 page-faults # 0.001 K/sec ( +- 8.09% )
Performance counter stats for 'ebizzy -t 96 -S 100' (5 runs):
5,333 context-switches # 0.001 K/sec ( +- 5.91% )
506 cpu-migrations # 0.000 K/sec ( +- 3.35% )
10,792 page-faults # 0.001 K/sec ( +- 7.75% )
Which show that in these workloads CPU migrations get reduced significantly.
Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Link: http://lkml.kernel.org/r/1490205470-10249-1-git-send-email-srikar@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This patch fix spelling typos found in
Documentation/output/xml/driver-api/basics.xml.
It is because the xml file was generated from comments in source,
so I had to fix the comments.
Signed-off-by: Masanari Iida <standby24x7@gmail.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
A regression of the FTQ noise has been reported by Ying Huang,
on the following hardware:
8 threads Intel(R) Core(TM)i7-4770 CPU @ 3.40GHz with 8G memory
... which was caused by this commit:
commit 4e5160766f ("sched/fair: Propagate asynchrous detach")
The only part of the patch that can increase the noise is the update
of blocked load of group entity in update_blocked_averages().
We can optimize this call and skip the update of group entity if its load
and utilization are already null and there is no pending propagation of load
in the task group.
This optimization partly restores the noise score. A more agressive
optimization has been tried but has shown worse score.
Reported-by: ying.huang@linux.intel.com
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dietmar.eggemann@arm.com
Cc: ying.huang@intel.com
Fixes: 4e5160766f ("sched/fair: Propagate asynchrous detach")
Link: http://lkml.kernel.org/r/1489758442-2877-1-git-send-email-vincent.guittot@linaro.org
[ Fixed typos, improved layout. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The missing update_rq_clock() check can work with partial rq->lock
wrappery, since a missing wrapper can cause the warning to not be
emitted when it should have, but cannot cause the warning to trigger
when it should not have.
The duplicate update_rq_clock() check however can cause false warnings
to trigger. Therefore add more comprehensive rq->lock wrappery.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull scheduler fixes from Ingo Molnar:
"A fix for KVM's scheduler clock which (erroneously) was always marked
unstable, a fix for RT/DL load balancing, plus latency fixes"
* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/clock, x86/tsc: Rework the x86 'unstable' sched_clock() interface
sched/core: Fix pick_next_task() for RT,DL
sched/fair: Make select_idle_cpu() more aggressive
Kitsunyan reported desktop latency issues on his Celeron 887 because
of commit:
1b568f0aab ("sched/core: Optimize SCHED_SMT")
... even though his CPU doesn't do SMT.
The effect of running the SMT code on a !SMT part is basically a more
aggressive select_idle_cpu(). Removing the avg condition fixed things
for him.
I also know FB likes this test gone, even though other workloads like
having it.
For now, take it out by default, until we get a better idea.
Reported-by: kitsunyan <kitsunyan@inbox.ru>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Chris Mason <clm@fb.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Update code that relied on sched.h including various MM types for them.
This will allow us to remove the <linux/mm_types.h> include from <linux/sched.h>.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We are going to split <linux/sched/topology.h> out of <linux/sched.h>, which
will have to be picked up from other headers and a couple of .c files.
Create a trivial placeholder <linux/sched/topology.h> file that just
maps to <linux/sched.h> to make this patch obviously correct and
bisectable.
Include the new header in the files that are going to need it.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
So the original intention of tsk_cpus_allowed() was to 'future-proof'
the field - but it's pretty ineffectual at that, because half of
the code uses ->cpus_allowed directly ...
Also, the wrapper makes the code longer than the original expression!
So just get rid of it. This also shrinks <linux/sched.h> a bit.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The update of the share of a cfs_rq is done when its load_avg is updated
but before the group_entity's load_avg has been updated for the past time
slot. This generates wrong load_avg accounting which can be significant
when small tasks are involved in the scheduling.
Let take the example of a task a that is dequeued of its task group A:
root
(cfs_rq)
\
(se)
A
(cfs_rq)
\
(se)
a
Task "a" was the only task in task group A which becomes idle when a is
dequeued.
We have the sequence:
- dequeue_entity a->se
- update_load_avg(a->se)
- dequeue_entity_load_avg(A->cfs_rq, a->se)
- update_cfs_shares(A->cfs_rq)
A->cfs_rq->load.weight == 0
A->se->load.weight is updated with the new share (0 in this case)
- dequeue_entity A->se
- update_load_avg(A->se) but its weight is now null so the last time
slot (up to a tick) will be accounted with a weight of 0 instead of
its real weight during the time slot. The last time slot will be
accounted as an idle one whereas it was a running one.
If the running time of task a is short enough that no tick happens when it
runs, all running time of group entity A->se will be accounted as idle
time.
Instead, we should update the share of a cfs_rq (in fact the weight of its
group entity) only after having updated the load_avg of the group_entity.
update_cfs_shares() now takes the sched_entity as a parameter instead of the
cfs_rq, and the weight of the group_entity is updated only once its load_avg
has been synced with current time.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: pjt@google.com
Link: http://lkml.kernel.org/r/1482335426-7664-1-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Add the update_rq_clock() call at the top of the callstack instead of
at the bottom where we find it missing, this to aid later effort to
minimize the number of update_rq_lock() calls.
WARNING: CPU: 30 PID: 194 at ../kernel/sched/sched.h:797 assert_clock_updated()
rq->clock_update_flags < RQCF_ACT_SKIP
Call Trace:
dump_stack()
__warn()
warn_slowpath_fmt()
assert_clock_updated.isra.63.part.64()
can_migrate_task()
load_balance()
pick_next_task_fair()
__schedule()
schedule()
worker_thread()
kthread()
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Future patches will emit warnings if rq_clock() is called before
update_rq_clock() inside a rq_pin_lock()/rq_unpin_lock() pair.
Since there is only one caller of idle_balance() we can push the
unpin/repin there.
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Byungchul Park <byungchul.park@lge.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luca Abeni <luca.abeni@unitn.it>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Wanpeng Li <wanpeng.li@hotmail.com>
Cc: Yuyang Du <yuyang.du@intel.com>
Link: http://lkml.kernel.org/r/20160921133813.31976-7-matt@codeblueprint.co.uk
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In preparation for adding diagnostic checks to catch missing calls to
update_rq_clock(), provide wrappers for (re)pinning and unpinning
rq->lock.
Because the pending diagnostic checks allow state to be maintained in
rq_flags across pin contexts, swap the 'struct pin_cookie' arguments
for 'struct rq_flags *'.
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Byungchul Park <byungchul.park@lge.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luca Abeni <luca.abeni@unitn.it>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Wanpeng Li <wanpeng.li@hotmail.com>
Cc: Yuyang Du <yuyang.du@intel.com>
Link: http://lkml.kernel.org/r/20160921133813.31976-5-matt@codeblueprint.co.uk
Signed-off-by: Ingo Molnar <mingo@kernel.org>
find_idlest_group() only compares the runnable_load_avg when looking
for the least loaded group. But on fork intensive use case like
hackbench where tasks blocked quickly after the fork, this can lead to
selecting the same CPU instead of other CPUs, which have similar
runnable load but a lower load_avg.
When the runnable_load_avg of 2 CPUs are close, we now take into
account the amount of blocked load as a 2nd selection factor. There is
now 3 zones for the runnable_load of the rq:
- [0 .. (runnable_load - imbalance)]:
Select the new rq which has significantly less runnable_load
- [(runnable_load - imbalance) .. (runnable_load + imbalance)]:
The runnable loads are close so we use load_avg to chose
between the 2 rq
- [(runnable_load + imbalance) .. ULONG_MAX]:
Keep the current rq which has significantly less runnable_load
The scale factor that is currently used for comparing runnable_load,
doesn't work well with small value. As an example, the use of a
scaling factor fails as soon as this_runnable_load == 0 because we
always select local rq even if min_runnable_load is only 1, which
doesn't really make sense because they are just the same. So instead
of scaling factor, we use an absolute margin for runnable_load to
detect CPUs with similar runnable_load and we keep using scaling
factor for blocked load.
For use case like hackbench, this enable the scheduler to select
different CPUs during the fork sequence and to spread tasks across the
system.
Tests have been done on a Hikey board (ARM based octo cores) for
several kernel. The result below gives min, max, avg and stdev values
of 18 runs with each configuration.
The patches depend on the "no missing update_rq_clock()" work.
hackbench -P -g 1
ea86cb4b767dc603c902 v4.8 v4.8+patches
min 0.049 0.050 0.051 0,048
avg 0.057 0.057(0%) 0.057(0%) 0,055(+5%)
max 0.066 0.068 0.070 0,063
stdev +/-9% +/-9% +/-8% +/-9%
More performance numbers here:
https://lkml.kernel.org/r/20161203214707.GI20785@codeblueprint.co.uk
Tested-by: Matt Fleming <matt@codeblueprint.co.uk>
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten.Rasmussen@arm.com
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dietmar.eggemann@arm.com
Cc: kernellwp@gmail.com
Cc: umgwanakikbuti@gmail.com
Cc: yuyang.du@intel.comc
Link: http://lkml.kernel.org/r/1481216215-24651-3-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
During fork, the utilization of a task is init once the rq has been
selected because the current utilization level of the rq is used to
set the utilization of the fork task. As the task's utilization is
still 0 at this step of the fork sequence, it doesn't make sense to
look for some spare capacity that can fit the task's utilization.
Furthermore, I can see perf regressions for the test:
hackbench -P -g 1
because the least loaded policy is always bypassed and tasks are not
spread during fork.
With this patch and the fix below, we are back to same performances as
for v4.8. The fix below is only a temporary one used for the test
until a smarter solution is found because we can't simply remove the
test which is useful for others benchmarks
| @@ -5708,13 +5708,6 @@ static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int t
|
| avg_cost = this_sd->avg_scan_cost;
|
| - /*
| - * Due to large variance we need a large fuzz factor; hackbench in
| - * particularly is sensitive here.
| - */
| - if ((avg_idle / 512) < avg_cost)
| - return -1;
| -
| time = local_clock();
|
| for_each_cpu_wrap(cpu, sched_domain_span(sd), target, wrap) {
Tested-by: Matt Fleming <matt@codeblueprint.co.uk>
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Matt Fleming <matt@codeblueprint.co.uk>
Acked-by: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dietmar.eggemann@arm.com
Cc: kernellwp@gmail.com
Cc: umgwanakikbuti@gmail.com
Cc: yuyang.du@intel.comc
Link: http://lkml.kernel.org/r/1481216215-24651-2-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We generalize the scheduler's asym packing to provide an ordering
of the cpu beyond just the cpu number. This allows the use of the
ASYM_PACKING scheduler machinery to move loads to preferred CPU in a
sched domain. The preference is defined with the cpu priority
given by arch_asym_cpu_priority(cpu).
We also record the most preferred cpu in a sched group when
we build the cpu's capacity for fast lookup of preferred cpu
during load balancing.
Co-developed-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: linux-pm@vger.kernel.org
Cc: jolsa@redhat.com
Cc: rjw@rjwysocki.net
Cc: linux-acpi@vger.kernel.org
Cc: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Cc: bp@suse.de
Link: http://lkml.kernel.org/r/0e73ae12737dfaafa46c07066cc7c5d3f1675e46.1479844244.git.tim.c.chen@linux.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
No change in functionality:
- align the default values vertically to make them easier to scan
- standardize the 'default:' lines
- fix minor whitespace typos
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
A task can be asynchronously detached from cfs_rq when migrating
between CPUs. The load of the migrated task is then removed from
source cfs_rq during its next update. We use this event to set
propagation flag.
During the load balance, we take advantage of the update of blocked
load to propagate any pending changes.
The propagation relies on patch:
"sched: Fix hierarchical order in rq->leaf_cfs_rq_list"
... which orders children and parents, to ensure that it's done in one pass.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten.Rasmussen@arm.com
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bsegall@google.com
Cc: kernellwp@gmail.com
Cc: pjt@google.com
Cc: yuyang.du@intel.com
Link: http://lkml.kernel.org/r/1478598827-32372-6-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When a task moves from/to a cfs_rq, we set a flag which is then used to
propagate the change at parent level (sched_entity and cfs_rq) during
next update. If the cfs_rq is throttled, the flag will stay pending until
the cfs_rq is unthrottled.
For propagating the utilization, we copy the utilization of group cfs_rq to
the sched_entity.
For propagating the load, we have to take into account the load of the
whole task group in order to evaluate the load of the sched_entity.
Similarly to what was done before the rewrite of PELT, we add a correction
factor in case the task group's load is greater than its share so it will
contribute the same load of a task of equal weight.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten.Rasmussen@arm.com
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bsegall@google.com
Cc: kernellwp@gmail.com
Cc: pjt@google.com
Cc: yuyang.du@intel.com
Link: http://lkml.kernel.org/r/1478598827-32372-5-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Every time we modify load/utilization of sched_entity, we start to
sync it with its cfs_rq. This update is done in different ways:
- when attaching/detaching a sched_entity, we update cfs_rq and then
we sync the entity with the cfs_rq.
- when enqueueing/dequeuing the sched_entity, we update both
sched_entity and cfs_rq metrics to now.
Use update_load_avg() everytime we have to update and sync cfs_rq and
sched_entity before changing the state of a sched_enity.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten.Rasmussen@arm.com
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bsegall@google.com
Cc: kernellwp@gmail.com
Cc: pjt@google.com
Cc: yuyang.du@intel.com
Link: http://lkml.kernel.org/r/1478598827-32372-4-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Fix the insertion of cfs_rq in rq->leaf_cfs_rq_list to ensure that a
child will always be called before its parent.
The hierarchical order in shares update list has been introduced by
commit:
67e86250f8 ("sched: Introduce hierarchal order on shares update list")
With the current implementation a child can be still put after its
parent.
Lets take the example of:
root
\
b
/\
c d*
|
e*
with root -> b -> c already enqueued but not d -> e so the
leaf_cfs_rq_list looks like: head -> c -> b -> root -> tail
The branch d -> e will be added the first time that they are enqueued,
starting with e then d.
When e is added, its parents is not already on the list so e is put at
the tail : head -> c -> b -> root -> e -> tail
Then, d is added at the head because its parent is already on the
list: head -> d -> c -> b -> root -> e -> tail
e is not placed at the right position and will be called the last
whereas it should be called at the beginning.
Because it follows the bottom-up enqueue sequence, we are sure that we
will finished to add either a cfs_rq without parent or a cfs_rq with a
parent that is already on the list. We can use this event to detect
when we have finished to add a new branch. For the others, whose
parents are not already added, we have to ensure that they will be
added after their children that have just been inserted the steps
before, and after any potential parents that are already in the list.
The easiest way is to put the cfs_rq just after the last inserted one
and to keep track of it untl the branch is fully added.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten.Rasmussen@arm.com
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bsegall@google.com
Cc: kernellwp@gmail.com
Cc: pjt@google.com
Cc: yuyang.du@intel.com
Link: http://lkml.kernel.org/r/1478598827-32372-3-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
For asymmetric CPU capacity systems it is counter-productive for
throughput if low capacity CPUs are pulling tasks from non-overloaded
CPUs with higher capacity. The assumption is that higher CPU capacity is
preferred over running alone in a group with lower CPU capacity.
This patch rejects higher CPU capacity groups with one or less task per
CPU as potential busiest group which could otherwise lead to a series of
failing load-balancing attempts leading to a force-migration.
Signed-off-by: Morten Rasmussen <morten.rasmussen@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dietmar.eggemann@arm.com
Cc: freedom.tan@mediatek.com
Cc: keita.kobayashi.ym@renesas.com
Cc: mgalbraith@suse.de
Cc: sgurrappadi@nvidia.com
Cc: vincent.guittot@linaro.org
Cc: yuyang.du@intel.com
Link: http://lkml.kernel.org/r/1476452472-24740-5-git-send-email-morten.rasmussen@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
struct sched_group_capacity currently represents the compute capacity
sum of all CPUs in the sched_group.
Unless it is divided by the group_weight to get the average capacity
per CPU, it hides differences in CPU capacity for mixed capacity systems
(e.g. high RT/IRQ utilization or ARM big.LITTLE).
But even the average may not be sufficient if the group covers CPUs of
different capacities.
Instead, by extending struct sched_group_capacity to indicate min per-CPU
capacity in the group a suitable group for a given task utilization can
more easily be found such that CPUs with reduced capacity can be avoided
for tasks with high utilization (not implemented by this patch).
Signed-off-by: Morten Rasmussen <morten.rasmussen@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dietmar.eggemann@arm.com
Cc: freedom.tan@mediatek.com
Cc: keita.kobayashi.ym@renesas.com
Cc: mgalbraith@suse.de
Cc: sgurrappadi@nvidia.com
Cc: vincent.guittot@linaro.org
Cc: yuyang.du@intel.com
Link: http://lkml.kernel.org/r/1476452472-24740-4-git-send-email-morten.rasmussen@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In low-utilization scenarios comparing relative loads in
find_idlest_group() doesn't always lead to the most optimum choice.
Systems with groups containing different numbers of cpus and/or cpus of
different compute capacity are significantly better off when considering
spare capacity rather than relative load in those scenarios.
In addition to existing load based search an alternative spare capacity
based candidate sched_group is found and selected instead if sufficient
spare capacity exists. If not, existing behaviour is preserved.
Signed-off-by: Morten Rasmussen <morten.rasmussen@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dietmar.eggemann@arm.com
Cc: freedom.tan@mediatek.com
Cc: keita.kobayashi.ym@renesas.com
Cc: mgalbraith@suse.de
Cc: sgurrappadi@nvidia.com
Cc: vincent.guittot@linaro.org
Cc: yuyang.du@intel.com
Link: http://lkml.kernel.org/r/1476452472-24740-3-git-send-email-morten.rasmussen@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
At task wake-up load-tracking isn't updated until the task is enqueued.
The task's own view of its utilization contribution may therefore not be
aligned with its contribution to the cfs_rq load-tracking which may have
been updated in the meantime. Basically, the task's own utilization
hasn't yet accounted for the sleep decay, while the cfs_rq may have
(partially). Estimating the cfs_rq utilization in case the task is
migrated at wake-up as task_rq(p)->cfs.avg.util_avg - p->se.avg.util_avg
is therefore incorrect as the two load-tracking signals aren't time
synchronized (different last update).
To solve this problem, this patch synchronizes the task utilization with
its previous rq before the task utilization is used in the wake-up path.
Currently the update/synchronization is done _after_ the task has been
placed by select_task_rq_fair(). The synchronization is done without
having to take the rq lock using the existing mechanism used in
remove_entity_load_avg().
Signed-off-by: Morten Rasmussen <morten.rasmussen@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dietmar.eggemann@arm.com
Cc: freedom.tan@mediatek.com
Cc: keita.kobayashi.ym@renesas.com
Cc: mgalbraith@suse.de
Cc: sgurrappadi@nvidia.com
Cc: vincent.guittot@linaro.org
Cc: yuyang.du@intel.com
Link: http://lkml.kernel.org/r/1476452472-24740-2-git-send-email-morten.rasmussen@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>