mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-22 20:43:56 +08:00
190d1c921a
14 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Linus Torvalds
|
9d9af1007b |
perf tools changes for v5.10: 1st batch
- cgroup improvements for 'perf stat', allowing for compact specification of events and cgroups in the command line. - Support per thread topdown metrics in 'perf stat'. - Support sample-read topdown metric group in 'perf record' - Show start of latency in addition to its start in 'perf sched latency'. - Add min, max to 'perf script' futex-contention output, in addition to avg. - Allow usage of 'perf_event_attr->exclusive' attribute via the new ':e' event modifier. - Add 'snapshot' command to 'perf record --control', using it with Intel PT. - Support FIFO file names as alternative options to 'perf record --control'. - Introduce branch history "streams", to compare 'perf record' runs with 'perf diff' based on branch records and report hot streams. - Support PE executable symbol tables using libbfd, to profile, for instance, wine binaries. - Add filter support for option 'perf ftrace -F/--funcs'. - Allow configuring the 'disassembler_style' 'perf annotate' knob via 'perf config' - Update CascadelakeX and SkylakeX JSON vendor events files. - Add support for parsing perchip/percore JSON vendor events. - Add power9 hv_24x7 core level metric events. - Add L2 prefetch, ITLB instruction fetch hits JSON events for AMD zen1. - Enable Family 19h users by matching Zen2 AMD vendor events. - Use debuginfod in 'perf probe' when required debug files not found locally. - Display negative tid in non-sample events in 'perf script'. - Make GTK2 support opt-in - Add build test with GTK+ - Add missing -lzstd to the fast path feature detection - Add scripts to auto generate 'mmap', 'mremap' string<->id tables for use in 'perf trace'. - Show python test script in verbose mode. - Fix uncore metric expressions - Msan uninitialized use fixes. - Use condition variables in 'perf bench numa' - Autodetect python3 binary in systems without python2. - Support md5 build ids in addition to sha1. - Add build id 'perf test' regression test. - Fix printable strings in python3 scripts. - Fix off by ones in 'perf trace' in arches using libaudit. - Fix JSON event code for events referencing std arch events. - Introduce 'perf test' shell script for Arm CoreSight testing. - Add rdtsc() for Arm64 for used in the PERF_RECORD_TIME_CONV metadata event and in 'perf test tsc'. - 'perf c2c' improvements: Add "RMT Load Hit" metric, "Total Stores", fixes and documentation update. - Fix usage of reloc_sym in 'perf probe' when using both kallsyms and debuginfo files. - Do not print 'Metric Groups:' unnecessarily in 'perf list' - Refcounting fixes in the event parsing code. - Add expand cgroup event 'perf test' entry. - Fix out of bounds CPU map access when handling armv8_pmu events in 'perf stat'. - Add build-id injection 'perf bench' benchmark. - Enter namespace when reading build-id in 'perf inject'. - Do not load map/dso when injecting build-id speeding up the 'perf inject' process. - Add --buildid-all option to avoid processing all samples, just the mmap metadata events. - Add feature test to check if libbfd has buildid support - Add 'perf test' entry for PE binary format support. - Fix typos in power8 PMU vendor events JSON files. - Hide libtraceevent non API functions. Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> Test results: The first ones are container based builds of tools/perf with and without libelf support. Where clang is available, it is also used to build perf with/without libelf, and building with LIBCLANGLLVM=1 (built-in clang) with gcc and clang when clang and its devel libraries are installed. The objtool and samples/bpf/ builds are disabled now that I'm switching from using the sources in a local volume to fetching them from a http server to build it inside the container, to make it easier to build in a container cluster. Those will come back later. Several are cross builds, the ones with -x-ARCH and the android one, and those may not have all the features built, due to lack of multi-arch devel packages, available and being used so far on just a few, like debian:experimental-x-{arm64,mipsel}. The 'perf test' one will perform a variety of tests exercising tools/perf/util/, tools/lib/{bpf,traceevent,etc}, as well as run perf commands with a variety of command line event specifications to then intercept the sys_perf_event syscall to check that the perf_event_attr fields are set up as expected, among a variety of other unit tests. Then there is the 'make -C tools/perf build-test' ones, that build tools/perf/ with a variety of feature sets, exercising the build with an incomplete set of features as well as with a complete one. It is planned to have it run on each of the containers mentioned above, using some container orchestration infrastructure. Get in contact if interested in helping having this in place. $ grep "model name" -m1 /proc/cpuinfo model name: AMD Ryzen 9 3900X 12-Core Processor $ export PERF_TARBALL=http://192.168.122.1/perf/perf-5.9.0-rc7.tar.xz $ dm Thu 15 Oct 2020 01:10:56 PM -03 1 67.40 alpine:3.4 : Ok gcc (Alpine 5.3.0) 5.3.0, clang version 3.8.0 (tags/RELEASE_380/final) 2 69.01 alpine:3.5 : Ok gcc (Alpine 6.2.1) 6.2.1 20160822, clang version 3.8.1 (tags/RELEASE_381/final) 3 70.79 alpine:3.6 : Ok gcc (Alpine 6.3.0) 6.3.0, clang version 4.0.0 (tags/RELEASE_400/final) 4 79.89 alpine:3.7 : Ok gcc (Alpine 6.4.0) 6.4.0, Alpine clang version 5.0.0 (tags/RELEASE_500/final) (based on LLVM 5.0.0) 5 80.88 alpine:3.8 : Ok gcc (Alpine 6.4.0) 6.4.0, Alpine clang version 5.0.1 (tags/RELEASE_501/final) (based on LLVM 5.0.1) 6 83.88 alpine:3.9 : Ok gcc (Alpine 8.3.0) 8.3.0, Alpine clang version 5.0.1 (tags/RELEASE_502/final) (based on LLVM 5.0.1) 7 107.87 alpine:3.10 : Ok gcc (Alpine 8.3.0) 8.3.0, Alpine clang version 8.0.0 (tags/RELEASE_800/final) (based on LLVM 8.0.0) 8 115.43 alpine:3.11 : Ok gcc (Alpine 9.3.0) 9.3.0, Alpine clang version 9.0.0 (https://git.alpinelinux.org/aports f7f0d2c2b8bcd6a5843401a9a702029556492689) (based on LLVM 9.0.0) 9 106.80 alpine:3.12 : Ok gcc (Alpine 9.3.0) 9.3.0, Alpine clang version 10.0.0 (https://gitlab.alpinelinux.org/alpine/aports.git 7445adce501f8473efdb93b17b5eaf2f1445ed4c) 10 114.06 alpine:edge : Ok gcc (Alpine 10.2.0) 10.2.0, Alpine clang version 10.0.1 11 70.42 alt:p8 : Ok x86_64-alt-linux-gcc (GCC) 5.3.1 20151207 (ALT p8 5.3.1-alt3.M80P.1), clang version 3.8.0 (tags/RELEASE_380/final) 12 98.70 alt:p9 : Ok x86_64-alt-linux-gcc (GCC) 8.4.1 20200305 (ALT p9 8.4.1-alt0.p9.1), clang version 10.0.0 13 80.37 alt:sisyphus : Ok x86_64-alt-linux-gcc (GCC) 9.3.1 20200518 (ALT Sisyphus 9.3.1-alt1), clang version 10.0.1 14 64.12 amazonlinux:1 : Ok gcc (GCC) 7.2.1 20170915 (Red Hat 7.2.1-2), clang version 3.6.2 (tags/RELEASE_362/final) 15 97.64 amazonlinux:2 : Ok gcc (GCC) 7.3.1 20180712 (Red Hat 7.3.1-9), clang version 7.0.1 (Amazon Linux 2 7.0.1-1.amzn2.0.2) 16 22.70 android-ndk:r12b-arm : Ok arm-linux-androideabi-gcc (GCC) 4.9.x 20150123 (prerelease) 17 22.72 android-ndk:r15c-arm : Ok arm-linux-androideabi-gcc (GCC) 4.9.x 20150123 (prerelease) 18 26.70 centos:6 : Ok gcc (GCC) 4.4.7 20120313 (Red Hat 4.4.7-23) 19 31.86 centos:7 : Ok gcc (GCC) 4.8.5 20150623 (Red Hat 4.8.5-39) 20 113.19 centos:8 : Ok gcc (GCC) 8.3.1 20191121 (Red Hat 8.3.1-5), clang version 9.0.1 (Red Hat 9.0.1-2.module_el8.2.0+309+0c7b6b03) 21 57.23 clearlinux:latest : Ok gcc (Clear Linux OS for Intel Architecture) 10.2.1 20200908 releases/gcc-10.2.0-203-g127d693955, clang version 10.0.1 22 64.98 debian:8 : Ok gcc (Debian 4.9.2-10+deb8u2) 4.9.2, Debian clang version 3.5.0-10 (tags/RELEASE_350/final) (based on LLVM 3.5.0) 23 76.08 debian:9 : Ok gcc (Debian 6.3.0-18+deb9u1) 6.3.0 20170516, clang version 3.8.1-24 (tags/RELEASE_381/final) 24 74.49 debian:10 : Ok gcc (Debian 8.3.0-6) 8.3.0, clang version 7.0.1-8+deb10u2 (tags/RELEASE_701/final) 25 78.50 debian:experimental : Ok gcc (Debian 10.2.0-15) 10.2.0, Debian clang version 11.0.0-2 26 33.30 debian:experimental-x-arm64 : Ok aarch64-linux-gnu-gcc (Debian 10.2.0-3) 10.2.0 27 30.96 debian:experimental-x-mips64 : Ok mips64-linux-gnuabi64-gcc (Debian 9.3.0-8) 9.3.0 28 32.63 debian:experimental-x-mipsel : Ok mipsel-linux-gnu-gcc (Debian 9.3.0-8) 9.3.0 29 30.12 fedora:20 : Ok gcc (GCC) 4.8.3 20140911 (Red Hat 4.8.3-7) 30 30.99 fedora:22 : Ok gcc (GCC) 5.3.1 20160406 (Red Hat 5.3.1-6), clang version 3.5.0 (tags/RELEASE_350/final) 31 68.60 fedora:23 : Ok gcc (GCC) 5.3.1 20160406 (Red Hat 5.3.1-6), clang version 3.7.0 (tags/RELEASE_370/final) 32 78.92 fedora:24 : Ok gcc (GCC) 6.3.1 20161221 (Red Hat 6.3.1-1), clang version 3.8.1 (tags/RELEASE_381/final) 33 26.15 fedora:24-x-ARC-uClibc : Ok arc-linux-gcc (ARCompact ISA Linux uClibc toolchain 2017.09-rc2) 7.1.1 20170710 34 80.13 fedora:25 : Ok gcc (GCC) 6.4.1 20170727 (Red Hat 6.4.1-1), clang version 3.9.1 (tags/RELEASE_391/final) 35 90.68 fedora:26 : Ok gcc (GCC) 7.3.1 20180130 (Red Hat 7.3.1-2), clang version 4.0.1 (tags/RELEASE_401/final) 36 90.45 fedora:27 : Ok gcc (GCC) 7.3.1 20180712 (Red Hat 7.3.1-6), clang version 5.0.2 (tags/RELEASE_502/final) 37 100.88 fedora:28 : Ok gcc (GCC) 8.3.1 20190223 (Red Hat 8.3.1-2), clang version 6.0.1 (tags/RELEASE_601/final) 38 105.99 fedora:29 : Ok gcc (GCC) 8.3.1 20190223 (Red Hat 8.3.1-2), clang version 7.0.1 (Fedora 7.0.1-6.fc29) 39 111.05 fedora:30 : Ok gcc (GCC) 9.3.1 20200408 (Red Hat 9.3.1-2), clang version 8.0.0 (Fedora 8.0.0-3.fc30) 40 29.96 fedora:30-x-ARC-glibc : Ok arc-linux-gcc (ARC HS GNU/Linux glibc toolchain 2019.03-rc1) 8.3.1 20190225 41 27.02 fedora:30-x-ARC-uClibc : Ok arc-linux-gcc (ARCv2 ISA Linux uClibc toolchain 2019.03-rc1) 8.3.1 20190225 42 110.47 fedora:31 : Ok gcc (GCC) 9.3.1 20200408 (Red Hat 9.3.1-2), clang version 9.0.1 (Fedora 9.0.1-2.fc31) 43 88.78 fedora:32 : Ok gcc (GCC) 10.2.1 20200723 (Red Hat 10.2.1-1), clang version 10.0.0 (Fedora 10.0.0-2.fc32) 44 15.92 fedora:rawhide : FAIL gcc (GCC) 10.2.1 20200916 (Red Hat 10.2.1-4), clang version 11.0.0 (Fedora 11.0.0-0.4.rc3.fc34) 45 33.58 gentoo-stage3-amd64:latest : Ok gcc (Gentoo 9.3.0-r1 p3) 9.3.0 46 65.32 mageia:5 : Ok gcc (GCC) 4.9.2, clang version 3.5.2 (tags/RELEASE_352/final) 47 81.35 mageia:6 : Ok gcc (Mageia 5.5.0-1.mga6) 5.5.0, clang version 3.9.1 (tags/RELEASE_391/final) 48 103.94 mageia:7 : Ok gcc (Mageia 8.4.0-1.mga7) 8.4.0, clang version 8.0.0 (Mageia 8.0.0-1.mga7) 49 91.62 manjaro:latest : Ok gcc (GCC) 10.2.0, clang version 10.0.1 50 219.87 openmandriva:cooker : Ok gcc (GCC) 10.2.0 20200723 (OpenMandriva), OpenMandriva 11.0.0-0.20200909.1 clang version 11.0.0 (/builddir/build/BUILD/llvm-project-release-11.x/clang 5cb8ffbab42358a7cdb0a67acfadb84df0779579) 51 111.76 opensuse:15.0 : Ok gcc (SUSE Linux) 7.4.1 20190905 [gcc-7-branch revision 275407], clang version 5.0.1 (tags/RELEASE_501/final 312548) 52 118.03 opensuse:15.1 : Ok gcc (SUSE Linux) 7.5.0, clang version 7.0.1 (tags/RELEASE_701/final 349238) 53 107.91 opensuse:15.2 : Ok gcc (SUSE Linux) 7.5.0, clang version 9.0.1 54 102.34 opensuse:tumbleweed : Ok gcc (SUSE Linux) 10.2.1 20200825 [revision c0746a1beb1ba073c7981eb09f55b3d993b32e5c], clang version 10.0.1 55 25.33 oraclelinux:6 : Ok gcc (GCC) 4.4.7 20120313 (Red Hat 4.4.7-23.0.1) 56 30.45 oraclelinux:7 : Ok gcc (GCC) 4.8.5 20150623 (Red Hat 4.8.5-44.0.3) 57 104.65 oraclelinux:8 : Ok gcc (GCC) 8.3.1 20191121 (Red Hat 8.3.1-5.0.3), clang version 9.0.1 (Red Hat 9.0.1-2.0.1.module+el8.2.0+5599+9ed9ef6d) 58 26.04 ubuntu:12.04 : Ok gcc (Ubuntu/Linaro 4.6.3-1ubuntu5) 4.6.3, Ubuntu clang version 3.0-6ubuntu3 (tags/RELEASE_30/final) (based on LLVM 3.0) 59 29.49 ubuntu:14.04 : Ok gcc (Ubuntu 4.8.4-2ubuntu1~14.04.4) 4.8.4 60 72.95 ubuntu:16.04 : Ok gcc (Ubuntu 5.4.0-6ubuntu1~16.04.12) 5.4.0 20160609, clang version 3.8.0-2ubuntu4 (tags/RELEASE_380/final) 61 26.03 ubuntu:16.04-x-arm : Ok arm-linux-gnueabihf-gcc (Ubuntu/Linaro 5.4.0-6ubuntu1~16.04.9) 5.4.0 20160609 62 25.15 ubuntu:16.04-x-arm64 : Ok aarch64-linux-gnu-gcc (Ubuntu/Linaro 5.4.0-6ubuntu1~16.04.9) 5.4.0 20160609 63 24.88 ubuntu:16.04-x-powerpc : Ok powerpc-linux-gnu-gcc (Ubuntu 5.4.0-6ubuntu1~16.04.9) 5.4.0 20160609 64 25.72 ubuntu:16.04-x-powerpc64 : Ok powerpc64-linux-gnu-gcc (Ubuntu/IBM 5.4.0-6ubuntu1~16.04.9) 5.4.0 20160609 65 25.39 ubuntu:16.04-x-powerpc64el : Ok powerpc64le-linux-gnu-gcc (Ubuntu/IBM 5.4.0-6ubuntu1~16.04.9) 5.4.0 20160609 66 25.34 ubuntu:16.04-x-s390 : Ok s390x-linux-gnu-gcc (Ubuntu 5.4.0-6ubuntu1~16.04.9) 5.4.0 20160609 67 84.84 ubuntu:18.04 : Ok gcc (Ubuntu 7.5.0-3ubuntu1~18.04) 7.5.0, clang version 6.0.0-1ubuntu2 (tags/RELEASE_600/final) 68 27.15 ubuntu:18.04-x-arm : Ok arm-linux-gnueabihf-gcc (Ubuntu/Linaro 7.5.0-3ubuntu1~18.04) 7.5.0 69 26.68 ubuntu:18.04-x-arm64 : Ok aarch64-linux-gnu-gcc (Ubuntu/Linaro 7.5.0-3ubuntu1~18.04) 7.5.0 70 22.38 ubuntu:18.04-x-m68k : Ok m68k-linux-gnu-gcc (Ubuntu 7.5.0-3ubuntu1~18.04) 7.5.0 71 26.35 ubuntu:18.04-x-powerpc : Ok powerpc-linux-gnu-gcc (Ubuntu 7.5.0-3ubuntu1~18.04) 7.5.0 72 28.58 ubuntu:18.04-x-powerpc64 : Ok powerpc64-linux-gnu-gcc (Ubuntu 7.5.0-3ubuntu1~18.04) 7.5.0 73 28.18 ubuntu:18.04-x-powerpc64el : Ok powerpc64le-linux-gnu-gcc (Ubuntu 7.5.0-3ubuntu1~18.04) 7.5.0 74 178.55 ubuntu:18.04-x-riscv64 : Ok riscv64-linux-gnu-gcc (Ubuntu 7.5.0-3ubuntu1~18.04) 7.5.0 75 24.58 ubuntu:18.04-x-s390 : Ok s390x-linux-gnu-gcc (Ubuntu 7.5.0-3ubuntu1~18.04) 7.5.0 76 26.89 ubuntu:18.04-x-sh4 : Ok sh4-linux-gnu-gcc (Ubuntu 7.5.0-3ubuntu1~18.04) 7.5.0 77 24.81 ubuntu:18.04-x-sparc64 : Ok sparc64-linux-gnu-gcc (Ubuntu 7.5.0-3ubuntu1~18.04) 7.5.0 78 68.90 ubuntu:19.10 : Ok gcc (Ubuntu 9.2.1-9ubuntu2) 9.2.1 20191008, clang version 8.0.1-3build1 (tags/RELEASE_801/final) 79 69.31 ubuntu:20.04 : Ok gcc (Ubuntu 9.3.0-10ubuntu2) 9.3.0, clang version 10.0.0-4ubuntu1 80 30.00 ubuntu:20.04-x-powerpc64el : Ok powerpc64le-linux-gnu-gcc (Ubuntu 10-20200411-0ubuntu1) 10.0.1 20200411 (experimental) [master revision bb87d5cc77d:75961caccb7:f883c46b4877f637e0fa5025b4d6b5c9040ec566] 81 70.34 ubuntu:20.10 : Ok gcc (Ubuntu 10.2.0-5ubuntu2) 10.2.0, Ubuntu clang version 10.0.1-1 $ # uname -a Linux five 5.9.0+ #1 SMP Thu Oct 15 09:06:41 -03 2020 x86_64 x86_64 x86_64 GNU/Linux # git log --oneline -1 |
||
Namhyung Kim
|
0bf02a0d80 |
perf bench: Add build-id injection benchmark
Sometimes I can see that 'perf record' piped with 'perf inject' take a long time processing build-ids. So introduce a inject-build-id benchmark to the internals benchmark suite to measure its overhead regularly. It runs the 'perf inject' command internally and feeds the given number of synthesized events (MMAP2 + SAMPLE basically). Usage: perf bench internals inject-build-id <options> -i, --iterations <n> Number of iterations used to compute average (default: 100) -m, --nr-mmaps <n> Number of mmap events for each iteration (default: 100) -n, --nr-samples <n> Number of sample events per mmap event (default: 100) -v, --verbose be more verbose (show iteration count, DSO name, etc) By default, it measures average processing time of 100 MMAP2 events and 10000 SAMPLE events. Below is a result on my laptop. $ perf bench internals inject-build-id # Running 'internals/inject-build-id' benchmark: Average build-id injection took: 25.789 msec (+- 0.202 msec) Average time per event: 2.528 usec (+- 0.020 usec) Average memory usage: 8411 KB (+- 7 KB) Committer testing: $ perf bench Usage: perf bench [<common options>] <collection> <benchmark> [<options>] # List of all available benchmark collections: sched: Scheduler and IPC benchmarks syscall: System call benchmarks mem: Memory access benchmarks numa: NUMA scheduling and MM benchmarks futex: Futex stressing benchmarks epoll: Epoll stressing benchmarks internals: Perf-internals benchmarks all: All benchmarks $ perf bench internals # List of available benchmarks for collection 'internals': synthesize: Benchmark perf event synthesis kallsyms-parse: Benchmark kallsyms parsing inject-build-id: Benchmark build-id injection $ perf bench internals inject-build-id # Running 'internals/inject-build-id' benchmark: Average build-id injection took: 14.202 msec (+- 0.059 msec) Average time per event: 1.392 usec (+- 0.006 usec) Average memory usage: 12650 KB (+- 10 KB) Average build-id-all injection took: 12.831 msec (+- 0.071 msec) Average time per event: 1.258 usec (+- 0.007 usec) Average memory usage: 11895 KB (+- 10 KB) $ $ perf stat -r5 perf bench internals inject-build-id # Running 'internals/inject-build-id' benchmark: Average build-id injection took: 14.380 msec (+- 0.056 msec) Average time per event: 1.410 usec (+- 0.006 usec) Average memory usage: 12608 KB (+- 11 KB) Average build-id-all injection took: 11.889 msec (+- 0.064 msec) Average time per event: 1.166 usec (+- 0.006 usec) Average memory usage: 11838 KB (+- 10 KB) # Running 'internals/inject-build-id' benchmark: Average build-id injection took: 14.246 msec (+- 0.065 msec) Average time per event: 1.397 usec (+- 0.006 usec) Average memory usage: 12744 KB (+- 10 KB) Average build-id-all injection took: 12.019 msec (+- 0.066 msec) Average time per event: 1.178 usec (+- 0.006 usec) Average memory usage: 11963 KB (+- 10 KB) # Running 'internals/inject-build-id' benchmark: Average build-id injection took: 14.321 msec (+- 0.067 msec) Average time per event: 1.404 usec (+- 0.007 usec) Average memory usage: 12690 KB (+- 10 KB) Average build-id-all injection took: 11.909 msec (+- 0.041 msec) Average time per event: 1.168 usec (+- 0.004 usec) Average memory usage: 11938 KB (+- 10 KB) # Running 'internals/inject-build-id' benchmark: Average build-id injection took: 14.287 msec (+- 0.059 msec) Average time per event: 1.401 usec (+- 0.006 usec) Average memory usage: 12864 KB (+- 10 KB) Average build-id-all injection took: 11.862 msec (+- 0.058 msec) Average time per event: 1.163 usec (+- 0.006 usec) Average memory usage: 12103 KB (+- 10 KB) # Running 'internals/inject-build-id' benchmark: Average build-id injection took: 14.402 msec (+- 0.053 msec) Average time per event: 1.412 usec (+- 0.005 usec) Average memory usage: 12876 KB (+- 10 KB) Average build-id-all injection took: 11.826 msec (+- 0.061 msec) Average time per event: 1.159 usec (+- 0.006 usec) Average memory usage: 12111 KB (+- 10 KB) Performance counter stats for 'perf bench internals inject-build-id' (5 runs): 4,267.48 msec task-clock:u # 1.502 CPUs utilized ( +- 0.14% ) 0 context-switches:u # 0.000 K/sec 0 cpu-migrations:u # 0.000 K/sec 102,092 page-faults:u # 0.024 M/sec ( +- 0.08% ) 3,894,589,578 cycles:u # 0.913 GHz ( +- 0.19% ) (83.49%) 140,078,421 stalled-cycles-frontend:u # 3.60% frontend cycles idle ( +- 0.77% ) (83.34%) 948,581,189 stalled-cycles-backend:u # 24.36% backend cycles idle ( +- 0.46% ) (83.25%) 5,835,587,719 instructions:u # 1.50 insn per cycle # 0.16 stalled cycles per insn ( +- 0.21% ) (83.24%) 1,267,423,636 branches:u # 296.996 M/sec ( +- 0.22% ) (83.12%) 17,484,290 branch-misses:u # 1.38% of all branches ( +- 0.12% ) (83.55%) 2.84176 +- 0.00222 seconds time elapsed ( +- 0.08% ) $ Acked-by: Jiri Olsa <jolsa@redhat.com> Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com> Signed-off-by: Namhyung Kim <namhyung@kernel.org> Link: https://lore.kernel.org/r/20201012070214.2074921-2-namhyung@kernel.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> |
||
Dan Williams
|
ec6347bb43 |
x86, powerpc: Rename memcpy_mcsafe() to copy_mc_to_{user, kernel}()
In reaction to a proposal to introduce a memcpy_mcsafe_fast() implementation Linus points out that memcpy_mcsafe() is poorly named relative to communicating the scope of the interface. Specifically what addresses are valid to pass as source, destination, and what faults / exceptions are handled. Of particular concern is that even though x86 might be able to handle the semantics of copy_mc_to_user() with its common copy_user_generic() implementation other archs likely need / want an explicit path for this case: On Fri, May 1, 2020 at 11:28 AM Linus Torvalds <torvalds@linux-foundation.org> wrote: > > On Thu, Apr 30, 2020 at 6:21 PM Dan Williams <dan.j.williams@intel.com> wrote: > > > > However now I see that copy_user_generic() works for the wrong reason. > > It works because the exception on the source address due to poison > > looks no different than a write fault on the user address to the > > caller, it's still just a short copy. So it makes copy_to_user() work > > for the wrong reason relative to the name. > > Right. > > And it won't work that way on other architectures. On x86, we have a > generic function that can take faults on either side, and we use it > for both cases (and for the "in_user" case too), but that's an > artifact of the architecture oddity. > > In fact, it's probably wrong even on x86 - because it can hide bugs - > but writing those things is painful enough that everybody prefers > having just one function. Replace a single top-level memcpy_mcsafe() with either copy_mc_to_user(), or copy_mc_to_kernel(). Introduce an x86 copy_mc_fragile() name as the rename for the low-level x86 implementation formerly named memcpy_mcsafe(). It is used as the slow / careful backend that is supplanted by a fast copy_mc_generic() in a follow-on patch. One side-effect of this reorganization is that separating copy_mc_64.S to its own file means that perf no longer needs to track dependencies for its memcpy_64.S benchmarks. [ bp: Massage a bit. ] Signed-off-by: Dan Williams <dan.j.williams@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Tony Luck <tony.luck@intel.com> Acked-by: Michael Ellerman <mpe@ellerman.id.au> Cc: <stable@vger.kernel.org> Link: http://lore.kernel.org/r/CAHk-=wjSqtXAqfUJxFtWNwmguFASTgB0dz1dT3V-78Quiezqbg@mail.gmail.com Link: https://lkml.kernel.org/r/160195561680.2163339.11574962055305783722.stgit@dwillia2-desk3.amr.corp.intel.com |
||
Ian Rogers
|
7c43b0c1d4 |
perf bench: Add benchmark of find_next_bit
for_each_set_bit, or similar functions like for_each_cpu, may be hot within the kernel. If many bits were set then one could imagine on Intel a "bt" instruction with every bit may be faster than the function call and word length find_next_bit logic. Add a benchmark to measure this. This benchmark on AMD rome and Intel skylakex shows "bt" is not a good option except for very small bitmaps. Committer testing: # perf bench Usage: perf bench [<common options>] <collection> <benchmark> [<options>] # List of all available benchmark collections: sched: Scheduler and IPC benchmarks syscall: System call benchmarks mem: Memory access benchmarks numa: NUMA scheduling and MM benchmarks futex: Futex stressing benchmarks epoll: Epoll stressing benchmarks internals: Perf-internals benchmarks all: All benchmarks # perf bench mem # List of available benchmarks for collection 'mem': memcpy: Benchmark for memcpy() functions memset: Benchmark for memset() functions find_bit: Benchmark for find_bit() functions all: Run all memory access benchmarks # perf bench mem find_bit # Running 'mem/find_bit' benchmark: 100000 operations 1 bits set of 1 bits Average for_each_set_bit took: 730.200 usec (+- 6.468 usec) Average test_bit loop took: 366.200 usec (+- 4.652 usec) 100000 operations 1 bits set of 2 bits Average for_each_set_bit took: 781.000 usec (+- 24.247 usec) Average test_bit loop took: 550.200 usec (+- 4.152 usec) 100000 operations 2 bits set of 2 bits Average for_each_set_bit took: 1113.400 usec (+- 112.340 usec) Average test_bit loop took: 1098.500 usec (+- 182.834 usec) 100000 operations 1 bits set of 4 bits Average for_each_set_bit took: 843.800 usec (+- 8.772 usec) Average test_bit loop took: 948.800 usec (+- 10.278 usec) 100000 operations 2 bits set of 4 bits Average for_each_set_bit took: 1185.800 usec (+- 114.345 usec) Average test_bit loop took: 1473.200 usec (+- 175.498 usec) 100000 operations 4 bits set of 4 bits Average for_each_set_bit took: 1769.667 usec (+- 233.177 usec) Average test_bit loop took: 1864.933 usec (+- 187.470 usec) 100000 operations 1 bits set of 8 bits Average for_each_set_bit took: 898.000 usec (+- 21.755 usec) Average test_bit loop took: 1768.400 usec (+- 23.672 usec) 100000 operations 2 bits set of 8 bits Average for_each_set_bit took: 1244.900 usec (+- 116.396 usec) Average test_bit loop took: 2201.800 usec (+- 145.398 usec) 100000 operations 4 bits set of 8 bits Average for_each_set_bit took: 1822.533 usec (+- 231.554 usec) Average test_bit loop took: 2569.467 usec (+- 168.453 usec) 100000 operations 8 bits set of 8 bits Average for_each_set_bit took: 2845.100 usec (+- 441.365 usec) Average test_bit loop took: 3023.300 usec (+- 219.575 usec) 100000 operations 1 bits set of 16 bits Average for_each_set_bit took: 923.400 usec (+- 17.560 usec) Average test_bit loop took: 3240.000 usec (+- 16.492 usec) 100000 operations 2 bits set of 16 bits Average for_each_set_bit took: 1264.300 usec (+- 114.034 usec) Average test_bit loop took: 3714.400 usec (+- 158.898 usec) 100000 operations 4 bits set of 16 bits Average for_each_set_bit took: 1817.867 usec (+- 222.199 usec) Average test_bit loop took: 4015.333 usec (+- 154.162 usec) 100000 operations 8 bits set of 16 bits Average for_each_set_bit took: 2826.350 usec (+- 433.457 usec) Average test_bit loop took: 4460.350 usec (+- 210.762 usec) 100000 operations 16 bits set of 16 bits Average for_each_set_bit took: 4615.600 usec (+- 809.350 usec) Average test_bit loop took: 5129.960 usec (+- 320.821 usec) 100000 operations 1 bits set of 32 bits Average for_each_set_bit took: 904.400 usec (+- 14.250 usec) Average test_bit loop took: 6194.000 usec (+- 29.254 usec) 100000 operations 2 bits set of 32 bits Average for_each_set_bit took: 1252.700 usec (+- 116.432 usec) Average test_bit loop took: 6652.400 usec (+- 154.352 usec) 100000 operations 4 bits set of 32 bits Average for_each_set_bit took: 1824.200 usec (+- 229.133 usec) Average test_bit loop took: 6961.733 usec (+- 154.682 usec) 100000 operations 8 bits set of 32 bits Average for_each_set_bit took: 2823.950 usec (+- 432.296 usec) Average test_bit loop took: 7351.900 usec (+- 193.626 usec) 100000 operations 16 bits set of 32 bits Average for_each_set_bit took: 4552.560 usec (+- 785.141 usec) Average test_bit loop took: 7998.360 usec (+- 305.629 usec) 100000 operations 32 bits set of 32 bits Average for_each_set_bit took: 7557.067 usec (+- 1407.702 usec) Average test_bit loop took: 9072.400 usec (+- 513.209 usec) 100000 operations 1 bits set of 64 bits Average for_each_set_bit took: 896.800 usec (+- 14.389 usec) Average test_bit loop took: 11927.200 usec (+- 68.862 usec) 100000 operations 2 bits set of 64 bits Average for_each_set_bit took: 1230.400 usec (+- 111.731 usec) Average test_bit loop took: 12478.600 usec (+- 189.382 usec) 100000 operations 4 bits set of 64 bits Average for_each_set_bit took: 1844.733 usec (+- 244.826 usec) Average test_bit loop took: 12911.467 usec (+- 206.246 usec) 100000 operations 8 bits set of 64 bits Average for_each_set_bit took: 2779.300 usec (+- 413.612 usec) Average test_bit loop took: 13372.650 usec (+- 239.623 usec) 100000 operations 16 bits set of 64 bits Average for_each_set_bit took: 4423.920 usec (+- 748.240 usec) Average test_bit loop took: 13995.800 usec (+- 318.427 usec) 100000 operations 32 bits set of 64 bits Average for_each_set_bit took: 7580.600 usec (+- 1462.407 usec) Average test_bit loop took: 15063.067 usec (+- 516.477 usec) 100000 operations 64 bits set of 64 bits Average for_each_set_bit took: 13391.514 usec (+- 2765.371 usec) Average test_bit loop took: 16974.914 usec (+- 916.936 usec) 100000 operations 1 bits set of 128 bits Average for_each_set_bit took: 1153.800 usec (+- 124.245 usec) Average test_bit loop took: 26959.000 usec (+- 714.047 usec) 100000 operations 2 bits set of 128 bits Average for_each_set_bit took: 1445.200 usec (+- 113.587 usec) Average test_bit loop took: 25798.800 usec (+- 512.908 usec) 100000 operations 4 bits set of 128 bits Average for_each_set_bit took: 1990.933 usec (+- 219.362 usec) Average test_bit loop took: 25589.400 usec (+- 348.288 usec) 100000 operations 8 bits set of 128 bits Average for_each_set_bit took: 2963.000 usec (+- 419.487 usec) Average test_bit loop took: 25690.050 usec (+- 262.025 usec) 100000 operations 16 bits set of 128 bits Average for_each_set_bit took: 4585.200 usec (+- 741.734 usec) Average test_bit loop took: 26125.040 usec (+- 274.127 usec) 100000 operations 32 bits set of 128 bits Average for_each_set_bit took: 7626.200 usec (+- 1404.950 usec) Average test_bit loop took: 27038.867 usec (+- 442.554 usec) 100000 operations 64 bits set of 128 bits Average for_each_set_bit took: 13343.371 usec (+- 2686.460 usec) Average test_bit loop took: 28936.543 usec (+- 883.257 usec) 100000 operations 128 bits set of 128 bits Average for_each_set_bit took: 23442.950 usec (+- 4880.541 usec) Average test_bit loop took: 32484.125 usec (+- 1691.931 usec) 100000 operations 1 bits set of 256 bits Average for_each_set_bit took: 1183.000 usec (+- 32.073 usec) Average test_bit loop took: 50114.600 usec (+- 198.880 usec) 100000 operations 2 bits set of 256 bits Average for_each_set_bit took: 1550.000 usec (+- 124.550 usec) Average test_bit loop took: 50334.200 usec (+- 128.425 usec) 100000 operations 4 bits set of 256 bits Average for_each_set_bit took: 2164.333 usec (+- 246.359 usec) Average test_bit loop took: 49959.867 usec (+- 188.035 usec) 100000 operations 8 bits set of 256 bits Average for_each_set_bit took: 3211.200 usec (+- 454.829 usec) Average test_bit loop took: 50140.850 usec (+- 176.046 usec) 100000 operations 16 bits set of 256 bits Average for_each_set_bit took: 5181.640 usec (+- 882.726 usec) Average test_bit loop took: 51003.160 usec (+- 419.601 usec) 100000 operations 32 bits set of 256 bits Average for_each_set_bit took: 8369.333 usec (+- 1513.150 usec) Average test_bit loop took: 52096.700 usec (+- 573.022 usec) 100000 operations 64 bits set of 256 bits Average for_each_set_bit took: 13866.857 usec (+- 2649.393 usec) Average test_bit loop took: 53989.600 usec (+- 938.808 usec) 100000 operations 128 bits set of 256 bits Average for_each_set_bit took: 23588.350 usec (+- 4724.222 usec) Average test_bit loop took: 57300.625 usec (+- 1625.962 usec) 100000 operations 256 bits set of 256 bits Average for_each_set_bit took: 42752.200 usec (+- 9202.084 usec) Average test_bit loop took: 64426.933 usec (+- 3402.326 usec) 100000 operations 1 bits set of 512 bits Average for_each_set_bit took: 1632.000 usec (+- 229.954 usec) Average test_bit loop took: 98090.000 usec (+- 1120.435 usec) 100000 operations 2 bits set of 512 bits Average for_each_set_bit took: 1937.700 usec (+- 148.902 usec) Average test_bit loop took: 100364.100 usec (+- 1433.219 usec) 100000 operations 4 bits set of 512 bits Average for_each_set_bit took: 2528.000 usec (+- 243.654 usec) Average test_bit loop took: 99932.067 usec (+- 955.868 usec) 100000 operations 8 bits set of 512 bits Average for_each_set_bit took: 3734.100 usec (+- 512.359 usec) Average test_bit loop took: 98944.750 usec (+- 812.070 usec) 100000 operations 16 bits set of 512 bits Average for_each_set_bit took: 5551.400 usec (+- 846.605 usec) Average test_bit loop took: 98691.600 usec (+- 654.753 usec) 100000 operations 32 bits set of 512 bits Average for_each_set_bit took: 8594.500 usec (+- 1446.072 usec) Average test_bit loop took: 99176.867 usec (+- 579.990 usec) 100000 operations 64 bits set of 512 bits Average for_each_set_bit took: 13840.743 usec (+- 2527.055 usec) Average test_bit loop took: 100758.743 usec (+- 833.865 usec) 100000 operations 128 bits set of 512 bits Average for_each_set_bit took: 23185.925 usec (+- 4532.910 usec) Average test_bit loop took: 103786.700 usec (+- 1475.276 usec) 100000 operations 256 bits set of 512 bits Average for_each_set_bit took: 40322.400 usec (+- 8341.802 usec) Average test_bit loop took: 109433.378 usec (+- 2742.615 usec) 100000 operations 512 bits set of 512 bits Average for_each_set_bit took: 71804.540 usec (+- 15436.546 usec) Average test_bit loop took: 120255.440 usec (+- 5252.777 usec) 100000 operations 1 bits set of 1024 bits Average for_each_set_bit took: 1859.600 usec (+- 27.969 usec) Average test_bit loop took: 187676.000 usec (+- 1337.770 usec) 100000 operations 2 bits set of 1024 bits Average for_each_set_bit took: 2273.600 usec (+- 139.420 usec) Average test_bit loop took: 188176.000 usec (+- 684.357 usec) 100000 operations 4 bits set of 1024 bits Average for_each_set_bit took: 2940.400 usec (+- 268.213 usec) Average test_bit loop took: 189172.600 usec (+- 593.295 usec) 100000 operations 8 bits set of 1024 bits Average for_each_set_bit took: 4224.200 usec (+- 547.933 usec) Average test_bit loop took: 190257.250 usec (+- 621.021 usec) 100000 operations 16 bits set of 1024 bits Average for_each_set_bit took: 6090.560 usec (+- 877.975 usec) Average test_bit loop took: 190143.880 usec (+- 503.753 usec) 100000 operations 32 bits set of 1024 bits Average for_each_set_bit took: 9178.800 usec (+- 1475.136 usec) Average test_bit loop took: 190757.100 usec (+- 494.757 usec) 100000 operations 64 bits set of 1024 bits Average for_each_set_bit took: 14441.457 usec (+- 2545.497 usec) Average test_bit loop took: 192299.486 usec (+- 795.251 usec) 100000 operations 128 bits set of 1024 bits Average for_each_set_bit took: 23623.825 usec (+- 4481.182 usec) Average test_bit loop took: 194885.550 usec (+- 1300.817 usec) 100000 operations 256 bits set of 1024 bits Average for_each_set_bit took: 40194.956 usec (+- 8109.056 usec) Average test_bit loop took: 200259.311 usec (+- 2566.085 usec) 100000 operations 512 bits set of 1024 bits Average for_each_set_bit took: 70983.560 usec (+- 15074.982 usec) Average test_bit loop took: 210527.460 usec (+- 4968.980 usec) 100000 operations 1024 bits set of 1024 bits Average for_each_set_bit took: 136530.345 usec (+- 31584.400 usec) Average test_bit loop took: 233329.691 usec (+- 10814.036 usec) 100000 operations 1 bits set of 2048 bits Average for_each_set_bit took: 3077.600 usec (+- 76.376 usec) Average test_bit loop took: 402154.400 usec (+- 518.571 usec) 100000 operations 2 bits set of 2048 bits Average for_each_set_bit took: 3508.600 usec (+- 148.350 usec) Average test_bit loop took: 403814.500 usec (+- 1133.027 usec) 100000 operations 4 bits set of 2048 bits Average for_each_set_bit took: 4219.333 usec (+- 285.844 usec) Average test_bit loop took: 404312.533 usec (+- 985.751 usec) 100000 operations 8 bits set of 2048 bits Average for_each_set_bit took: 5670.550 usec (+- 615.238 usec) Average test_bit loop took: 405321.800 usec (+- 1038.487 usec) 100000 operations 16 bits set of 2048 bits Average for_each_set_bit took: 7785.080 usec (+- 992.522 usec) Average test_bit loop took: 406746.160 usec (+- 1015.478 usec) 100000 operations 32 bits set of 2048 bits Average for_each_set_bit took: 11163.800 usec (+- 1627.320 usec) Average test_bit loop took: 406124.267 usec (+- 898.785 usec) 100000 operations 64 bits set of 2048 bits Average for_each_set_bit took: 16964.629 usec (+- 2806.130 usec) Average test_bit loop took: 406618.514 usec (+- 798.356 usec) 100000 operations 128 bits set of 2048 bits Average for_each_set_bit took: 27219.625 usec (+- 4988.458 usec) Average test_bit loop took: 410149.325 usec (+- 1705.641 usec) 100000 operations 256 bits set of 2048 bits Average for_each_set_bit took: 45138.578 usec (+- 8831.021 usec) Average test_bit loop took: 415462.467 usec (+- 2725.418 usec) 100000 operations 512 bits set of 2048 bits Average for_each_set_bit took: 77450.540 usec (+- 15962.238 usec) Average test_bit loop took: 426089.180 usec (+- 5171.788 usec) 100000 operations 1024 bits set of 2048 bits Average for_each_set_bit took: 138023.636 usec (+- 29826.959 usec) Average test_bit loop took: 446346.636 usec (+- 9904.417 usec) 100000 operations 2048 bits set of 2048 bits Average for_each_set_bit took: 251072.600 usec (+- 55947.692 usec) Average test_bit loop took: 484855.983 usec (+- 18970.431 usec) # Signed-off-by: Ian Rogers <irogers@google.com> Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lore.kernel.org/lkml/20200729220034.1337168-1-irogers@google.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> |
||
Davidlohr Bueso
|
c2a0820305 |
perf bench: Add basic syscall benchmark
The usefulness of having a standard way of testing syscall performance has come up from time to time[0]. Furthermore, some of our testing machinery (such as 'mmtests') already makes use of a simplified version of the microbenchmark. This patch mainly takes the same idea to measure syscall throughput compatible with 'perf-bench' via getppid(2), yet without any of the additional template stuff from Ingo's version (based on numa.c). The code is identical to what mmtests uses. [0] https://lore.kernel.org/lkml/20160201074156.GA27156@gmail.com/ Committer notes: Add mising stdlib.h and unistd.h to get the prototypes for exit() and getppid(). Committer testing: $ perf bench Usage: perf bench [<common options>] <collection> <benchmark> [<options>] # List of all available benchmark collections: sched: Scheduler and IPC benchmarks syscall: System call benchmarks mem: Memory access benchmarks numa: NUMA scheduling and MM benchmarks futex: Futex stressing benchmarks epoll: Epoll stressing benchmarks internals: Perf-internals benchmarks all: All benchmarks $ $ perf bench syscall # List of available benchmarks for collection 'syscall': basic: Benchmark for basic getppid(2) calls all: Run all syscall benchmarks $ perf bench syscall basic # Running 'syscall/basic' benchmark: # Executed 10000000 getppid() calls Total time: 3.679 [sec] 0.367957 usecs/op 2717708 ops/sec $ perf bench syscall all # Running syscall/basic benchmark... # Executed 10000000 getppid() calls Total time: 3.644 [sec] 0.364456 usecs/op 2743815 ops/sec $ Signed-off-by: Davidlohr Bueso <dbueso@suse.de> Acked-by: Josh Poimboeuf <jpoimboe@redhat.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Namhyung Kim <namhyung@kernel.org> Link: http://lore.kernel.org/lkml/20190308181747.l36zqz2avtivrr3c@linux-r8p5 Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> |
||
Ian Rogers
|
51876bd452 |
perf bench: Add kallsyms parsing
Add a benchmark for kallsyms parsing. Example output: Running 'internals/kallsyms-parse' benchmark: Average kallsyms__parse took: 103.971 ms (+- 0.121 ms) Committer testing: Test Machine: AMD Ryzen 5 3600X 6-Core Processor [root@five ~]# perf bench internals kallsyms-parse # Running 'internals/kallsyms-parse' benchmark: Average kallsyms__parse took: 79.692 ms (+- 0.101 ms) [root@five ~]# perf stat -r5 perf bench internals kallsyms-parse # Running 'internals/kallsyms-parse' benchmark: Average kallsyms__parse took: 80.563 ms (+- 0.079 ms) # Running 'internals/kallsyms-parse' benchmark: Average kallsyms__parse took: 81.046 ms (+- 0.155 ms) # Running 'internals/kallsyms-parse' benchmark: Average kallsyms__parse took: 80.874 ms (+- 0.104 ms) # Running 'internals/kallsyms-parse' benchmark: Average kallsyms__parse took: 81.173 ms (+- 0.133 ms) # Running 'internals/kallsyms-parse' benchmark: Average kallsyms__parse took: 81.169 ms (+- 0.074 ms) Performance counter stats for 'perf bench internals kallsyms-parse' (5 runs): 8,093.54 msec task-clock # 0.999 CPUs utilized ( +- 0.14% ) 3,165 context-switches # 0.391 K/sec ( +- 0.18% ) 10 cpu-migrations # 0.001 K/sec ( +- 23.13% ) 744 page-faults # 0.092 K/sec ( +- 0.21% ) 34,551,564,954 cycles # 4.269 GHz ( +- 0.05% ) (83.33%) 1,160,584,308 stalled-cycles-frontend # 3.36% frontend cycles idle ( +- 1.60% ) (83.33%) 14,974,323,985 stalled-cycles-backend # 43.34% backend cycles idle ( +- 0.24% ) (83.33%) 58,712,905,705 instructions # 1.70 insn per cycle # 0.26 stalled cycles per insn ( +- 0.01% ) (83.34%) 14,136,433,778 branches # 1746.632 M/sec ( +- 0.01% ) (83.33%) 141,943,217 branch-misses # 1.00% of all branches ( +- 0.04% ) (83.33%) 8.1040 +- 0.0115 seconds time elapsed ( +- 0.14% ) [root@five ~]# Signed-off-by: Ian Rogers <irogers@google.com> Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lore.kernel.org/lkml/20200501221315.54715-2-irogers@google.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> |
||
Ian Rogers
|
2a4b51666a |
perf bench: Add event synthesis benchmark
Event synthesis may occur at the start or end (tail) of a perf command. In system-wide mode it can scan every process in /proc, which may add seconds of latency before event recording. Add a new benchmark that times how long event synthesis takes with and without data synthesis. An example execution looks like: $ perf bench internals synthesize # Running 'internals/synthesize' benchmark: Average synthesis took: 168.253800 usec Average data synthesis took: 208.104700 usec Signed-off-by: Ian Rogers <irogers@google.com> Acked-by: Jiri Olsa <jolsa@redhat.com> Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andrey Zhizhikin <andrey.z@gmail.com> Cc: Kan Liang <kan.liang@linux.intel.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Petr Mladek <pmladek@suse.com> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lore.kernel.org/lkml/20200402154357.107873-2-irogers@google.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> |
||
Davidlohr Bueso
|
231457ec70 |
perf bench: Add epoll_ctl(2) benchmark
Benchmark the various operations allowed for epoll_ctl(2). The idea is to concurrently stress a single epoll instance doing add/mod/del operations. Committer testing: # perf bench epoll ctl # Running 'epoll/ctl' benchmark: Run summary [PID 20344]: 4 threads doing epoll_ctl ops 64 file-descriptors for 8 secs. [thread 0] fdmap: 0x21a46b0 ... 0x21a47ac [ add: 1680960 ops; mod: 1680960 ops; del: 1680960 ops ] [thread 1] fdmap: 0x21a4960 ... 0x21a4a5c [ add: 1685440 ops; mod: 1685440 ops; del: 1685440 ops ] [thread 2] fdmap: 0x21a4c10 ... 0x21a4d0c [ add: 1674368 ops; mod: 1674368 ops; del: 1674368 ops ] [thread 3] fdmap: 0x21a4ec0 ... 0x21a4fbc [ add: 1677568 ops; mod: 1677568 ops; del: 1677568 ops ] Averaged 1679584 ADD operations (+- 0.14%) Averaged 1679584 MOD operations (+- 0.14%) Averaged 1679584 DEL operations (+- 0.14%) # Lets measure those calls with 'perf trace' to get a glympse at what this benchmark is doing in terms of syscalls: # perf trace -m32768 -s perf bench epoll ctl # Running 'epoll/ctl' benchmark: Run summary [PID 20405]: 4 threads doing epoll_ctl ops 64 file-descriptors for 8 secs. [thread 0] fdmap: 0x21764e0 ... 0x21765dc [ add: 1100480 ops; mod: 1100480 ops; del: 1100480 ops ] [thread 1] fdmap: 0x2176790 ... 0x217688c [ add: 1250176 ops; mod: 1250176 ops; del: 1250176 ops ] [thread 2] fdmap: 0x2176a40 ... 0x2176b3c [ add: 1022464 ops; mod: 1022464 ops; del: 1022464 ops ] [thread 3] fdmap: 0x2176cf0 ... 0x2176dec [ add: 705472 ops; mod: 705472 ops; del: 705472 ops ] Averaged 1019648 ADD operations (+- 11.27%) Averaged 1019648 MOD operations (+- 11.27%) Averaged 1019648 DEL operations (+- 11.27%) Summary of events: epoll-ctl (20405), 1264 events, 0.0% syscall calls total min avg max stddev (msec) (msec) (msec) (msec) (%) --------------- -------- --------- --------- --------- --------- ------ eventfd2 256 9.514 0.001 0.037 5.243 68.00% clone 4 1.245 0.204 0.311 0.531 24.13% mprotect 66 0.345 0.002 0.005 0.021 7.43% openat 45 0.313 0.004 0.007 0.073 21.93% mmap 88 0.302 0.002 0.003 0.013 5.02% futex 4 0.160 0.002 0.040 0.140 83.43% sched_setaffinity 4 0.124 0.005 0.031 0.070 49.39% read 44 0.103 0.001 0.002 0.013 15.54% fstat 40 0.052 0.001 0.001 0.003 5.43% close 39 0.039 0.001 0.001 0.001 1.48% stat 9 0.034 0.003 0.004 0.006 7.30% access 3 0.023 0.007 0.008 0.008 4.25% open 2 0.021 0.008 0.011 0.013 22.60% getdents 4 0.019 0.001 0.005 0.009 37.15% write 2 0.013 0.004 0.007 0.009 38.48% munmap 1 0.010 0.010 0.010 0.010 0.00% brk 3 0.006 0.001 0.002 0.003 26.34% rt_sigprocmask 2 0.004 0.001 0.002 0.003 43.95% rt_sigaction 3 0.004 0.001 0.001 0.002 16.07% prlimit64 3 0.004 0.001 0.001 0.001 5.39% prctl 1 0.003 0.003 0.003 0.003 0.00% epoll_create 1 0.003 0.003 0.003 0.003 0.00% lseek 2 0.002 0.001 0.001 0.001 11.42% sched_getaffinity 1 0.002 0.002 0.002 0.002 0.00% arch_prctl 1 0.002 0.002 0.002 0.002 0.00% set_tid_address 1 0.001 0.001 0.001 0.001 0.00% getpid 1 0.001 0.001 0.001 0.001 0.00% set_robust_list 1 0.001 0.001 0.001 0.001 0.00% execve 1 0.000 0.000 0.000 0.000 0.00% epoll-ctl (20406), 1245480 events, 14.6% syscall calls total min avg max stddev (msec) (msec) (msec) (msec) (%) --------------- -------- --------- --------- --------- --------- ------ epoll_ctl 619511 1034.927 0.001 0.002 6.691 0.67% nanosleep 3226 616.114 0.006 0.191 10.376 7.57% futex 2 11.336 0.002 5.668 11.334 99.97% set_robust_list 1 0.001 0.001 0.001 0.001 0.00% clone 1 0.000 0.000 0.000 0.000 0.00% epoll-ctl (20407), 1243151 events, 14.5% syscall calls total min avg max stddev (msec) (msec) (msec) (msec) (%) --------------- -------- --------- --------- --------- --------- ------ epoll_ctl 618350 1042.181 0.001 0.002 2.512 0.40% nanosleep 3220 366.261 0.012 0.114 18.162 9.59% futex 4 5.463 0.001 1.366 5.427 99.12% set_robust_list 1 0.002 0.002 0.002 0.002 0.00% epoll-ctl (20408), 1801690 events, 21.1% syscall calls total min avg max stddev (msec) (msec) (msec) (msec) (%) --------------- -------- --------- --------- --------- --------- ------ epoll_ctl 896174 1540.581 0.001 0.002 6.987 0.74% nanosleep 4667 783.393 0.006 0.168 10.419 7.10% futex 2 4.682 0.002 2.341 4.681 99.93% set_robust_list 1 0.002 0.002 0.002 0.002 0.00% clone 1 0.000 0.000 0.000 0.000 0.00% epoll-ctl (20409), 4254890 events, 49.8% syscall calls total min avg max stddev (msec) (msec) (msec) (msec) (%) --------------- -------- --------- --------- --------- --------- ------ epoll_ctl 2116416 3768.097 0.001 0.002 9.956 0.41% nanosleep 11023 1141.778 0.006 0.104 9.447 4.95% futex 3 0.037 0.002 0.012 0.029 70.50% set_robust_list 1 0.008 0.008 0.008 0.008 0.00% madvise 1 0.005 0.005 0.005 0.005 0.00% clone 1 0.000 0.000 0.000 0.000 0.00% # Committer notes: Fix build on fedora:24-x-ARC-uClibc, debian:experimental-x-mips, debian:experimental-x-mipsel, ubuntu:16.04-x-arm and ubuntu:16.04-x-powerpc CC /tmp/build/perf/bench/epoll-ctl.o bench/epoll-ctl.c: In function 'init_fdmaps': bench/epoll-ctl.c:214:16: error: comparison between signed and unsigned integer expressions [-Werror=sign-compare] for (i = 0; i < nfds; i+=inc) { ^ bench/epoll-ctl.c: In function 'bench_epoll_ctl': bench/epoll-ctl.c:377:16: error: comparison between signed and unsigned integer expressions [-Werror=sign-compare] for (i = 0; i < nthreads; i++) { ^ bench/epoll-ctl.c:388:16: error: comparison between signed and unsigned integer expressions [-Werror=sign-compare] for (i = 0; i < nthreads; i++) { ^ cc1: all warnings being treated as errors Signed-off-by: Davidlohr Bueso <dbueso@suse.de> Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Davidlohr Bueso <dbueso@suse.de> Cc: Jason Baron <jbaron@akamai.com> Link: http://lkml.kernel.org/r/20181106152226.20883-3-dave@stgolabs.net [ Use inttypes.h to print rlim_t fields, fixing the build on Alpine Linux / musl libc ] [ Check if eventfd() is available, i.e. if HAVE_EVENTFD is defined ] Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> |
||
Davidlohr Bueso
|
121dd9ea01 |
perf bench: Add epoll parallel epoll_wait benchmark
This program benchmarks concurrent epoll_wait(2) for file descriptors that are monitored with with EPOLLIN along various semantics, by a single epoll instance. Such conditions can be found when using single/combined or multiple queuing when load balancing. Each thread has a number of private, nonblocking file descriptors, referred to as fdmap. A writer thread will constantly be writing to the fdmaps of all threads, minimizing each threads's chances of epoll_wait not finding any ready read events and blocking as this is not what we want to stress. Full details in the start of the C file. Committer testing: # perf bench Usage: perf bench [<common options>] <collection> <benchmark> [<options>] # List of all available benchmark collections: sched: Scheduler and IPC benchmarks mem: Memory access benchmarks numa: NUMA scheduling and MM benchmarks futex: Futex stressing benchmarks epoll: Epoll stressing benchmarks all: All benchmarks # perf bench epoll # List of available benchmarks for collection 'epoll': wait: Benchmark epoll concurrent epoll_waits all: Run all futex benchmarks # perf bench epoll wait # Running 'epoll/wait' benchmark: Run summary [PID 19295]: 3 threads monitoring on 64 file-descriptors for 8 secs. [thread 0] fdmap: 0xdaa650 ... 0xdaa74c [ 328241 ops/sec ] [thread 1] fdmap: 0xdaa900 ... 0xdaa9fc [ 351695 ops/sec ] [thread 2] fdmap: 0xdaabb0 ... 0xdaacac [ 381423 ops/sec ] Averaged 353786 operations/sec (+- 4.35%), total secs = 8 # Committer notes: Fix the build on debian:experimental-x-mips, debian:experimental-x-mipsel and others: CC /tmp/build/perf/bench/epoll-wait.o bench/epoll-wait.c: In function 'writerfn': bench/epoll-wait.c:399:12: error: format '%ld' expects argument of type 'long int', but argument 2 has type 'size_t' {aka 'unsigned int'} [-Werror=format=] printinfo("exiting writer-thread (total full-loops: %ld)\n", iter); ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ bench/epoll-wait.c:86:31: note: in definition of macro 'printinfo' do { if (__verbose) { printf(fmt, ## arg); fflush(stdout); } } while (0) ^~~ cc1: all warnings being treated as errors Signed-off-by: Davidlohr Bueso <dbueso@suse.de> Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Davidlohr Bueso <dbueso@suse.de> Cc: Jason Baron <jbaron@akamai.com> <jbaron@akamai.com> Link: http://lkml.kernel.org/r/20181106152226.20883-2-dave@stgolabs.net Link: http://lkml.kernel.org/r/20181106182349.thdkpvshkna5vd7o@linux-r8p5> [ Applied above fixup as per Davidlohr's request ] [ Use inttypes.h to print rlim_t fields, fixing the build on Alpine Linux / musl libc ] [ Check if eventfd() is available, i.e. if HAVE_EVENTFD is defined ] Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> |
||
Arnaldo Carvalho de Melo
|
1f27a050fc |
tools arch: Update arch/x86/lib/memcpy_64.S copy used in 'perf bench mem memcpy'
To cope with the changes in: |
||
Ingo Molnar
|
9b2fa7f3e7 |
perf bench: Rename 'mem-memcpy.c' => 'mem-functions.c'
So mem-memcpy.c started out as a simple memcpy() benchmark, then it grew memset() functionality and now I plan to add string copy benchmarks as well. This makes the file name a misnomer: rename it to the more generic mem-functions.c name. Signed-off-by: Ingo Molnar <mingo@kernel.org> Cc: David Ahern <dsahern@gmail.com> Cc: Hitoshi Mitake <mitake@dcl.info.waseda.ac.jp> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1445241870-24854-5-git-send-email-mingo@kernel.org [ The "rename" was introducing __unused, wasn't removing the old file, and didn't update tools/perf/bench/Build, fix it ] Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> |
||
Davidlohr Bueso
|
d2f3f5d2e9 |
perf bench futex: Add lock_pi stresser
Allows a way of measuring low level kernel implementation of FUTEX_LOCK_PI and FUTEX_UNLOCK_PI. The program comes in two flavors: (i) single futex (default), all threads contend on the same uaddr. For the sake of the benchmark, we call into kernel space even when the lock is uncontended. The kernel will set it to TID, any waters that come in and contend for the pi futex will be handled respectively by the kernel. (ii) -M option for multiple futexes, each thread deals with its own futex. This is a trivial scenario and only measures kernel handling of 0->TID transition. Signed-off-by: Davidlohr Bueso <dbueso@suse.de> Cc: Mel Gorman <mgorman@suse.de> Link: http://lkml.kernel.org/r/1436259353.12255.78.camel@stgolabs.net Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> |
||
Davidlohr Bueso
|
d65817b4e7 |
perf bench futex: Support parallel waker threads
The futex-wake benchmark only measures wakeups done within a single process. While this has value in its own, it does not really generate any hb->lock contention. A new benchmark 'wake-parallel' is added, by extending the futex-wake code such that we can measure parallel waker threads. The program output shows the avg per-thread latency in order to complete its share of wakeups: Run summary [PID 13474]: blocking on 512 threads (at [private] futex 0xa88668), 8 threads waking up 64 at a time. [Run 1]: Avg per-thread latency (waking 64/512 threads) in 0.6230 ms (+-15.31%) [Run 2]: Avg per-thread latency (waking 64/512 threads) in 0.5175 ms (+-29.95%) [Run 3]: Avg per-thread latency (waking 64/512 threads) in 0.7578 ms (+-18.03%) [Run 4]: Avg per-thread latency (waking 64/512 threads) in 0.8944 ms (+-12.54%) [Run 5]: Avg per-thread latency (waking 64/512 threads) in 1.1204 ms (+-23.85%) Avg per-thread latency (waking 64/512 threads) in 0.7826 ms (+-9.91%) Naturally, different combinations of numbers of blocking and waker threads will exhibit different information. Signed-off-by: Davidlohr Bueso <dbueso@suse.de> Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Davidlohr Bueso <dbueso@suse.de> Link: http://lkml.kernel.org/r/1431110280-20231-1-git-send-email-dave@stgolabs.net Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> |
||
Jiri Olsa
|
72965b87c5 |
perf build: Add bench objects building
Move bench objects building under build framework and enable perf-in.o rule. Signed-off-by: Jiri Olsa <jolsa@kernel.org> Tested-by: Sukadev Bhattiprolu <sukadev@linux.vnet.ibm.com> Tested-by: Will Deacon <will.deacon@arm.com> Cc: Alexis Berlemont <alexis.berlemont@gmail.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com> Cc: David Ahern <dsahern@gmail.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Link: http://lkml.kernel.org/n/tip-b0gxubmn3qjabaq0lune53y3@git.kernel.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> |