2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-27 22:53:55 +08:00
Commit Graph

24 Commits

Author SHA1 Message Date
Lisa Du
6e543d5780 mm: vmscan: fix do_try_to_free_pages() livelock
This patch is based on KOSAKI's work and I add a little more description,
please refer https://lkml.org/lkml/2012/6/14/74.

Currently, I found system can enter a state that there are lots of free
pages in a zone but only order-0 and order-1 pages which means the zone is
heavily fragmented, then high order allocation could make direct reclaim
path's long stall(ex, 60 seconds) especially in no swap and no compaciton
enviroment.  This problem happened on v3.4, but it seems issue still lives
in current tree, the reason is do_try_to_free_pages enter live lock:

kswapd will go to sleep if the zones have been fully scanned and are still
not balanced.  As kswapd thinks there's little point trying all over again
to avoid infinite loop.  Instead it changes order from high-order to
0-order because kswapd think order-0 is the most important.  Look at
73ce02e9 in detail.  If watermarks are ok, kswapd will go back to sleep
and may leave zone->all_unreclaimable =3D 0.  It assume high-order users
can still perform direct reclaim if they wish.

Direct reclaim continue to reclaim for a high order which is not a
COSTLY_ORDER without oom-killer until kswapd turn on
zone->all_unreclaimble= .  This is because to avoid too early oom-kill.
So it means direct_reclaim depends on kswapd to break this loop.

In worst case, direct-reclaim may continue to page reclaim forever when
kswapd sleeps forever until someone like watchdog detect and finally kill
the process.  As described in:
http://thread.gmane.org/gmane.linux.kernel.mm/103737

We can't turn on zone->all_unreclaimable from direct reclaim path because
direct reclaim path don't take any lock and this way is racy.  Thus this
patch removes zone->all_unreclaimable field completely and recalculates
zone reclaimable state every time.

Note: we can't take the idea that direct-reclaim see zone->pages_scanned
directly and kswapd continue to use zone->all_unreclaimable.  Because, it
is racy.  commit 929bea7c71 (vmscan: all_unreclaimable() use
zone->all_unreclaimable as a name) describes the detail.

[akpm@linux-foundation.org: uninline zone_reclaimable_pages() and zone_reclaimable()]
Cc: Aaditya Kumar <aaditya.kumar.30@gmail.com>
Cc: Ying Han <yinghan@google.com>
Cc: Nick Piggin <npiggin@gmail.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Bob Liu <lliubbo@gmail.com>
Cc: Neil Zhang <zhangwm@marvell.com>
Cc: Russell King - ARM Linux <linux@arm.linux.org.uk>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Minchan Kim <minchan@kernel.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Lisa Du <cldu@marvell.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11 15:58:01 -07:00
Hugh Dickins
fa9add641b mm/memcg: apply add/del_page to lruvec
Take lruvec further: pass it instead of zone to add_page_to_lru_list() and
del_page_from_lru_list(); and pagevec_lru_move_fn() pass lruvec down to
its target functions.

This cleanup eliminates a swathe of cruft in memcontrol.c, including
mem_cgroup_lru_add_list(), mem_cgroup_lru_del_list() and
mem_cgroup_lru_move_lists() - which never actually touched the lists.

In their place, mem_cgroup_page_lruvec() to decide the lruvec, previously
a side-effect of add, and mem_cgroup_update_lru_size() to maintain the
lru_size stats.

Whilst these are simplifications in their own right, the goal is to bring
the evaluation of lruvec next to the spin_locking of the lrus, in
preparation for a future patch.

Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Konstantin Khlebnikov <khlebnikov@openvz.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-05-29 16:22:28 -07:00
Konstantin Khlebnikov
014483bccc mm: mark mm-inline functions as __always_inline
GCC sometimes ignores "inline" directives even for small and simple functions.
This supposed to be fixed in gcc 4.7, but it was released only yesterday.

Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Glauber Costa <glommer@parallels.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-05-29 16:22:25 -07:00
Hugh Dickins
1c1c53d43b mm: remove del_page_from_lru, add page_off_lru
del_page_from_lru() repeats del_page_from_lru_list(), also working out
which LRU the page was on, clearing the relevant bits.  Decouple those
functions: remove del_page_from_lru() and add page_off_lru().

Signed-off-by: Hugh Dickins <hughd@google.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-12 20:13:10 -08:00
Hugh Dickins
4111304dab mm: enum lru_list lru
Mostly we use "enum lru_list lru": change those few "l"s to "lru"s.

Signed-off-by: Hugh Dickins <hughd@google.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-12 20:13:10 -08:00
Johannes Weiner
925b7673cc mm: make per-memcg LRU lists exclusive
Now that all code that operated on global per-zone LRU lists is
converted to operate on per-memory cgroup LRU lists instead, there is no
reason to keep the double-LRU scheme around any longer.

The pc->lru member is removed and page->lru is linked directly to the
per-memory cgroup LRU lists, which removes two pointers from a
descriptor that exists for every page frame in the system.

Signed-off-by: Johannes Weiner <jweiner@redhat.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Ying Han <yinghan@google.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-12 20:13:05 -08:00
Johannes Weiner
6290df5458 mm: collect LRU list heads into struct lruvec
Having a unified structure with a LRU list set for both global zones and
per-memcg zones allows to keep that code simple which deals with LRU
lists and does not care about the container itself.

Once the per-memcg LRU lists directly link struct pages, the isolation
function and all other list manipulations are shared between the memcg
case and the global LRU case.

Signed-off-by: Johannes Weiner <jweiner@redhat.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Ying Han <yinghan@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-12 20:13:05 -08:00
Rik van Riel
2c888cfbc1 thp: fix anon memory statistics with transparent hugepages
Count each transparent hugepage as HPAGE_PMD_NR pages in the LRU
statistics, so the Active(anon) and Inactive(anon) statistics in
/proc/meminfo are correct.

Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13 17:32:46 -08:00
Andrea Arcangeli
71e3aac072 thp: transparent hugepage core
Lately I've been working to make KVM use hugepages transparently without
the usual restrictions of hugetlbfs.  Some of the restrictions I'd like to
see removed:

1) hugepages have to be swappable or the guest physical memory remains
   locked in RAM and can't be paged out to swap

2) if a hugepage allocation fails, regular pages should be allocated
   instead and mixed in the same vma without any failure and without
   userland noticing

3) if some task quits and more hugepages become available in the
   buddy, guest physical memory backed by regular pages should be
   relocated on hugepages automatically in regions under
   madvise(MADV_HUGEPAGE) (ideally event driven by waking up the
   kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes
   not null)

4) avoidance of reservation and maximization of use of hugepages whenever
   possible. Reservation (needed to avoid runtime fatal faliures) may be ok for
   1 machine with 1 database with 1 database cache with 1 database cache size
   known at boot time. It's definitely not feasible with a virtualization
   hypervisor usage like RHEV-H that runs an unknown number of virtual machines
   with an unknown size of each virtual machine with an unknown amount of
   pagecache that could be potentially useful in the host for guest not using
   O_DIRECT (aka cache=off).

hugepages in the virtualization hypervisor (and also in the guest!) are
much more important than in a regular host not using virtualization,
becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24
to 19 in case only the hypervisor uses transparent hugepages, and they
decrease the tlb-miss cacheline accesses from 19 to 15 in case both the
linux hypervisor and the linux guest both uses this patch (though the
guest will limit the addition speedup to anonymous regions only for
now...).  Even more important is that the tlb miss handler is much slower
on a NPT/EPT guest than for a regular shadow paging or no-virtualization
scenario.  So maximizing the amount of virtual memory cached by the TLB
pays off significantly more with NPT/EPT than without (even if there would
be no significant speedup in the tlb-miss runtime).

The first (and more tedious) part of this work requires allowing the VM to
handle anonymous hugepages mixed with regular pages transparently on
regular anonymous vmas.  This is what this patch tries to achieve in the
least intrusive possible way.  We want hugepages and hugetlb to be used in
a way so that all applications can benefit without changes (as usual we
leverage the KVM virtualization design: by improving the Linux VM at
large, KVM gets the performance boost too).

The most important design choice is: always fallback to 4k allocation if
the hugepage allocation fails!  This is the _very_ opposite of some large
pagecache patches that failed with -EIO back then if a 64k (or similar)
allocation failed...

Second important decision (to reduce the impact of the feature on the
existing pagetable handling code) is that at any time we can split an
hugepage into 512 regular pages and it has to be done with an operation
that can't fail.  This way the reliability of the swapping isn't decreased
(no need to allocate memory when we are short on memory to swap) and it's
trivial to plug a split_huge_page* one-liner where needed without
polluting the VM.  Over time we can teach mprotect, mremap and friends to
handle pmd_trans_huge natively without calling split_huge_page*.  The fact
it can't fail isn't just for swap: if split_huge_page would return -ENOMEM
(instead of the current void) we'd need to rollback the mprotect from the
middle of it (ideally including undoing the split_vma) which would be a
big change and in the very wrong direction (it'd likely be simpler not to
call split_huge_page at all and to teach mprotect and friends to handle
hugepages instead of rolling them back from the middle).  In short the
very value of split_huge_page is that it can't fail.

The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and
incremental and it'll just be an "harmless" addition later if this initial
part is agreed upon.  It also should be noted that locking-wise replacing
regular pages with hugepages is going to be very easy if compared to what
I'm doing below in split_huge_page, as it will only happen when
page_count(page) matches page_mapcount(page) if we can take the PG_lock
and mmap_sem in write mode.  collapse_huge_page will be a "best effort"
that (unlike split_huge_page) can fail at the minimal sign of trouble and
we can try again later.  collapse_huge_page will be similar to how KSM
works and the madvise(MADV_HUGEPAGE) will work similar to
madvise(MADV_MERGEABLE).

The default I like is that transparent hugepages are used at page fault
time.  This can be changed with
/sys/kernel/mm/transparent_hugepage/enabled.  The control knob can be set
to three values "always", "madvise", "never" which mean respectively that
hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions,
or never used.  /sys/kernel/mm/transparent_hugepage/defrag instead
controls if the hugepage allocation should defrag memory aggressively
"always", only inside "madvise" regions, or "never".

The pmd_trans_splitting/pmd_trans_huge locking is very solid.  The
put_page (from get_user_page users that can't use mmu notifier like
O_DIRECT) that runs against a __split_huge_page_refcount instead was a
pain to serialize in a way that would result always in a coherent page
count for both tail and head.  I think my locking solution with a
compound_lock taken only after the page_first is valid and is still a
PageHead should be safe but it surely needs review from SMP race point of
view.  In short there is no current existing way to serialize the O_DIRECT
final put_page against split_huge_page_refcount so I had to invent a new
one (O_DIRECT loses knowledge on the mapping status by the time gup_fast
returns so...).  And I didn't want to impact all gup/gup_fast users for
now, maybe if we change the gup interface substantially we can avoid this
locking, I admit I didn't think too much about it because changing the gup
unpinning interface would be invasive.

If we ignored O_DIRECT we could stick to the existing compound refcounting
code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM
(and any other mmu notifier user) would call it without FOLL_GET (and if
FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the
current task mmu notifier list yet).  But O_DIRECT is fundamental for
decent performance of virtualized I/O on fast storage so we can't avoid it
to solve the race of put_page against split_huge_page_refcount to achieve
a complete hugepage feature for KVM.

Swap and oom works fine (well just like with regular pages ;).  MMU
notifier is handled transparently too, with the exception of the young bit
on the pmd, that didn't have a range check but I think KVM will be fine
because the whole point of hugepages is that EPT/NPT will also use a huge
pmd when they notice gup returns pages with PageCompound set, so they
won't care of a range and there's just the pmd young bit to check in that
case.

NOTE: in some cases if the L2 cache is small, this may slowdown and waste
memory during COWs because 4M of memory are accessed in a single fault
instead of 8k (the payoff is that after COW the program can run faster).
So we might want to switch the copy_huge_page (and clear_huge_page too) to
not temporal stores.  I also extensively researched ways to avoid this
cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k
up to 1M (I can send those patches that fully implemented prefault) but I
concluded they're not worth it and they add an huge additional complexity
and they remove all tlb benefits until the full hugepage has been faulted
in, to save a little bit of memory and some cache during app startup, but
they still don't improve substantially the cache-trashing during startup
if the prefault happens in >4k chunks.  One reason is that those 4k pte
entries copied are still mapped on a perfectly cache-colored hugepage, so
the trashing is the worst one can generate in those copies (cow of 4k page
copies aren't so well colored so they trashes less, but again this results
in software running faster after the page fault).  Those prefault patches
allowed things like a pte where post-cow pages were local 4k regular anon
pages and the not-yet-cowed pte entries were pointing in the middle of
some hugepage mapped read-only.  If it doesn't payoff substantially with
todays hardware it will payoff even less in the future with larger l2
caches, and the prefault logic would blot the VM a lot.  If one is
emebdded transparent_hugepage can be disabled during boot with sysfs or
with the boot commandline parameter transparent_hugepage=0 (or
transparent_hugepage=2 to restrict hugepages inside madvise regions) that
will ensure not a single hugepage is allocated at boot time.  It is simple
enough to just disable transparent hugepage globally and let transparent
hugepages be allocated selectively by applications in the MADV_HUGEPAGE
region (both at page fault time, and if enabled with the
collapse_huge_page too through the kernel daemon).

This patch supports only hugepages mapped in the pmd, archs that have
smaller hugepages will not fit in this patch alone.  Also some archs like
power have certain tlb limits that prevents mixing different page size in
the same regions so they will not fit in this framework that requires
"graceful fallback" to basic PAGE_SIZE in case of physical memory
fragmentation.  hugetlbfs remains a perfect fit for those because its
software limits happen to match the hardware limits.  hugetlbfs also
remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped
to be found not fragmented after a certain system uptime and that would be
very expensive to defragment with relocation, so requiring reservation.
hugetlbfs is the "reservation way", the point of transparent hugepages is
not to have any reservation at all and maximizing the use of cache and
hugepages at all times automatically.

Some performance result:

vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep
ages3
memset page fault 1566023
memset tlb miss 453854
memset second tlb miss 453321
random access tlb miss 41635
random access second tlb miss 41658
vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3
memset page fault 1566471
memset tlb miss 453375
memset second tlb miss 453320
random access tlb miss 41636
random access second tlb miss 41637
vmx andrea # ./largepages3
memset page fault 1566642
memset tlb miss 453417
memset second tlb miss 453313
random access tlb miss 41630
random access second tlb miss 41647
vmx andrea # ./largepages3
memset page fault 1566872
memset tlb miss 453418
memset second tlb miss 453315
random access tlb miss 41618
random access second tlb miss 41659
vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage
vmx andrea # ./largepages3
memset page fault 2182476
memset tlb miss 460305
memset second tlb miss 460179
random access tlb miss 44483
random access second tlb miss 44186
vmx andrea # ./largepages3
memset page fault 2182791
memset tlb miss 460742
memset second tlb miss 459962
random access tlb miss 43981
random access second tlb miss 43988

============
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/time.h>

#define SIZE (3UL*1024*1024*1024)

int main()
{
	char *p = malloc(SIZE), *p2;
	struct timeval before, after;

	gettimeofday(&before, NULL);
	memset(p, 0, SIZE);
	gettimeofday(&after, NULL);
	printf("memset page fault %Lu\n",
	       (after.tv_sec-before.tv_sec)*1000000UL +
	       after.tv_usec-before.tv_usec);

	gettimeofday(&before, NULL);
	memset(p, 0, SIZE);
	gettimeofday(&after, NULL);
	printf("memset tlb miss %Lu\n",
	       (after.tv_sec-before.tv_sec)*1000000UL +
	       after.tv_usec-before.tv_usec);

	gettimeofday(&before, NULL);
	memset(p, 0, SIZE);
	gettimeofday(&after, NULL);
	printf("memset second tlb miss %Lu\n",
	       (after.tv_sec-before.tv_sec)*1000000UL +
	       after.tv_usec-before.tv_usec);

	gettimeofday(&before, NULL);
	for (p2 = p; p2 < p+SIZE; p2 += 4096)
		*p2 = 0;
	gettimeofday(&after, NULL);
	printf("random access tlb miss %Lu\n",
	       (after.tv_sec-before.tv_sec)*1000000UL +
	       after.tv_usec-before.tv_usec);

	gettimeofday(&before, NULL);
	for (p2 = p; p2 < p+SIZE; p2 += 4096)
		*p2 = 0;
	gettimeofday(&after, NULL);
	printf("random access second tlb miss %Lu\n",
	       (after.tv_sec-before.tv_sec)*1000000UL +
	       after.tv_usec-before.tv_usec);

	return 0;
}
============

Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13 17:32:42 -08:00
Johannes Weiner
6c0b13519d mm: return boolean from page_is_file_cache()
page_is_file_cache() has been used for both boolean checks and LRU
arithmetic, which was always a bit weird.

Now that page_lru_base_type() exists for LRU arithmetic, make
page_is_file_cache() a real predicate function and adjust the
boolean-using callsites to drop those pesky double negations.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-09-22 07:17:37 -07:00
Johannes Weiner
401a8e1c16 mm: introduce page_lru_base_type()
Instead of abusing page_is_file_cache() for LRU list index arithmetic, add
another helper with a more appropriate name and convert the non-boolean
users of page_is_file_cache() accordingly.

This new helper gives the LRU base type a page is supposed to live on,
inactive anon or inactive file.

[hugh.dickins@tiscali.co.uk: convert del_page_from_lru() also]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-09-22 07:17:35 -07:00
KOSAKI Motohiro
f89eb90e33 inactive_anon_is_low: move to vmscan
The inactive_anon_is_low() is called only vmscan.  Then it can move to
vmscan.c

This patch doesn't have any functional change.

Reviewd-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-08 08:31:07 -08:00
KAMEZAWA Hiroyuki
08e552c69c memcg: synchronized LRU
A big patch for changing memcg's LRU semantics.

Now,
  - page_cgroup is linked to mem_cgroup's its own LRU (per zone).

  - LRU of page_cgroup is not synchronous with global LRU.

  - page and page_cgroup is one-to-one and statically allocated.

  - To find page_cgroup is on what LRU, you have to check pc->mem_cgroup as
    - lru = page_cgroup_zoneinfo(pc, nid_of_pc, zid_of_pc);

  - SwapCache is handled.

And, when we handle LRU list of page_cgroup, we do following.

	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc); .....................(1)
	mz = page_cgroup_zoneinfo(pc);
	spin_lock(&mz->lru_lock);
	.....add to LRU
	spin_unlock(&mz->lru_lock);
	unlock_page_cgroup(pc);

But (1) is spin_lock and we have to be afraid of dead-lock with zone->lru_lock.
So, trylock() is used at (1), now. Without (1), we can't trust "mz" is correct.

This is a trial to remove this dirty nesting of locks.
This patch changes mz->lru_lock to be zone->lru_lock.
Then, above sequence will be written as

        spin_lock(&zone->lru_lock); # in vmscan.c or swap.c via global LRU
	mem_cgroup_add/remove/etc_lru() {
		pc = lookup_page_cgroup(page);
		mz = page_cgroup_zoneinfo(pc);
		if (PageCgroupUsed(pc)) {
			....add to LRU
		}
        spin_lock(&zone->lru_lock); # in vmscan.c or swap.c via global LRU

This is much simpler.
(*) We're safe even if we don't take lock_page_cgroup(pc). Because..
    1. When pc->mem_cgroup can be modified.
       - at charge.
       - at account_move().
    2. at charge
       the PCG_USED bit is not set before pc->mem_cgroup is fixed.
    3. at account_move()
       the page is isolated and not on LRU.

Pros.
  - easy for maintenance.
  - memcg can make use of laziness of pagevec.
  - we don't have to duplicated LRU/Active/Unevictable bit in page_cgroup.
  - LRU status of memcg will be synchronized with global LRU's one.
  - # of locks are reduced.
  - account_move() is simplified very much.
Cons.
  - may increase cost of LRU rotation.
    (no impact if memcg is not configured.)

Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Pavel Emelyanov <xemul@openvz.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-08 08:31:05 -08:00
KOSAKI Motohiro
902d2e8ae0 vmscan: kill unused lru functions
Several LRU manupuration function are not used now.  So they can be
removed.

Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-20 08:52:31 -07:00
Lee Schermerhorn
894bc31041 Unevictable LRU Infrastructure
When the system contains lots of mlocked or otherwise unevictable pages,
the pageout code (kswapd) can spend lots of time scanning over these
pages.  Worse still, the presence of lots of unevictable pages can confuse
kswapd into thinking that more aggressive pageout modes are required,
resulting in all kinds of bad behaviour.

Infrastructure to manage pages excluded from reclaim--i.e., hidden from
vmscan.  Based on a patch by Larry Woodman of Red Hat.  Reworked to
maintain "unevictable" pages on a separate per-zone LRU list, to "hide"
them from vmscan.

Kosaki Motohiro added the support for the memory controller unevictable
lru list.

Pages on the unevictable list have both PG_unevictable and PG_lru set.
Thus, PG_unevictable is analogous to and mutually exclusive with
PG_active--it specifies which LRU list the page is on.

The unevictable infrastructure is enabled by a new mm Kconfig option
[CONFIG_]UNEVICTABLE_LRU.

A new function 'page_evictable(page, vma)' in vmscan.c tests whether or
not a page may be evictable.  Subsequent patches will add the various
!evictable tests.  We'll want to keep these tests light-weight for use in
shrink_active_list() and, possibly, the fault path.

To avoid races between tasks putting pages [back] onto an LRU list and
tasks that might be moving the page from non-evictable to evictable state,
the new function 'putback_lru_page()' -- inverse to 'isolate_lru_page()'
-- tests the "evictability" of a page after placing it on the LRU, before
dropping the reference.  If the page has become unevictable,
putback_lru_page() will redo the 'putback', thus moving the page to the
unevictable list.  This way, we avoid "stranding" evictable pages on the
unevictable list.

[akpm@linux-foundation.org: fix fallout from out-of-order merge]
[riel@redhat.com: fix UNEVICTABLE_LRU and !PROC_PAGE_MONITOR build]
[nishimura@mxp.nes.nec.co.jp: remove redundant mapping check]
[kosaki.motohiro@jp.fujitsu.com: unevictable-lru-infrastructure: putback_lru_page()/unevictable page handling rework]
[kosaki.motohiro@jp.fujitsu.com: kill unnecessary lock_page() in vmscan.c]
[kosaki.motohiro@jp.fujitsu.com: revert migration change of unevictable lru infrastructure]
[kosaki.motohiro@jp.fujitsu.com: revert to unevictable-lru-infrastructure-kconfig-fix.patch]
[kosaki.motohiro@jp.fujitsu.com: restore patch failure of vmstat-unevictable-and-mlocked-pages-vm-events.patch]
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Debugged-by: Benjamin Kidwell <benjkidwell@yahoo.com>
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-20 08:50:26 -07:00
Rik van Riel
556adecba1 vmscan: second chance replacement for anonymous pages
We avoid evicting and scanning anonymous pages for the most part, but
under some workloads we can end up with most of memory filled with
anonymous pages.  At that point, we suddenly need to clear the referenced
bits on all of memory, which can take ages on very large memory systems.

We can reduce the maximum number of pages that need to be scanned by not
taking the referenced state into account when deactivating an anonymous
page.  After all, every anonymous page starts out referenced, so why
check?

If an anonymous page gets referenced again before it reaches the end of
the inactive list, we move it back to the active list.

To keep the maximum amount of necessary work reasonable, we scale the
active to inactive ratio with the size of memory, using the formula
active:inactive ratio = sqrt(memory in GB * 10).

Kswapd CPU use now seems to scale by the amount of pageout bandwidth,
instead of by the amount of memory present in the system.

[kamezawa.hiroyu@jp.fujitsu.com: fix OOM with memcg]
[kamezawa.hiroyu@jp.fujitsu.com: memcg: lru scan fix]
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-20 08:50:25 -07:00
Rik van Riel
4f98a2fee8 vmscan: split LRU lists into anon & file sets
Split the LRU lists in two, one set for pages that are backed by real file
systems ("file") and one for pages that are backed by memory and swap
("anon").  The latter includes tmpfs.

The advantage of doing this is that the VM will not have to scan over lots
of anonymous pages (which we generally do not want to swap out), just to
find the page cache pages that it should evict.

This patch has the infrastructure and a basic policy to balance how much
we scan the anon lists and how much we scan the file lists.  The big
policy changes are in separate patches.

[lee.schermerhorn@hp.com: collect lru meminfo statistics from correct offset]
[kosaki.motohiro@jp.fujitsu.com: prevent incorrect oom under split_lru]
[kosaki.motohiro@jp.fujitsu.com: fix pagevec_move_tail() doesn't treat unevictable page]
[hugh@veritas.com: memcg swapbacked pages active]
[hugh@veritas.com: splitlru: BDI_CAP_SWAP_BACKED]
[akpm@linux-foundation.org: fix /proc/vmstat units]
[nishimura@mxp.nes.nec.co.jp: memcg: fix handling of shmem migration]
[kosaki.motohiro@jp.fujitsu.com: adjust Quicklists field of /proc/meminfo]
[kosaki.motohiro@jp.fujitsu.com: fix style issue of get_scan_ratio()]
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-20 08:50:25 -07:00
Rik van Riel
b2e185384f define page_file_cache() function
Define page_file_cache() function to answer the question:
	is page backed by a file?

Originally part of Rik van Riel's split-lru patch.  Extracted to make
available for other, independent reclaim patches.

Moved inline function to linux/mm_inline.h where it will be needed by
subsequent "split LRU" and "noreclaim" patches.

Unfortunately this needs to use a page flag, since the PG_swapbacked state
needs to be preserved all the way to the point where the page is last
removed from the LRU.  Trying to derive the status from other info in the
page resulted in wrong VM statistics in earlier split VM patchsets.

The total number of page flags in use on a 32 bit machine after this patch
is 19.

[akpm@linux-foundation.org: fix up out-of-order merge fallout]
[hugh@veritas.com: splitlru: shmem_getpage SetPageSwapBacked sooner[
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Signed-off-by: MinChan Kim <minchan.kim@gmail.com>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-20 08:50:25 -07:00
Christoph Lameter
b69408e88b vmscan: Use an indexed array for LRU variables
Currently we are defining explicit variables for the inactive and active
list.  An indexed array can be more generic and avoid repeating similar
code in several places in the reclaim code.

We are saving a few bytes in terms of code size:

Before:

   text    data     bss     dec     hex filename
4097753  573120 4092484 8763357  85b7dd vmlinux

After:

   text    data     bss     dec     hex filename
4097729  573120 4092484 8763333  85b7c5 vmlinux

Having an easy way to add new lru lists may ease future work on the
reclaim code.

Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Signed-off-by: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-20 08:50:25 -07:00
Christoph Lameter
c878538598 [PATCH] Use ZVC for inactive and active counts
The determination of the dirty ratio to determine writeback behavior is
currently based on the number of total pages on the system.

However, not all pages in the system may be dirtied.  Thus the ratio is always
too low and can never reach 100%.  The ratio may be particularly skewed if
large hugepage allocations, slab allocations or device driver buffers make
large sections of memory not available anymore.  In that case we may get into
a situation in which f.e.  the background writeback ratio of 40% cannot be
reached anymore which leads to undesired writeback behavior.

This patchset fixes that issue by determining the ratio based on the actual
pages that may potentially be dirty.  These are the pages on the active and
the inactive list plus free pages.

The problem with those counts has so far been that it is expensive to
calculate these because counts from multiple nodes and multiple zones will
have to be summed up.  This patchset makes these counters ZVC counters.  This
means that a current sum per zone, per node and for the whole system is always
available via global variables and not expensive anymore to calculate.

The patchset results in some other good side effects:

- Removal of the various functions that sum up free, active and inactive
  page counts

- Cleanup of the functions that display information via the proc filesystem.

This patch:

The use of a ZVC for nr_inactive and nr_active allows a simplification of some
counter operations.  More ZVC functionality is used for sums etc in the
following patches.

[akpm@osdl.org: UP build fix]
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-11 10:51:17 -08:00
Nick Piggin
674539115c [PATCH] mm: less atomic ops
In the page release paths, we can be sure that nobody will mess with our
page->flags because the refcount has dropped to 0.  So no need for atomic
operations here.

Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-22 07:53:57 -08:00
Nick Piggin
053837fce7 [PATCH] mm: migration page refcounting fix
Migration code currently does not take a reference to target page
properly, so between unlocking the pte and trying to take a new
reference to the page with isolate_lru_page, anything could happen to
it.

Fix this by holding the pte lock until we get a chance to elevate the
refcount.

Other small cleanups while we're here.

Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-18 19:20:17 -08:00
Christoph Lameter
21eac81f25 [PATCH] Swap Migration V5: LRU operations
This is the start of the `swap migration' patch series.

Swap migration allows the moving of the physical location of pages between
nodes in a numa system while the process is running.  This means that the
virtual addresses that the process sees do not change.  However, the system
rearranges the physical location of those pages.

The main intent of page migration patches here is to reduce the latency of
memory access by moving pages near to the processor where the process
accessing that memory is running.

The patchset allows a process to manually relocate the node on which its
pages are located through the MF_MOVE and MF_MOVE_ALL options while
setting a new memory policy.

The pages of process can also be relocated from another process using the
sys_migrate_pages() function call.  Requires CAP_SYS_ADMIN.  The migrate_pages
function call takes two sets of nodes and moves pages of a process that are
located on the from nodes to the destination nodes.

Manual migration is very useful if for example the scheduler has relocated a
process to a processor on a distant node.  A batch scheduler or an
administrator can detect the situation and move the pages of the process
nearer to the new processor.

sys_migrate_pages() could be used on non-numa machines as well, to force all
of a particualr process's pages out to swap, if someone thinks that's useful.

Larger installations usually partition the system using cpusets into sections
of nodes.  Paul has equipped cpusets with the ability to move pages when a
task is moved to another cpuset.  This allows automatic control over locality
of a process.  If a task is moved to a new cpuset then also all its pages are
moved with it so that the performance of the process does not sink
dramatically (as is the case today).

Swap migration works by simply evicting the page.  The pages must be faulted
back in.  The pages are then typically reallocated by the system near the node
where the process is executing.

For swap migration the destination of the move is controlled by the allocation
policy.  Cpusets set the allocation policy before calling sys_migrate_pages()
in order to move the pages as intended.

No allocation policy changes are performed for sys_migrate_pages().  This
means that the pages may not faulted in to the specified nodes if no
allocation policy was set by other means.  The pages will just end up near the
node where the fault occurred.

There's another patch series in the pipeline which implements "direct
migration".

The direct migration patchset extends the migration functionality to avoid
going through swap.  The destination node of the relation is controllable
during the actual moving of pages.  The crutch of using the allocation policy
to relocate is not necessary and the pages are moved directly to the target.
Its also faster since swap is not used.

And sys_migrate_pages() can then move pages directly to the specified node.
Implement functions to isolate pages from the LRU and put them back later.

This patch:

An earlier implementation was provided by Hirokazu Takahashi
<taka@valinux.co.jp> and IWAMOTO Toshihiro <iwamoto@valinux.co.jp> for the
memory hotplug project.

From: Magnus

This breaks out isolate_lru_page() and putpack_lru_page().  Needed for swap
migration.

Signed-off-by: Magnus Damm <magnus.damm@gmail.com>
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 20:12:41 -08:00
Linus Torvalds
1da177e4c3 Linux-2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.

Let it rip!
2005-04-16 15:20:36 -07:00