2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-21 11:44:01 +08:00
Commit Graph

6 Commits

Author SHA1 Message Date
Tejun Heo
5a0e3ad6af include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files.  percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.

percpu.h -> slab.h dependency is about to be removed.  Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability.  As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.

  http://userweb.kernel.org/~tj/misc/slabh-sweep.py

The script does the followings.

* Scan files for gfp and slab usages and update includes such that
  only the necessary includes are there.  ie. if only gfp is used,
  gfp.h, if slab is used, slab.h.

* When the script inserts a new include, it looks at the include
  blocks and try to put the new include such that its order conforms
  to its surrounding.  It's put in the include block which contains
  core kernel includes, in the same order that the rest are ordered -
  alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
  doesn't seem to be any matching order.

* If the script can't find a place to put a new include (mostly
  because the file doesn't have fitting include block), it prints out
  an error message indicating which .h file needs to be added to the
  file.

The conversion was done in the following steps.

1. The initial automatic conversion of all .c files updated slightly
   over 4000 files, deleting around 700 includes and adding ~480 gfp.h
   and ~3000 slab.h inclusions.  The script emitted errors for ~400
   files.

2. Each error was manually checked.  Some didn't need the inclusion,
   some needed manual addition while adding it to implementation .h or
   embedding .c file was more appropriate for others.  This step added
   inclusions to around 150 files.

3. The script was run again and the output was compared to the edits
   from #2 to make sure no file was left behind.

4. Several build tests were done and a couple of problems were fixed.
   e.g. lib/decompress_*.c used malloc/free() wrappers around slab
   APIs requiring slab.h to be added manually.

5. The script was run on all .h files but without automatically
   editing them as sprinkling gfp.h and slab.h inclusions around .h
   files could easily lead to inclusion dependency hell.  Most gfp.h
   inclusion directives were ignored as stuff from gfp.h was usually
   wildly available and often used in preprocessor macros.  Each
   slab.h inclusion directive was examined and added manually as
   necessary.

6. percpu.h was updated not to include slab.h.

7. Build test were done on the following configurations and failures
   were fixed.  CONFIG_GCOV_KERNEL was turned off for all tests (as my
   distributed build env didn't work with gcov compiles) and a few
   more options had to be turned off depending on archs to make things
   build (like ipr on powerpc/64 which failed due to missing writeq).

   * x86 and x86_64 UP and SMP allmodconfig and a custom test config.
   * powerpc and powerpc64 SMP allmodconfig
   * sparc and sparc64 SMP allmodconfig
   * ia64 SMP allmodconfig
   * s390 SMP allmodconfig
   * alpha SMP allmodconfig
   * um on x86_64 SMP allmodconfig

8. percpu.h modifications were reverted so that it could be applied as
   a separate patch and serve as bisection point.

Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.

Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-30 22:02:32 +09:00
Alexey Dobriyan
471452104b const: constify remaining dev_pm_ops
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 08:53:25 -08:00
Kuninori Morimoto
68fb2e499b uio: pm_runtime_disable is needed if failed
Signed-off-by: Kuninori Morimoto <morimoto.kuninori@renesas.com>
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
2009-11-13 11:36:00 +09:00
Magnus Damm
af76756e6e uio: Runtime PM for UIO devices
This patch modifies the uio_pdrv_genirq driver to support
Runtime PM. The power management implementation simply
runtime resumes the device at open() time and runtime
suspends it at release() time. The user space driver is
responsible for re-initializing the hardware after open().

Signed-off-by: Magnus Damm <damm@igel.co.jp>
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
2009-08-23 18:03:19 +09:00
Mike Frysinger
e543ae8966 UIO: uio_pdrv_genirq: allow custom irq_flags
I can't think of a reason why the driver prevents people from setting any
custom bits in their platform device, but I can think of some reasons for
allowing custom flags.  Like setting the IRQF_TRIGGER_... bits.

Signed-off-by: Mike Frysinger <vapier@gentoo.org>
Signed-off-by: Hans J. Koch <hjk@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2009-01-06 10:44:43 -08:00
Magnus Damm
c767db0ab4 UIO: generic irq handling for some uio platform devices
This is V3 of uio_pdrv_genirq.c, a platform driver for UIO with
generic IRQ handling code. This driver is very similar to the regular
UIO platform driver, but is only suitable for devices that are
connected to the interrupt controller using unique interrupt lines.

The uio_pdrv_genirq driver includes generic interrupt handling code
which disables the serviced interrupt in the interrupt controller
and makes the user space driver responsible for acknowledging the
interrupt in the device and reenabling the interrupt in the interrupt
controller.

Shared interrupts are not supported since the in-kernel interrupt
handler will disable the interrupt line in the interrupt controller,
and in a shared interrupt configuration this will stop other devices
from delivering interrupts.

Signed-off-by: Magnus Damm <damm@igel.co.jp>
Signed-off-by: Hans J. Koch <hjk@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2008-08-21 10:15:39 -07:00